Package ‘penfa’

October 14, 2022
Title Single- And Multiple-Group Penalized Factor Analysis

Version 0.1.1

Description Fits single- and multiple-group penalized factor analysis models
via a trust-region algorithm with integrated automatic multiple tuning
parameter selection (Geminiani et al., 2021 <doi:10.1007/s11336-021-09751-8>).
Auvailable penalties include lasso, adaptive lasso, scad, mcp, and ridge.

License GPL-3

Depends R(>=3.5.0)

Imports MASS, methods, mgcv, GJIRM, stats, trust, utils
Suggests cartography, knitr, plotly, rmarkdown
VignetteBuilder knitr

Encoding UTF-8

LazyData true

URL https://github.com/egeminiani/penfa
RoxygenNote 7.1.1
NeedsCompilation no

Author Elena Geminiani [aut, cre] (<https://orcid.org/0000-0001-5992-9728>),
Giampiero Marra [aut] (<https://orcid.org/0000-0002-9010-2646>),
Irini Moustaki [aut] (<https://orcid.org/0000-0001-8371-1251>)

Maintainer Elena Geminiani <geminianielena@gmail.com>
Repository CRAN
Date/Publication 2021-07-17 05:50:03 UTC

R topics documented:

penfa-package L
cedata L L e e e
coef,penfa-method
fitted,penfa-method
penfa

https://doi.org/10.1007/s11336-021-09751-8
https://github.com/egeminiani/penfa
https://orcid.org/0000-0001-5992-9728
https://orcid.org/0000-0002-9010-2646
https://orcid.org/0000-0001-8371-1251

2 penfa-package

penfa-class L e 16
penfaData-class 18
penfaModel-class 19
penfaOptions L e e e 21
penfaOut e e e e e 23
penfaParEstim 23
penfaPenalty-class L 25
penfaPredict L e 26
penfaSampleStats-class 28
PENMAt L e e e e e e e 29
show,penfa-method L 30
show,penfaData-method 30
show,penfaPenalty-method o 31
summary,penfa-method Lo 31
Index 34
penfa-package penfa: Single- and Multiple-Group Penalized Factor Analysis
Description

The penfa package (a short form for PENalized Factor Analysis) provides several routines for
single- and multiple-group penalized factor analysis for continuous data. The models are estimated
via a trust-region algorithm with integrated automatic multiple tuning parameter selection. The
available penalties include lasso, adaptive lasso, scad, mcp, and ridge.

The main function of the package is penfa. To learn more about it, start with the vignettes and tu-
torials at browseVignettes(package = "penfa”) and https://egeminiani.github.io/penfa/
articles/.

Details

Penalized factor analysis allows to produce parsimonious models using largely an automated pro-
cedure. In the single-group case, a typical penalty function will automatically shrink a subset of
the factor loadings to zero. The use of sparsity-inducing penalty functions leads to optimally sparse
factor structures supported by the data. The resulting models are less prone to instability in the
estimation process and are easier to interpret and generalize than their unpenalized counterparts.

In the multiple-group scenario, penalized factor analysis can be used to automatically ascertain dif-
ferences and similarities of parameter estimates across groups. Typical penalties will automatically
encourage sparse loading matrices and invariant factor loadings and intercepts.

In penfa, estimation is achieved via a penalized likelihood-based framework that builds upon dif-
ferentiable approximations of non-differentiable penalties, a theoretically founded definition of de-
grees of freedom, and an algorithm with integrated automatic multiple tuning parameter selection.
The estimation is based on a trust-region algorithm approach exploiting second-order analytical
derivative information. The standard errors for the model parameters are derived using a Bayesian
approach.

https://egeminiani.github.io/penfa/articles/
https://egeminiani.github.io/penfa/articles/

ccdata 3

The selection of the tuning parameters is a crucial issue in penalized estimation strategies, as the
tuning parameters are responsible for the optimal balance between goodness of fit and sparsity.
In penfa, the optimal values of the tuning parameters can be determined through the automatic
procedure or grid-searches.

In addition to the fitting function penfa, the package provides several methods for examining the pa-
rameter estimates, monitoring the optimization process, and inspecting the structures of the penalty
matrices through interactive visualizations.

Author(s)

Authors: Elena Geminiani, Giampiero Marra, Irini Moustaki

Maintainer: Elena Geminiani. Please address any query or comment to <geminianielena@gmail.com>.

References

Geminiani, E., Marra, G., & Moustaki, I. (2021). "Single- and Multiple-Group Penalized Factor
Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Param-
eter Selection." Psychometrika, 86(1), 65-95. doi: 10.1007/s11336021097518

Geminiani E. (2020), "A penalized likelihood-based framework for single and multiple-group factor
analysis models" (Doctoral dissertation, University of Bologna). Available athttp://amsdottorato.
unibo.it/9355/.

See Also

penfa, penfa-class

ccdata Data set for cross-cultural analysis

Description

A data set for cross-cultural analysis containing the standardized ratings to 12 items concerning
organizational citizenship behavior. Employees from different countries were asked to rate their
attitudes towards helping other employees and giving suggestions for improved work conditions.
The items are thought to measure two latent factors: helping behavior (first seven items) and voice
behavior (last five items). See below for details.

Usage

ccdata

https://doi.org/10.1007/s11336-021-09751-8
http://amsdottorato.unibo.it/9355/
http://amsdottorato.unibo.it/9355/

Format

ccdata

A data frame with 767 rows and 13 variables:

country Character. Country of origin of the employee: Lebanon ("LEB") or Taiwan ("TAIW").

hl
h2
h3
h4

h5
hé

h7

vl

v2

v3

v4

v5

Details

Numeric. Standardized ratings to the item "I volunteer to do things for this organization."
Numeric. Standardized ratings to the item "I help orient new employees in this organization."
Numeric. Standardized ratings to the item "I attend functions that help this organization."

Numeric. Standardized ratings to the item "I help others in this work group with their work for
the benefit of the group."

Numeric. Standardized ratings to the item "I get involved to benefit this organization."

Numeric. Standardized ratings to the item "I help others in this organization learn about the
work."

Numeric. Standardized ratings to the item "I help others in this organization with their work
responsibilities."

Numeric. Standardized ratings to the item "I develop and make recommendations concerning
issues that affect this organization."

Numeric. Standardized ratings to the item "I speak up and encourage other in this organization
to get involved in issues that affect the group."

Numeric. Standardized ratings to the item "I communicate my opinions about work issues to
others in this organization even if my opinion is different and others in the organization dis-
agree with me."

Numeric. Standardized ratings to the item "I keep well informed about issues where my opinion
might be useful to this organization."

Numeric. Standardized ratings to the item "I speak up in this organization with ideas for new
projects or changes in procedures."

The original data come from the ccpsyc package. For convenience, the following pre-processing

has

been applied:

* The data were filtered to only include employees from Lebanon and Taiwan.
* The answers, originally on a 7-point Likert scale, were standardized.

¢ The items were renamed as described above.

Source

The original data set is available from the ccpsyc package. Please refer to Fischer and Karl (2019)
and Fischer et al. (2019) for a description and analysis of these data.

https://github.com/Jo-Karl/ccpsyc/
https://github.com/Jo-Karl/ccpsyc/tree/master/data/
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01507/full
https://link.springer.com/article/10.1057/s41267-017-0132-6

coef,penfa-method 5

coef,penfa-method Coefficients from a penfa object

Description

An S4 method returning the estimates of the model parameters.

Usage

S4 method for signature 'penfa'
coef(object, type = "free”, labels = TRUE)

Arguments
object An object of class penfa, found as a result of a call to penfa.
type Character. If type="free", only the estimated parameters (both penalized and
unpenalized) are returned. If type="user", all parameters listed in the parame-
ter table are returned, including fixed parameters.
labels Logical. If TRUE, parameters are returned with their names.
Value

A numeric vector of class penfa.vector containing the estimated model parameters.

See Also

penfa, penfa-class

Examples
data(ccdata)
syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + @*vl + v2 + v3 + v4 + V5

voice =~ @xh1 + h2 + h3 + h4 + h5§ + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.1lv = TRUE,
penalization
pen.shrink = "alasso”,
eta = list(shrink = c("lambda” = 0.01), diff = c("none"
automatic procedure
strategy = "auto")

2)),

coef(alasso_fit)

6 fitted,penta-method

fitted, penfa-method Model-implied moments for a penfa object

Description
An S4 method returning the model-implied moments for an object of class penfa. For every group,
a list with the model-implied moments is returned.

Usage

S4 method for signature 'penfa'’
fitted(object, labels = TRUE)

Arguments
object An object of class penfa, found as a result of a call to penfa.
labels Logical. If TRUE, the model-implied moments are named according to the item
names used in the model syntax.
Value

A list of the model-implied moments for each group: cov contains the implied covariance matrix,
and mean the implied mean vector. If just the covariance matrix is analyzed, only the cov argument
is returned.

See Also

penfa, penfa-class

Examples
data(ccdata)
syntax = 'help =~ hl1 + h2 + h3 + h4 + h5 + h6 + h7 + @*v]l + v2 + v3 + v4 + v5

voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model

model = syntax,
data = ccdata,
std.lv = TRUE,

penalization
pen.shrink = "alasso”,

penfa 7

eta = list(shrink = c("lambda" = 0.01), diff = c("none" = 0)),
automatic procedure
strategy = "auto”)

fitted(alasso_fit)

penfa Single- and multiple-group penalized factor analysis

Description

The function penfa fits single- and multiple-group PENalized Factor Analysis models via a trust-
region algorithm with integrated automatic multiple tuning parameter selection.

In a single-group analysis, penfa can automatically shrink a subset of the factor loadings to zero.
In a multiple-group analysis, it can encourage sparse loading matrices and invariant factor loadings
and intercepts. The currently supported penalty functions are lasso, adaptive lasso, scad, mcp, and
ridge. Except for the latter, all penalties can achieve sparsity.

Usage
penfa(
model = NULL,
data = NULL,
group = NULL,
pen.shrink = "alasso”,
pen.diff = "none”,
eta = list(shrink = c(lambda = 0.01), diff = c(nhone = 0)),
strategy = "auto”,
)
Arguments
model A description of a user-specified model. It takes the form of a lavaan-like model
syntax. See below for additional details on how to specify a model syntax.
data A data frame containing the (continuous) observed variables used in the model.
Except for the group variable, all variables are treated as numeric.
group Character. An optional variable name in the data frame defining the groups in a
multiple-group analysis.
pen.shrink Character. The type of penalty function used for shrinking a subset of the model

parameters (see the eta argument for details on how to specify which model
parameters shall be penalized). Possible values for pen.shrink are "lasso",
"alasso" (i.e., adaptive lasso), "scad" (i.e., smoothly clipped absolute deviation),
"mep" (i.e., minimax concave penalty), "ridge", and "none" in case of no shrink-
age penalization.

8 penfa

pen.diff Character. The type of penalty function used for shrinking certain parameter
differences across groups, and thus encouraging parameter equivalence across
groups (see the eta argument for details on how to specify which model param-
eters shall be encouraged to be equivalent). Possible values for pen.diff are
"lasso", "alasso" (i.e., adaptive lasso), "scad" (i.e., smoothly clipped absolute
deviation), "mcp" (i.e., minimax concave penalty), "ridge", and "none" in case
of no difference penalization. Note that the specification of pen.diff is only
valid for multiple-group factor analyses when a group variable is defined. If a
difference penalty is requested, the groups must have the same parameters.

eta A named list containing the starting value(s) of the tuning parameter(s) if the
automatic procedure is requested (strategy = "auto”) or the fixed value(s) of
the tuning parameter(s) to be used during optimization if strategy = "fixed".
The list has two components with names "shrink" and "diff", which refer to the
tuning parameters to be used for shrinkage and group equivalence, respectively.
The components of the list are, in turn, named vectors specifying the type of pa-
rameter matrices or vectors to be penalized. Common choices are "lambda" for
the loading matrix and "tau" for the intercept vector of the observed variables.
Other possible values are "phi" for the factor covariance matrix, "psi" for the co-
variance matrix of the unique factors, and "kappa" for the factor means. All non-
fixed elements of the specified matrix/vector are penalized. When strategy =
"fixed" and the tuning values in eta are equal to zero, specifying both list
names as "none" results in ordinary maximum likelihood estimation (no penal-
ization).

strategy Character. The strategy used for the selection of the tuning parameter(s). If
strategy = "auto”, the optimal values of the tuning parameters are determined
via an automatic tuning parameter procedure; if strategy = "fixed", a penal-
ized factor model with the values of the tuning parameters stored in the option
eta is estimated.

Additional options that can be defined using name = "value"”. For a complete
list, please refer to penfaOptions.

Value

An object of class penfa, for which several methods are available. See the manual pages of
summary, penfa-method, show, penfa-method, coef,penfa-method, and fitted, penfa-method
for details.

Data set vs Sample Moments

The penfa function currently takes as input a data set, as opposed to the sample moments (i.e.,
covariance matrices and mean vectors). Future implementations will allow penfa to additionally
take as input sample covariance matrices and sample means. For now, if only sample moments are
available, users can generate multivariate data from those sample moments, and apply the penfa
function on the generated data.

All variables (except for the group variable in multiple-group analyses) are treated as continuous.
Categorical items are not currently supported.

penfa

Model syntax

The model syntax in the model argument describes the factor analysis model to be estimated, and
specifies the relationships between the observed and latent variables (i.e., the common factors). To
facilitate its formulation, the rules for the syntax specification broadly follow the ones in the lavaan
package.

The model syntax is composed of one or multiple formula-like expressions describing specific parts
of the model. The model syntax can be specified as a literal string enclosed by single quotes as in
the example below.

model_syntax <-

Common factors
factorl =~ x1 + x2 + x3 + x4 + x5 + x6
factor2 =~ x1 + x2 + x3 + x4 + x5 + x6

Factor variances and covariances
factor1l ~~ factorl
factor1l ~~ factor2

Unique variances and covariances
x1 ~~ x1
x1 ~~ x2

Intercepts and factor means
x1 ~1
factor1l ~ 1

Blank lines and comments can be used in between formulas, and formulas can be split over multiple
lines. Multiple formulas can be placed on a single line if they are separated by a semicolon (;).

The current implementation allows for the following types of formula-like expressions in the model
syntax:

1. Common factors: The

. Variances and covariances: The

n_.n

operator can be used to define the continuous common factors
(latent variables). The name of the factor (e.g., factorl) is on the left of the "=~" operator,
whereas the terms on the right (e.g., x1 + x2 + x3 + x4 + x5 + x6), separated by "+" operators,
are the indicators of the factor. The operator "=~" can be read as "is measured by".

n

~~" ("double tilde") operator specifies the (residual) vari-
ance of an observed or latent variable, or a set of covariances between one variable, and several
other variables (either observed or latent). The distinction between variances and residual vari-
ances is made automatically. Covariances between unique factors are currently only allowed
when information = "fisher”.

. Intercepts and factor means: We can specify an intercept for an observed variable (x1 ~ 1) or a

common factor (factor1 ~ 1). The variable name appears on the left of the "~" operator. On
the right-hand side, there is the number "1", which stands for the intercept/mean. Including
an intercept/mean formula in the model automatically implies meanstructure = TRUE. The
distinction between observed variable intercepts and factor means is made automatically.

https://CRAN.R-project.org/package=lavaan

10

penfa

Usually, only a single variable name appears on the left side of an operator. However, if multiple
variable names are specified, separated by the "+" operator, the formula is repeated for each element
on the left side. For instance, the formula

x1 + x2 + x3 + x4 ~ 1

specifies an intercept for variables x1, x2, x3 and x4.

On the right-hand side of these formula-like expressions, each element can be modified (using
the "*" operator) by a numeric constant or the special function start(). This provides the user
with a mechanism to fix parameters and provide alternative starting values, respectively. All "*"
expressions are referred to as modifiers, and are explained in detail in the sections below.

Each parameter in a model is automatically given a name consisting of three parts, that are coerced
to a single character vector. The first part is the name of the variable on the left-hand side of the
formula where the parameter is implied. The middle part is based on the special "operator" used in
the formula (e.g., "=~", "~" or "~~"). The third part is the name of the variable on the right-hand
side of the formula where the parameter is implied, or "1" if it is an intercept. The three parts are
pasted together in a single string. For example, the name of the factor loading of x2 on factor1
is the string "factor1~x2". The name of the parameter corresponding to the factor covariance
between factor1 and factor?2 is the string "factor1~~factor2”.

Fixing parameters:
It is often desirable to fix a model parameter that is otherwise (by default) estimated. Any param-
eter in a model can be fixed by using a modifier resulting in a numerical constant. For instance:
* Fixing factor loadings for scale setting or identification restrictions:
factorl ~ 0.8xx1 + x2 + x3 + @*x4 + x5 + x6
factor2 ~ @xx1 + x2 + x3 + 0.8*x4 + x5 + x6
* Specifying an orthogonal (zero) covariance between two factors:

factor1l ~~ @*factor2

Notice that multiplying a certain parameter by NA forces it to be estimated.

Starting values:

User-defined starting values can be provided through the special function start(), containing a
numeric constant. For instance, the formula below provides a starting value equal to 0.8 to the
loading of x2 on factor1.

factorl ~ x1 + start(0.8)*x2 + x3 + x4 + x5 + x6

Multiple groups:

In a multiple group factor analysis, the modifiers containing a single element should be replaced
by a vector of the same length as the number of groups. If a single element is provided, it is used
for all groups. In the example below with two groups, the factor loadings of x1 on factor1 are
fixed to 0.8 in both groups, whereas the factor loadings of x4 are fixed to 0.75 and 0.85 in the first
and second group, respectively.

multigroup_syntax <-
factorl ~ @.8*x1 + x2 + x3 + x4 + x5 + x6
factor2 ~ X1 + x2 + x3 + c(0.75, 0.85)*x4 + x5 + x6 '

penfa 11

Algorithm

Penalized factor analysis allows to produce parsimonious models using largely an automated pro-
cedure. The use of sparsity-inducing penalty functions leads to optimally sparse factor structures
supported by the data. The resulting models are less prone to instability in the estimation process
and are easier to interpret and generalize than their unpenalized counterparts. Multiple-group pe-
nalized factor analysis can be used to automatically ascertain the differences and similarities of
parameter estimates across groups.

In penfa, estimation is achieved via a penalized likelihood-based framework that builds upon dif-
ferentiable approximations of non-differentiable penalties, a theoretically founded definition of de-
grees of freedom, and an algorithm with automatic multiple tuning parameter selection (see section
below for details).

The penfa function uses a trust-region algorithm approach. This strategy constructs a model
function whose behavior near the current point and within a trust-region (usually a ball) is similar
to that of the actual objective function. The algorithm exploits second-order analytical deriva-
tive information. This can come in the form of the penalized Hessian matrix (if information
= "hessian") or the penalized Fisher information matrix (if information = "fisher"). Models
with a mean structure can be only estimated with the penalized Fisher information matrix, which
exhibits similar performances to the penalized Hessian at a reduced computational cost.

Tuning parameter selection

The selection of the tuning parameters is a crucial issue in penalized estimation strategies, as the
tuning parameters are responsible for the optimal balance between goodness of fit and sparsity.

Automatic procedure:

The penalized framework discussed above is easily integrated with automatic multiple tuning
parameter selection (if strategy = "auto"”). The tuning parameters are chosen to minimize an
approximate AIC. See below for additional details on how to introduce more sparsity, if desired.
The automatic procedure is fast, efficient, and scales well with the number of tuning parameters.
It also eliminates the need for time-consuming and computationally intensive grid-searches.
Note: Only lasso, adaptive lasso and ridge penalties can be used with the automatic procedure.
The automatic procedure returns the optimal value of the tuning parameter. Notice, however,
that the parameter estimates from this model will slightly differ from the ones one would obtain
by setting strategy = "fixed"” and eta equal to that optimal tuning value. This is due to the
different starting values employed in the two scenarios. In the automatic procedure, the starting
values of the final model come from the ones of the previous model in the optimization loop; in
the fixed-tuning context, the starting values come from the default ones in penfa.

Grid-search:

If strategy = "fixed", penfa estimates a penalized factor model with the value of the tuning
parameter stored in eta. This is useful if users wish to make multiple calls to the penfa function
using a range of values for the tuning parameter. Then, the optimal penalized model can be
picked on the basis of information criteria, which are easily computed by calling the AIC and
BIC functions. It is often convenient to use the (Generalized) Bayesian Information Criterion as a
selector, due to its recurrent use in sparse settings.

These information criteria use the theoretical definition of the effective degrees of freedom (edf)
as their bias terms. This is because the use of differentiable penalty approximations make the

https://CRAN.R-project.org/package=trust

12 penfa

objective function twice-continuously differentiable. The total edf are as the sum of the effective
degree of freedom for each model parameter, which in turn ranges from O to 1 and quantifies the
extend to which each parameter has been penalized.

Penalization

The penfa function penalizes every element in the parameter matrix/vector specified in the eta ar-
gument. For instance, if eta = list("shrink” = c("lambda” =0.01), "diff" =c("none” =0))
all factor loadings are penalized through a shrinkage penalty.

Choosing the penalty function:
It may be beneficial to try out different penalties, and see which one works best for the problem
at hand. It is also useful to keep the following in mind:

» Shrinkage: lasso, alasso, scad, and mcp are able to shrink parameters to zero, contrarily to
the ridge penalty whose purpose is just regularizing the estimation process.

» Unbiasedness: alasso, scad, and mcp enjoy the so-called "oracle" property. On the contrary,
the lasso is biased since it applies the same penalization to all parameters.

* Automatic procedure: only lasso, alasso, and ridge are supported by the automatic proce-
dure. This means that these penalties are a convenient choice with all the analyses requiring
multiple penalty terms (e.g., multiple-group analyses), for which the automatic procedure is
the only feasible alternative to otherwise computationally intensive multi-dimensional grid-
searches.

Geminiani, Marra, and Moustaki (2021) performed numerical and empirical examples to evaluate
and compare the performance of single- and multiple-group penalized factor models under differ-
ent penalty functions. The alasso penalty generally produced the best trade-off between sparsity
and goodness of fit. However, unlike other penalties, the alasso requires a set of adaptive weights.
In some situations, the weights might not be available, or might be difficult to obtain. If this is the
case, users are encouraged to resort to simpler penalties.

More sparsity:

The penalized model automatically tries to generate the optimal trade-off between goodness of
fit and model complexity (if strategy = "auto”). As a result of this delicate balance, it may not
provide the sparsest factor solution. If users desire more sparsity, they can follow the guidelines
below.

* Influence factor: increase the value of the influence factor stored in the option gamma. As a
rule of thumb, in our experience, common values for obtaining sparse solutions usually range
between 3.5 and 4.5.

* Penalties: some penalties rely on a second tuning parameter. It may be helpful to try out
different values for it, and see which one performs best. For instance, increasing the value
or the exponent of the alasso (by specifying, for instance, a.alasso = 2) leads to sparser
solutions.

In case users fitted a penalized model with a fixed tuning parameter (strategy = "fixed"), they
can manually and subjectively increase its value in the option eta to encourage more sparsity.
When doing so, it is helpful to first do some trials and understand a reasonable range of values
that the tuning parameter can take.

penfa

13

Ordinary Maximum Likelihood:

If strategy = "fixed", pen.shrink = "none"”, pen.diff = "none", and eta = list("shrink”
=c("none” =0@), "diff" =c("none” = 0)), no penalization is applied, and the model is esti-
mated through ordinary maximum likelihood.

Convergence & Admissibility

The function penfa internally assesses the convergence of the fitted model, and the admissibility of
the final solution.

Convergence:

The convergence checks assess whether the penalized gradient vector is close to zero and the
penalized Hessian/Fisher information matrix is positive definite. In case of convergence issues,
penfa warns the users with explanatory messages.

Note: Due to the presence of possibly multiple penalty terms, our experiments highlighted that
the penalized gradient need not be strictly close to zero to obtain meaningful results. It is enough
that its elements do not exceed a pre-specified threshold, whose value can be changed through the
optim.dx.tol option.

Admissibility:
The admissibility checks are carried out to determine whether the final solution is admissible.
Specifically, the penfa function sequentially checks whether:
1. The final model includes any negative unique variances (Heywood cases);
The final model includes any negative factor variances;
The estimated common factor covariance matrix is positive definite;
The estimated unique factor covariance matrix is positive definite;
The estimated factor loading matrix is of full column rank;

A

The estimated factor loading matrix does not contain any null rows.

In case of multiple-group analyses, the function checks the admissibility of the parameter matri-
ces of each group. If any of the above conditions are not satisfied, the penfa function warns the
user with explanatory messages on the reasons why.

Warnings & Errors

Occasionally the penfa function may print out warnings or produce errors. If the errors concern
convergence issues, it may be helpful to go through the following steps:

1. Identification: please make sure that at least the minimum identification restrictions are sat-
isfied. This implies fixing the scale and the origin of every factor in each group. In addition,
other constraints - which usually come in the form of zero-restricted loadings - are necessary
due to rotational freedom.

2. Starting values: the choice of the starting values is of paramount importance when it comes to
convergence. The starting values internally used by penfa correspond to the ones used by the
lavaan package for confirmatory factor analysis. If users have some prior knowledge or
intuition about possible values for some of the parameters, it might be beneficial to include this
information by providing the starting values for those parameters in the syntax specification

https://CRAN.R-project.org/package=lavaan

14 penfa

(see below for additional details). For instance, depending on the case, specifying the starting
values of the primary loadings equal to 1 (start(1)*x1 + ...) often results in more stable
optimization processes, especially when dealing with complicated models that require the
estimation of many parameters, as in multiple-group penalized factor analysis.

3. Sample size: the penalized models fitted by penfa have a larger number of parameters than
confirmatory factor analytic applications. This complexity should be accompanied by a rea-
sonable sample size. If the sample size is too small for the complexity of the model, conver-
gence issues will arise. In case of small sample sizes, it might in principle be more reliable to
select the tuning parameter through a grid-search with the GBIC instead of using the automatic
procedure.

4. Automatic procedure: if the starting values of the tuning parameters prevent the automatic pro-
cedure from finding the optimal estimates of the tuning parameters, the procedure is repeated
with different starting values. If this fails, an error is printed out.

5. Adaptive weights: when using the alasso penalty, it is suggested to manually provide a vector
of adaptive weights, especially for complex models. The adaptive weights often come in the
form of (unpenalized) maximum likelihood estimates. If no vector of weights is provided, the
penfa function internally estimates an unpenalized MLE model whose parameter estimates
will serve as weights. If the unpenalized model does not converge, the penfa function inter-
nally estimates a ridge-regularized factor model and uses the resulting estimates as weights.
If even this estimation fails, an error is printed out.

Ultimately, if none of the above succeeds, users shall consider re-specifying the model, either by
simplifying the hypothesized factor structure or considering a subset of the observed variables.
Increasing the number of restrictions (for instance, by specifying some additional fixed loadings)
might be advantageous. Also, as a general practice, when conducting a multiple-group analysis,
make sure beforehand that the groups share similar factor structures: if the groups have different
factor configurations, the final results will be distorted.

It is always important to assess whether the distributional assumptions of the normal linear factor
model hold. The penfa function fits penalized factor models to continuous observed variables; this
excludes categorical items or items with a few number of categories that would instead require tai-
lored approaches that specifically take into account the qualitative nature of the data.

Standard Errors

The standard errors are derived from the inverse of the penalized Fisher information matrix (if
information = "fisher") or penalized Hessian (if information = "hessian"”), which relies on
the Bayesian result for the covariance matrix of the estimated parameters. The implemented frame-
work allows to have a standard error for every model parameter. However, users should take extra
caution when using the standard errors associated with the penalized parameters that were shrunken
to zero.

Vignettes and Tutorials

To learn more about penfa, start with the vignettes and tutorials at browseVignettes(package =
"penfa") and https://egeminiani.github.io/penfa/articles/.

https://egeminiani.github.io/penfa/articles/

penfa 15

Author(s)

Elena Geminiani <geminianielena@gmail.com>.

References

Geminiani, E., Marra, G., & Moustaki, I. (2021). "Single- and Multiple-Group Penalized Factor
Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Param-
eter Selection.” Psychometrika, 86(1), 65-95. doi: 10.1007/s11336021097518

Geminiani E. (2020), "A penalized likelihood-based framework for single and multiple-group factor
analysis models" (Doctoral dissertation, University of Bologna). Available at http://amsdottorato.
unibo.it/9355/.

See Also

penfa-class

Examples

data(ccdata)

Single-group analysis (no mean-structure, unit factor variances)
syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + @*xvl + v2 + v3 + v4 + V5
voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.1lv = TRUE,
penalization
pen.shrink = "alasso",
eta = list(shrink = c("lambda” = 0.01), diff = c("none”
automatic procedure
strategy = "auto”,
gamma = 4)

0))7

Multiple-group analysis (mean structure, marker-variable approach, starting values)
syntax_mg = '

help =~ 1%h1 + h2 + h3 + h4 + h5 + h6 + h7 + @*xvl + v2 + v3 + v4 + v5
voice =~ @xh1 + start(@)*h2 + start(@)*h3 + h4 + h5 + h6 + h7 + 1*%vl + v2 + v3 + v4 + v5
h1 + vl ~ 0x1 '

Compute weights for alasso from unpenalized model
mle_fitMG <- penfa(model = syntax_mg,

data = ccdata,

group = "country”,

int.ov.free = TRUE,

int.lv.free = TRUE,

pen.shrink = "none",

https://doi.org/10.1007/s11336-021-09751-8
http://amsdottorato.unibo.it/9355/
http://amsdottorato.unibo.it/9355/

16 penfa-class

pen.diff = "none”,
eta = list(shrink = c("lambda” = @), diff = c("none” = 0)),
strategy = "fixed")

mle_weightsMG <- coef(mle_fitMG)

Fit model
alasso_fitMG <- penfa(## factor model
model = syntax_mg,
data = ccdata,
group = "country”,
int.ov.free = TRUE,
int.lv.free = TRUE,
penalization
pen.shrink = "alasso”,
pen.diff = "alasso"”,
eta = list(shrink = c("lambda”" = 0.01),
diff = c("lambda” = 0.1, "tau” = 0.01)),
automatic procedure
strategy = "auto”,
gamma = 4,
alasso
weights = mle_weightsMG)

For additional examples, see the vignettes and tutorials at
browseVignettes(package = "penfa”) and https://egeminiani.github.io/penfa/articles/

penfa-class S4 Class for describing a penfa model

Description

The penfa class represents a (fitted) penalized factor analysis model. It contains a description of
the model as specified by the user, a summary of the data, an internal matrix representation, the
fitting results, and the penalized quantities.

Objects from the Class

Objects can be created via the penfa function.

Slots

version: The penfa package version used to create this object.
call: The function call as returned by match.call().

timing: The elapsed time (user + system) for various parts of the program as a list, including the
total time.

Options: Named list of options that were provided by the user or filled-in automatically. See
penfaOptions for additional details.

penfa-class 17

ParTable: Named list describing the model parameters. Can be coerced to a data.frame. This is

pta:

also called "parameter table". It includes information on the fixed, free and penalized param-
eters, their indices, the active penalization strategies ("none", "shrink", "diff", or "shrink +
diff"), the starting values, the estimated parameters and the associated standard errors.

Named list containing parameter table attributes, like observed and latent variable names,
their indices, and the number of groups.

Data: Object of internal class "penfaData”; contains information about the data set. See the

penfaData class for additional details.

SampleStats: Object of internal class "penfaSampleStats”; contains the sample statistics. See

the penfaSampleStats class for additional details.

Model: Object of internal class "penfaModel”: the internal (matrix) representation of the model.

See the penfaModel class for additional details.

Optim: List. Information about the optimization process. This includes the estimated parame-

ters (x), the number of estimated parameters (npar), the number of trust-region iterations
(iterations), the value of the penalized objective function (fx.pen), the value of the unpe-
nalized objective function (fx.unpen), the penalized log-likelihood (logl.pen; this is equal
to fx.pen multiplied by (-1)), the unpenalized log-likelihood (logl.unpen; this is equal to
fx.unpen multiplied by (-1)), the penalized gradient (dx.pen), the penalized Hessian/Fisher
information matrix (hessian. pen), the list of control arguments for the trust-region algorithm
(control), and how many times the objective function became non-positive definite during the
estimation process (npd). If penfa was called with the option verbose = TRUE, the following
additional arguments coming from the trust-region function trust are reported in the Optim
slot: argpath, argtry, type, accept, radii, rho, fx.val, fx.valtry, change, stepnorm.
See the manual page of trust from the trust package for an overview of these quantities.

Penalize: Object of internal class "penfaPenalty"”; contains information about the penalization.

See the penfaPenalty for additional details.

Implied: List. Model-implied moments (covariance matrix and mean vector).

Vcov: List. Information about the covariance matrix (vcov) of the model parameters. This slot in-

cludes the following quantities: the type of penalized information matrix used in the model (ei-
ther Hessian or Fisher; information), the vcov matrix of parameters (vcov), whether the con-
vergence checks on the penalized gradient and the penalized information matrix were satisfied
(solution), whether the employed information matrix was positive-definite (pdef), whether
the estimated factor solution was admissible (admissibility), the standard errors computed
according to the Bayesian result from the information matrix reported in information (se),
and the 95% confidence intervals (ci).

Inference: List. Information on effective degrees of the model and information criteria for model

selection. This slot reports the following quantities: effective degree of freedom for each
parameter (edf.single), total edf (edf), influence matrix (influence.mat), generalized in-
formation criteria (IC), such as AIC and BIC.

external: List. Empty slot.

Methods

The following methods are available for an object of class penfa:

18 penfaData-class

show signature(object = "penfa”): Prints a short summary of the estimation process, including
the optimization method, the specified penalty functions, the convergence status, the number
of iterations, the tuning selection strategy, and the effective degrees of freedom. See the
manual page of show, penfa-method for details.

summary signature(object = "penfa”, header = TRUE, estimates = TRUE, ci = TRUE, level
=0.95,nd = 3L, cutoff =0.05, extra=TRUE): Prints a summary of the model parameter
estimates, and the optimization process. See the manual page of summary, penfa-method for
details.

coef signature(object = "penfa”, type = "free”, labels = TRUE): Returns the estimates of
the parameters in the model as a named numeric vector. See the manual page of coef, penfa-method
for details.

fitted signature(object = "penfa”, labels = TRUE): Returns a list of the model-implied mo-
ments (per group). See the manual page of fitted, penfa-method for details.
References

Geminiani, E., Marra, G., & Moustaki, I. (2021). "Single- and Multiple-Group Penalized Factor
Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Param-
eter Selection." Psychometrika, 86(1), 65-95. doi: 10.1007/s11336021097518

See Also

penfa, penfaParEstim

penfaData-class S4 Class for describing the input data

Description

The penfaData class gives information on the data set provided in input for analysis. This class is
an adaptation of the 1avData class from the lavaan package.

Slots

ngroups Integer. The number of groups.

group Character. The observed variables defining the groups.

group.label Character. The group labels, that is, the values of the group variable, if any.
std.ov Logical indicating whether the observed variables should be standardized.

nobs List of the effective number of observations in each group.

norig List of the original number of observations in each group.

ov.names List of the observed variable names in each group.

ov List of details at the observed variable level.

case.idx List of the case (i.e., observation) indices in each group.

X List. Local copy of the input data set split into groups.

https://doi.org/10.1007/s11336-021-09751-8
https://CRAN.R-project.org/package=lavaan

penfaModel-class 19

See Also
penfa
Examples
data(ccdata)
syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + @*xvl + v2 + v3 + v4 + V5

voice =~ @xh1 + h2 + h3 + h4 + h5§ + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.lv = TRUE,
penalization
pen.shrink = "alasso”,
eta = list(shrink = c("lambda” = 0.01), diff = c("none” = 0)),
automatic procedure
strategy = "auto")

alasso_fit@Data
str(alasso_fit@Data)

penfaModel-class S4 Class for internal representation of a factor model

Description

The penfaModel class gives the internal matrix representation of a factor analysis model. Note
that this representation summarizes the characteristics of the model itself (e.g., number of items,
number of factors, parameter indices, etc), without information on the penalization process (see
penfaPenalty for that aspect). This class is an adaptation of the 1lavModel class from the lavaan
package.

Slots

GLIST List. The model matrices and vectors: "lambda" for the factor loading matrix, "psi" for
the covariance matrix of the unique factors, "phi" for the covariance matrix of the common
factors, "tau" for the intercept vector, and "kappa" for the vector of factor means. In case of a
multiple-group analysis, the elements of each group are presented sequentially.

dimNames List. Dimension names (row names and column names) of every model matrix and
vector.

isSymmetric Logical vector declaring whether each model matrix/vector is symmetric.

mmSize Integer vector specifying the size (unique elements only) of each model matrix/vector.

https://CRAN.R-project.org/package=lavaan

20

penfaModel-class

meanstructure Logical. It declares whether the model includes a meanstructure.
ngroups Integer. The number of groups.

nmat Integer vector specifying the number of model matrices/vectors for each group.
nvar Integer vector specifying the number of observed variables in each group.

num. idx List of the indices of the observed variables in each group.

nx.free Integer. The number of parameters of the factor model. This count does not include
the fixed parameters, but it does include the parameters that will be penalized (if any) during
optimization. (see penfaPenalty for additional details in this respect).

nx.user Integer. The total count of the parameters that are being estimated and the ones that have
been fixed.

m.free.idx List. For each model matrix, the indices of the elements to be estimated (i.e., non-
fixed). The counter starts at 1 for every model matrix.

x.free.idx List. For each model matrix, the indices of the elements to be estimated (i.e., non-
fixed). The counter continues from the previous model matrix.

m.user.idx List. Much like m.free.idx, but it also contains the indices of the parameters that
have been fixed by the user.

x.user.idx List. Much like x.free.idx, but it also contains the indices of the parameters that
have been fixed by the user.

x.free.var.idx Vector of integers denoting the indices corresponding to the unique variances.

See Also
penfa
Examples
data(ccdata)
syntax = 'help =~ hl + h2 + h3 + h4 + h5 + h6 + h7 + @*vl + v2 + v3 + v4 + v5

voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.lv = TRUE,
penalization
pen.shrink = "alasso”,
eta = list(shrink = c("lambda”" = 0.01), diff = c("none”" = 0)),
automatic procedure
strategy = "auto")

alasso_fit@Model

penfaOptions 21

penfaOptions penfa Options

Description

The default options internally used by the penfa function. These options can be changed by pass-
ing "name = value" arguments to the penfa function call, where they are being added to the "..."

argument.

Usage

penfaOptions(
opt = list(meanstructure = FALSE, int.ov.free = FALSE, int.lv.free = FALSE,
orthogonal = FALSE, std.lv = FALSE, auto.fix.first = FALSE, auto.fix.single = FALSE,
std.ov = FALSE, information = "fisher"”, control = list(), optim.dx.tol = 100, a.scad
=3.7, a.mcp = 3, a.alasso =1, weights = NULL, cbar = 1e-08, gamma = 4, user.start =
FALSE, start.val = c(), verbose = TRUE, warn = TRUE, debug = FALSE)

Arguments

opt List of default options. See below for details.

Details
The following section details the full list of options currently accepted by the penfa function.

Model features:

meanstructure: Logical. If TRUE, a meanstructure is requested. It should be used in conjunction
with int.ov.free and int.1lv. free or intercept-like formulas in the model syntax. Default
to FALSE.

int.ov.free: Logical. If FALSE, the intercepts of the observed variables are fixed to zero. Default
to FALSE.

int.1lv.free: Logical. If FALSE, the intercepts of the common factors are fixed to zero. Default to
FALSE.

orthogonal: Logical. If TRUE, all covariances among the common factors are set to zero. Default
to FALSE.

std.1lv: Logical. If TRUE, the factor variances are fixed to 1.0. Default to FALSE.

auto.fix.first: Logical. If TRUE, the factor loading of the first indicator is set to 1.0 for every
factor. Default to FALSE.

auto.fix.single: Logical. If TRUE, the residual variance (if included) of an observed indicator is
set to zero if it is the only indicator of a common factor. Default to FALSE.

Data options:

22

penfaOptions

std.ov: Logical. If TRUE, all observed variables are standardized before entering the analysis.
Default to FALSE.

Estimation and optimization:

information: Character. If "fisher"”, the penalized expected Fisher information matrix is used as
second-order derivatives in the trust-region algorithm and for computing the standard errors
of the model parameters. If "hessian”, the penalized Hessian matrix is used. Default to
"fisher”.

control: A list containing control parameters passed to the trust-region optimizer. See the manual
page of trust from the trust package for an overview of its control parameters. Default
values for these parameters are rinit=1L, rmax=100L, iterlim=1000L,
fterm=sqrt(.Machine$double.eps), mterm = sqrt(.Machine$double.eps).

optim.dx.tol Numeric. The tolerance value used when checking the size of the elements of the
gradient of the objective function. Default equal to 100.

Penalization:

a.scad Numeric. The shape parameter for the scad penalty. Default to 3.7, as recommended by
Fan & Li (2001).

a.mcp Numeric. The shape parameter of the mcp penalty. Default to 3.

a.alasso Numeric. The exponent in the adaptive weights for the alasso penalty. Default to 1.

weights Numeric. Only valid when either pen.shrink or pen.diff is equal to "alasso". An
optional vector of values provided by the user representing a consistent estimate for each
model parameter. The vector is then internally used for computing the adaptive weights. If
unspecified, the maximum likelihood estimates (MLE) from the unpenalized model are used.

cbar Numeric. Numerical constant used in the local approximation of the penalty functions. De-
fault to 1e-08.

Automatic procedure:

gamma Numeric. The value of the influence factor used in the automatic tuning parameter proce-
dure. Default to 4.

user.start Logical whether the user has provided a vector of starting values for the model pa-
rameter estimates.

start.val Numeric. An optional vector of parameter estimates to be used as starting values for
the model parameters. This option is also internally used by the automatic procedure.

Verbosity options:

verbose: Logical. If TRUE, some information on the estimation process (e.g., convergence and
admissibility checks, effective degrees of freedom) are printed out. Default to TRUE.

warn: Logical. If TRUE, some warnings are printed out during the iterations. Default to TRUE.

debug: Logical. If TRUE, debugging information is printed out. Default to FALSE.

Value

A list of default options internally used by the penfa function.

penfaOut 23

penfalut Print estimated parameter matrices

Description

A utility that extracts the estimated parameter matrices and vectors of the penalized factor model
for each group and rounds them to the specified number of decimal digits.

Usage

penfalut (
object,
which = c("lambda”, "psi”,

n s

phl , "taU", "kappa"),

nd = 3L

)
Arguments
object An object of class penfa, that is, a fitted penalized factor model.
which Character denoting the name of the estimated matrix or vector to display. Possi-
ble values are "lambda", "psi", "phi", "tau", and "kappa". Multiple elements can
be specified. By default, all estimated matrices are shown.
Additional options.
nd The number of decimal digits to be used.
Value

List of the estimated parameter matrices and vectors for each group.

See Also

penfa

penfaParEstim Print parameter estimates in table format

Description

The parameter estimates of the penalized factor analysis model in each group.

24 penfaParEstim

Usage
penfaParEstim(
object,
se = TRUE,
ci = TRUE,
level = 0.95,
remove.nonfree = FALSE,
output = "data.frame",
header = FALSE
)
Arguments
object An object of class penfa.
se Logical. If TRUE, it includes a column with the standard errors.
ci Logical. If TRUE, the confidence intervals are added to the output.
level The confidence level, default is 0.95.

remove.nonfree Logical. If TRUE, it filters the output and removes all rows with fixed (that is,
neither free, nor penalized) parameters.

output Character. If "data.frame", the parameter table is displayed as a standard for-
matted data.frame. If "text", the parameter table is displayed with subsections
(as used by the summary function).

header Logical, only used if output = "text". If TRUE, it prints a header on top of the
parameter list with details on the group levels and the information matrix used
during optimization by the trust-region algorithm.

Value

A dataframe of class penfa.data. frame with the parameter estimates of a penfa model for each
group.

See Also
penfa
Examples
data(ccdata)
syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + @*xvl + v2 + v3 + v4 + V5

voice =~ @xh1 + h2 + h3 + h4 + h5§ + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.1lv = TRUE,
penalization

penfaPenalty-class 25

pen.shrink = "alasso”,

eta = list(shrink = c("lambda” = 0.01), diff = c("none" = 0)),
automatic procedure

strategy = "auto")

penfaParEstim(alasso_fit)

penfaPenalty-class S4 Class for describing the penalization process

Description

The penfaPenalty class provides information on the penalization process, such as the user-specified
penalty functions, the optimal values of the tuning parameters, and the penalty matrices at conver-
gence.

Slots

strategy Character. The strategy used for the selection of the tuning parameter(s). If strategy =
"auto”, the optimal values of the tuning parameters are determined via the automatic tuning
parameter procedure; if strategy = "fixed", a penalized factor model with the values of the
tuning parameters stored in the option eta is estimated.

penalty List. A list of the user-specified penalty functions for sparsity ("shrink") and parameter
equivalence ("diff").

tuning List. A named list containing the optimal values of the tuning parameter(s) if strategy =
"auto” or the user-specified fixed values of the tuning parameter(s) if strategy = "fixed".
The list has two components with names "shrink" and "diff", and refers to the tuning pa-
rameters used for shrinkage and group equivalence, respectively. The components of the list
are, in turn, the named vectors specifying the type of parameter matrices or vectors that were
penalized.

pmat List. A named list containing the names of the parameter matrices and vectors that were
penalized for sparsity ("shrink") and/or group equivalence ("diff").

pen.idx List. A named list with the indices of the parameters that were penalized for sparsity
("shrink") and/or group equivalence ("diff").

Sh.info List. A list of the penalization terms, vectors and matrices evaluated at the optimal values
of the tuning parameters. In particular, its argument S. h returns the estimated penalty matrix.
If the factor model is penalized only through a shrinkage penalty (i.e., pen.shrink is not
"none"), and there is no penalization on the differences (i.e., pen.diff = 'none'), then S.his
a diagonal matrix whose elements precisely quantify the extent to which each model parameter
has been penalized.

extra List. A list possibly containing additional information on the penalization process, such as
the hyperparameter values for some penalty functions (e.g., for the alasso, the value of the
exponent and the adaptive weights.)

automatic List. If strategy = "auto”, it contains information on the automatic multiple tuning
parameter procedure, such as the optimal values of the tuning parameters, the convergence
status, the specified value of the influence factor, the number of necessary iterations, and the
tolerance level.

26 penfaPredict

See Also
penfa
Examples
data(ccdata)
syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + @*xvl + v2 + v3 + v4 + V5

voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.lv = TRUE,
penalization
pen.shrink = "alasso”,
eta = list(shrink = c("lambda” = 0.01), diff = c("none” = 0)),
automatic procedure
strategy = "auto")

alasso_fit@Penalize

str(alasso_fit@Penalize)

penfaPredict Compute the factor scores from a fitted penfa model

Description

The penfaPredict function estimates the factor scores from a fitted penalized factor model. The
factor scores are the estimated values ("predictions") of the common factors.

Usage

penfaPredict(
object,
newdata = NULL,
method = "regression”,
label = TRUE,
append.data = FALSE,
assemble = FALSE

penfaPredict 27

Arguments

object An object of class penfa.

newdata An optional data frame containing the same variables as the ones appearing in
the original data frame used for fitting the model in object.

method Character indicating the method for computing the factor scores. Possible op-
tions are "regression” and "bartlett”. For the normal linear continuous
case, the regression method is equivalent to the Empirical Bayes Method (EBM),
whereas Bartlett’s strategy is equivalent to maximum likelihood’s method.

label Logical. If TRUE, the columns are labeled.

append.data Logical. If TRUE, the original data set (or the data set provided in the newdata
argument) is appended to the factor scores.

assemble Logical. If TRUE, the factor scores from each group are assembled in a single
data frame of the same dimensions as the original data set and with a group
column defining the groups.

Value

A matrix with the factor scores from a fitted penfa model.

References

Geminiani E. (2020), "A penalized likelihood-based framework for single and multiple-group factor
analysis models" (Doctoral dissertation, University of Bologna). Available athttp://amsdottorato.
unibo.it/9355/.

See Also
penfa
Examples
data(ccdata)
syntax = 'help =~ hl + h2 + h3 + h4 + h5 + h6 + h7 + @*vl + v2 + v3 + v4 + v5

voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.lv = TRUE,
penalization
pen.shrink = "alasso”,
eta = list(shrink = c("lambda”" = 0.01), diff = c("none" = 0)),
automatic procedure
strategy = "auto”,
gamma = 4)

fscores <- penfaPredict(alasso_fit)

http://amsdottorato.unibo.it/9355/
http://amsdottorato.unibo.it/9355/

28 penfaSampleStats-class

penfaSampleStats-class
S4 Class for describing the sample moments

Description

The penfaSampleStats class provides information on the sample moments of the factor analysis
model. This class is an adaptation of the lavSampleStats class from the lavaan package.

Slots

var List of the variances of the observed variables in every group.

cov List of the covariance matrices of the observed variables in every group.
mean List of the means of the observed variables in every group.

group.w List of group weights.

nobs List of the effective number of observations for every group.

ntotal Integer. Total number of observations across all groups.

ngroups Integer. Number of groups.

icov List of the inverse matrices of the covariance matrices of the observed variables in every
group.

cov.log.det List of the logarithms of the determinants of the covariance matrices of the observed
variables for every group.

See Also
penfa
Examples
data(ccdata)
syntax = 'help =~ hl + h2 + h3 + h4 + h5 + h6 + h7 + @*vl + v2 + v3 + v4 + v5

voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model
model = syntax,
data = ccdata,
std.lv = TRUE,
penalization
pen.shrink = "alasso”,
eta = list(shrink = c("lambda” = 0.01), diff = c("none" = 0)),
automatic procedure
strategy = "auto”)

https://CRAN.R-project.org/package=lavaan

penmat 29

alasso_fit@SampleStats

penmat Extract estimated penalty matrix

Description

A utility that extracts the estimated penalty matrix from a fitted object of class penfa.

Usage

penmat(x, type = "full”, which = NULL)

Arguments
X An object of class penfa, that is, a fitted penalized factor model.
type Character denoting the type of penalization. Type equal to "full” returns the
complete penalty matrix; type="shrink" returns the penalty matrix for shrink-
age; type="diff" the penalty matrix for parameter equivalence. The matrix
returned by type="full” is the sum of all the shrink and diff penalty sub-
matrices.
which Character prompting the extraction of the penalty matrix component correspond-
ing to the specified model matrix. It is only valid when type="shrink” or
type="diff". Possible values are "lambda”, "psi”, "phi”, "tau”, "kappa”
and "none”. Only the model matrices penalized during model fitting (i.e., in the
penfa call) can appear in the which argument.
Value

A penalty matrix of class penfaPenMat. If multiple elements are specified in the which argument,
a list of penalty matrices (one for each element, and each of class penfaPenMat) is returned.

See Also

penfa

30 show,penfaData-method

show, penfa-method Display a penfa object

Description
An S4 method printing a short summary of the estimation process, including the optimization
method, the specified penalty functions, the convergence status, the number of iterations, the tuning
selection strategy, and the effective degrees of freedom.

Usage
S4 method for signature 'penfa'
show(object)

Arguments

object An object of class penfa, found as a result of a call to penfa.

Value

An object reporting a short summary of a fitted penfa model.

See Also

penfa, penfa-class

show, penfaData-method Display details on the input data

Description
An S4 method showing information on the input data, including the number of observations. In
case of a multiple-group analysis, the sample sizes for each group are displayed.
Usage
S4 method for signature 'penfaData'
show(object)
Arguments

object An object of class penfaData, found in the Data slot from a penfa class object.

Value

An object reporting a short summary of the input data.

show,penfaPenalty-method 31

See Also

penfaData-class

show, penfaPenalty-method
Display details on the penalization

Description

An S4 method showing information on the penalization process, including the employed penalty
functions and the model matrices they affect. Additionally, it reports the optimal values of the
tuning parameters and the tuning parameter selection strategy. If the automatic procedure was used,
the output would also show the value of the influence factor, and the number of two-steps iterations.

Usage
S4 method for signature 'penfaPenalty'
show(object)
Arguments
object An object of class penfaPenalty, found in the Penalize slot from an object of
penfa class.
Value

An object reporting a short summary of the penalization process for a fitted penfa model.

See Also

penfaPenalty-class

summary,penfa-method Summary constructor for a penfa object

Description

An S4 method printing a summary of the model parameter estimates for an object of class penfa.

32 summary,penta-method

Usage

S4 method for signature 'penfa'’
summary (

object,

header = TRUE,

estimates = TRUE,

ci = TRUE,
level = 0.95,
nd = 3L,
cutoff = 0.05,
extra = TRUE
)
Arguments
object An object of class penfa, found as a result of a call to penfa.
header Logical. If TRUE, the header section is printed. The header contains relevant
information about the data, the fitted model, the optimization process, and the
penalization strategy, including, for instance, the employed penalties, the esti-
mated effective degrees of freedom (edf), the optimal values of the tuning pa-
rameter(s), the GBIC and many others.
estimates Logical. If TRUE, a section with the parameter estimates is printed out.
ci Logical. If TRUE, confidence intervals are added to the parameter estimates sec-
tion.
level Logical. It denotes the significance level used for the statistical tests.
nd Integer. It determines the number of digits after the decimal point to be printed
in the parameter estimates section.
cutoff Numeric. Standard errors and confidence intervals for the penalized parameter
estimates falling below the cutoff value are not displayed. Confidence intervals
for the parameters that have been penalized and shrunken to zero must be treated
with caution.
extra Logical. If TRUE, additional information on the model are displayed.
Value

An object reporting a detailed summary of the estimated parameters for a penfa model.

See Also

penfa, penfa-class

Examples

data(ccdata)

syntax = 'help =~ hl + h2 + h3 + h4 + h5 + h6 + h7 + 0*xvl + v2 + v3 + v4 + v5

summary,penta-method

voice =~ @xh1 + h2 + h3 + h4 + h5 + h6 + h7 + vl + v2 + v3 + v4 + v5'

alasso_fit <- penfa(## factor model

summary (alasso_fit)

model = syntax,

data = ccdata,

std.1lv = TRUE,

penalization

pen.shrink = "alasso”,

eta = list(shrink = c("lambda” = 0.01), diff = c("none" = 0)),
automatic procedure

strategy = "auto")

33

Index

x datasets
ccdata, 3

ccdata, 3
coef,penfa-method, 5

fitted, penfa-method, 6

penfa, 2, 3,5, 6,7, 8, 16-24, 26-30, 32
penfa-class, 16
penfa-package, 2
penfaData, 17
penfaData-class, 18
penfaModel, 17
penfaModel-class, 19
penfalptions, &8, 16, 21
penfalut, 23
penfaParEstim, /8, 23
penfaPenalty, 17, 19, 20
penfaPenalty-class, 25
penfaPredict, 26
penfaSampleStats, 17
penfaSampleStats-class, 28
penmat, 29

show, penfa-method, 30

show, penfaData-method, 30
show, penfaPenalty-method, 31
summary,penfa-method, 31

34

	penfa-package
	ccdata
	coef,penfa-method
	fitted,penfa-method
	penfa
	penfa-class
	penfaData-class
	penfaModel-class
	penfaOptions
	penfaOut
	penfaParEstim
	penfaPenalty-class
	penfaPredict
	penfaSampleStats-class
	penmat
	show,penfa-method
	show,penfaData-method
	show,penfaPenalty-method
	summary,penfa-method
	Index

