
Package ‘omsvg’
October 14, 2022

Type Package

Version 0.1.0

Title Build and Transform 'SVG' Objects

Description Build 'SVG' components using element-based functions. With
an 'svg' object, we can modify its graphical elements with a suite of
transform functions.

License MIT + file LICENSE

URL https://github.com/rich-iannone/omsvg

BugReports https://github.com/rich-iannone/omsvg/issues

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.1.1

Depends R (>= 3.2.1)

Imports dplyr (>= 1.0.3), gt (>= 0.2.2), htmltools (>= 0.5.1.1),
magrittr, rlang (>= 0.4.5), sass (>= 0.3.0), xml2 (>= 1.3.2)

Suggests covr, knitr, testthat

NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>)

Maintainer Richard Iannone <riannone@me.com>

Repository CRAN

Date/Publication 2021-02-10 10:50:06 UTC

R topics documented:
anims . 2
anim_opacity . 5
anim_position . 6
anim_rotation . 7

1

https://github.com/rich-iannone/omsvg
https://github.com/rich-iannone/omsvg/issues
https://orcid.org/0000-0003-3925-190X

2 anims

anim_scale . 8
cubic_bezier . 9
ease_in . 10
ease_in_out . 10
ease_out . 11
filter_dilate . 11
filter_drop_shadow . 12
filter_erode . 13
filter_gaussian_blur . 14
filter_image . 15
filter_offset . 16
info_lineawesome . 17
linear . 18
step_end . 18
step_start . 18
SVG . 19
SVG_ . 20
svg_attrs_pres . 21
svg_circle . 25
svg_ellipse . 27
svg_filter . 28
svg_group . 30
svg_image . 31
SVG_import . 33
SVG_la . 34
svg_line . 35
svg_path . 37
svg_polygon . 38
svg_polyline . 40
svg_rect . 41
SVG_t . 44
svg_text . 45

Index 47

anims Express animations for an element

Description

All SVG element functions in omsvg (the svg_*() functions) are animatable through their anims
argument. The anims() function should be used with that argument should we want to express
animations for the element. Within the anims() function call, we can insert a list of formulas that
incorporate calls to any of the anim_*() functions (e.g., anim_position(), anim_rotation(),
etc.), and, have keyframe times as part of the formula.

anims 3

Usage

anims(...)

Arguments

... One or more animations that included the use of anim_*() functions, expressed
as two-sided formulas. The LHS provides the keyframe time (in units of sec-
onds) and the RHS is the associated anim_*() call.

Details

A useful template to use for an anims() call within an svg_*() function is:

anims = anims(
<time_i> ~ <anim_fn>(...),
...,
<time_n> ~ <anim_fn>(...)
)

We can also use multiple calls to anim_*() functions for each distinct keyframe time by placing
those calls in a list:

anims = anims(
<time_i> ~ list(
<anim_fn_x>(...),
<anim_fn_y>(...)
),

...,
<time_n> ~ list(
<anim_fn_x>(...),
<anim_fn_y>(...)
)

)

Value

A tibble of animation directives.

Examples

if (interactive()) {

Basic animation of an element's
position (moving to a new `x` and
`y` position)
svg_1 <-

SVG(width = 300, height = 300) %>%
svg_rect(
x = 50, y = 50,

4 anims

width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "magenta",
fill = "lightblue"

),
anims = anims(

2.0 ~ anim_position(x = 100, y = 50)
)

)

We can define multiple animations
for a single element: put them in a
`list()`; the `easing_fn` function for
both `anim_*()` function is no longer
linear but now eases in and out
svg_2 <-

SVG(width = 300, height = 300) %>%
svg_rect(
x = 50, y = 50,
width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "black",
fill = "yellow"

),
anims = anims(

0.5 ~ list(
anim_position(x = 50, y = 50, easing_fn = ease_in_out()),
anim_rotation(0, easing_fn = ease_in_out())

),
2.0 ~ list(

anim_position(x = 200, y = 50, easing_fn = ease_in_out()),
anim_rotation(90, easing_fn = ease_in_out())

)
)

)

The initial state of the element
can be used in any `anim_*()`
function with `initial = TRUE`
svg_3 <-

SVG(width = 300, height = 300) %>%
svg_rect(
x = 50, y = 50,
width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "black",
fill = "yellow"

),
anims = anims(

1.0 ~ list(
anim_position(initial = TRUE),
anim_rotation(initial = TRUE)

),

anim_opacity 5

3.0 ~ list(
anim_position(x = 200, y = 50),
anim_rotation(90)

),
5.0 ~ list(

anim_position(initial = TRUE),
anim_rotation(initial = TRUE)

)
)

)
}

anim_opacity Animate an element through an opacity change

Description

Within an anims() call, itself passed to any anims argument, the anim_opacity() function can be
used to express an animation where the target element undergoes a change in opacity with time.

Usage

anim_opacity(opacity = NULL, easing_fn = NULL, initial = FALSE)

Arguments

opacity The opacity value of the element at the keyframe time (given as the LHS value
in the anims() call).

easing_fn The timing or easing function to use for the animation. If not provided, the
linear() timing function will be used (which is doesn’t use any easing in the
animation, just a linear movement). The other timing and easing functions are:
step_start(), step_end(), ease_in(), ease_out(), and ease_in_out().

initial Should this opacity value be the initial opacity value of the element? If so, use
TRUE and any value provided to opacity will be disregarded.

Value

An anim_opacity object, which is to be used as part of an anims() call.

Examples

if (interactive()) {

Basic animation of an element's
opacity value (moving to a new
`opacity` value of `0`)
SVG(width = 300, height = 300) %>%

6 anim_position

svg_rect(
x = 50, y = 50,
width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "magenta",
fill = "lightblue"

),
anims = anims(

2.0 ~ anim_opacity(opacity = 0)
)

)
}

anim_position Animate the position of an element

Description

Within an anims() call, itself passed to any anims argument, the anim_position() function can
be used to express an animation where the position of the target element changes with time.

Usage

anim_position(x = NULL, y = NULL, easing_fn = NULL, initial = FALSE)

Arguments

x, y The position of the element, expressed as x and y, at the keyframe time (given
as the LHS value in the anims() call).

easing_fn The timing or easing function to use for the animation. If not provided, the
linear() timing function will be used (which is doesn’t use any easing in the
animation, just a linear movement). The other timing and easing functions are:
step_start(), step_end(), ease_in(), ease_out(), and ease_in_out().

initial Should this position be the initial position of the element? If so, use TRUE and
any values provided to x and y will be disregarded.

Value

An anim_opacity object, which is to be used as part of an anims() call.

Examples

if (interactive()) {

Basic animation of an element's
position (moving to a new `x` and
`y` position)

anim_rotation 7

SVG(width = 300, height = 300) %>%
svg_rect(
x = 50, y = 50,
width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "magenta",
fill = "lightblue"

),
anims = anims(

2.0 ~ anim_position(x = 100, y = 50)
)

)
}

anim_rotation Animate an element through rotation

Description

Within an anims() call, itself passed to any anims argument, the anim_rotation() function can
be used to express an animation where the target element undergoes a rotation change with time.

Usage

anim_rotation(
rotation = NULL,
anchor = "center",
easing_fn = NULL,
initial = FALSE

)

Arguments

rotation The rotation value of the element at the keyframe time (given as the LHS value
in the anims() call).

anchor The location of the element anchor about which rotation will occur. By default,
this is the keyword "center".

easing_fn The timing or easing function to use for the animation. If not provided, the
linear() timing function will be used (which is doesn’t use any easing in the
animation, just a linear movement). The other timing and easing functions are:
step_start(), step_end(), ease_in(), ease_out(), and ease_in_out().

initial Should this rotation value be the initial rotation state of the element? If so, use
TRUE and any value provided to rotation will be disregarded.

Value

An anim_opacity object, which is to be used as part of an anims() call.

8 anim_scale

Examples

if (interactive()) {

This is a basic animation of an
element's rotation state (moving to
a new `rotation` value)
SVG(width = 300, height = 300) %>%

svg_rect(
x = 50, y = 50,
width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "magenta",
fill = "lightblue"

),
anims = anims(

2.0 ~ anim_rotation(rotation = 180)
)

)
}

anim_scale Animate an element through scaling

Description

Within an anims() call, itself passed to any anims argument, the anim_scale() function can be
used to express an animation where the target element undergoes a scaling change with time.

Usage

anim_scale(scale = NULL, easing_fn = NULL)

Arguments

scale The scale value of the element at the keyframe time (given as the LHS value in
the anims() call). If providing a single scaling value, the scaling will operate
in the x and y directions (relative to the center of the element). If two values are
provided, these will be taken as scaling values in the x and y directions.

easing_fn The timing or easing function to use for the animation. If not provided, the
linear() timing function will be used (which is doesn’t use any easing in the
animation, just a linear movement). The other timing and easing functions are:
step_start(), step_end(), ease_in(), ease_out(), and ease_in_out().

Value

An anim_opacity object, which is to be used as part of an anims() call.

cubic_bezier 9

Examples

if (interactive()) {

Basic animation of an element's
scaling state (moving to a new
`scale` value)
SVG(width = 300, height = 300) %>%

svg_rect(
x = 50, y = 50,
width = 50, height = 50,
attrs = svg_attrs_pres(

stroke = "magenta",
fill = "lightblue"

),
anims = anims(

2.0 ~ anim_scale(scale = 2)
)

)
}

cubic_bezier Create a custom easing function for animation

Description

Create a custom easing function for animation

Usage

cubic_bezier(x1 = 0.5, y1 = 0.5, x2 = 0.5, y2 = 0.5)

Arguments

x1, y1, x2, y2 The x and y values for the first and second bezier control points.

Value

A cubic-bezier function call as a string for use as a CSS property.

10 ease_in_out

ease_in Use an ’easing in’ animation

Description

The ease_in() function can be used as a value for the easing_fn argument, which is available in
every anim_*() function (e.g., anim_position()).

Usage

ease_in(power = "basic")

Arguments

power The preset to use for the easing in cubic bezier function.

Value

A cubic-bezier function call as a string for use as a CSS property.

ease_in_out Use an ’easing in and out’ animation

Description

The ease_in_out() function can be used as a value for the easing_fn argument, which is available
in every anim_*() function (e.g., anim_position()).

Usage

ease_in_out(power = "basic")

Arguments

power The preset to use for the easing in cubic bezier function.

Value

A cubic-bezier function call as a string for use as a CSS property.

ease_out 11

ease_out Use an ’easing out’ animation

Description

The ease_out() function can be used as a value for the easing_fn argument, which is available in
every anim_*() function (e.g., anim_position()).

Usage

ease_out(power = "basic")

Arguments

power The preset to use for the easing in cubic bezier function.

Value

A cubic-bezier function call as a string for use as a CSS property.

filter_dilate Filter: add a dilation effect to an element

Description

The filter_dilate() filter applies a dilation effect to a source graphic by a given radius value.
The higher the radius, the greater the dilation potential.

Usage

filter_dilate(radius = 1)

Arguments

radius The extent to which the source graphic will be dilated. If a vector of two values
are provided, the first value represents the x-radius and the second one the y-
radius. If one value is provided, then that value is used for both x and y.

Value

An svg object.

12 filter_drop_shadow

Examples

if (interactive()) {

Add a text element to an
SVG drawing and erode it with
the `filter_dilate()` filter
SVG(width = 200, height = 100) %>%

svg_filter(
id = "dilate",
filters = list(

filter_dilate(radius = c(0, 1))
)

) %>%
svg_text(

x = 10, y = 40,
text = "Dilation",
attrs = svg_attrs_pres(

font_size = "3em",
filter = "dilate"

)
)

}

filter_drop_shadow Filter: add a drop shadow to an element

Description

With the filter_drop_shadow() drop shadow appears beneath the input image or shape and its
offset is controlled by dx and dy. The blurring of the drop shadow is set by the stdev value.

Usage

filter_drop_shadow(dx = 0.2, dy = 0.2, stdev = 1, color = "black", opacity = 1)

Arguments

dx, dy The offset of the drop shadow compared to the position of the input image or
shape.

stdev The number of standard deviations for the blur effect.

color The color of the drop shadow.

opacity The opacity of the drop shadow. We can use a real number from 0 to 1 or a value
in percentage units.

Value

An svg object.

filter_erode 13

Examples

if (interactive()) {

Apply a drop shadow filter on a
text element (orange in color,
and semi-opaque)
SVG(width = 250, height = 100) %>%

svg_filter(
id = "shadow",
filters = list(

filter_drop_shadow(
dx = 1, dy = 2,
color = "orange",
opacity = 0.5

)
)

) %>%
svg_text(

x = 10, y = 40,
text = "Shadowed",
attrs = svg_attrs_pres(

font_size = "2em",
fill = "#555555",
font_weight = "bolder",
filter = "shadow"

)
)

}

filter_erode Filter: add an erosion effect to an element

Description

The filter_erode() filter effectively thins out a source graphic by a given radius value. The
higher the radius, the greater the extent of thinning.

Usage

filter_erode(radius = 1)

Arguments

radius The extent to which the source graphic will be eroded. If a vector of two values
are provided, the first value represents the x-radius and the second one the y-
radius. If one value is provided, then that value is used for both x and y.

14 filter_gaussian_blur

Value

An svg object.

Examples

if (interactive()) {

Add a text element to an
SVG drawing and erode it with
the `filter_erode()` filter
SVG(width = 200, height = 100) %>%

svg_filter(
id = "erode",
filters = list(

filter_erode(radius = c(1, 0))
)

) %>%
svg_text(

x = 10, y = 40,
text = "Erosion",
attrs = svg_attrs_pres(

font_size = "3em",
font_weight = "bolder",
filter = "erode"

)
)

}

filter_gaussian_blur Filter: add a gaussian blur to an element

Description

A gaussian blur effectively blurs an input image or shape by the amount specified in stdev. The
standard deviation of stdev is in direct reference to the gaussian distribution that governs the extent
of blurring.

Usage

filter_gaussian_blur(stdev = 1, what = "source")

Arguments

stdev The number of standard deviations for the blur effect.

what What exactly should be blurred? By default, it is the "source" image.

filter_image 15

Value

An svg object.

Examples

if (interactive()) {

Add a green ellipse to an SVG and
then apply the `filter_gaussian_blur()`
filter to blur the edges
SVG(width = 200, height = 100) %>%

svg_filter(
id = "blur",
filters = list(

filter_gaussian_blur(stdev = 2)
)

) %>%
svg_ellipse(

x = 40, y = 40,
width = 50, height = 30,
attrs = svg_attrs_pres(

fill = "green",
filter = "blur"

)
)

}

filter_image Filter: display an image

Description

Display an image using a URL or a relative path to an on-disk resource.

Usage

filter_image(image)

Arguments

image A link or path to an image resource.

Value

An svg object.

16 filter_offset

Examples

if (interactive()) {

Place an image (obtained via an image
link) within a rectangle element using
the `filter_image()` filter
SVG(width = 500, height = 500) %>%

svg_filter(
id = "image",
filters = list(

filter_image(
image = "https://www.r-project.org/logo/Rlogo.png"

)
)

) %>%
svg_rect(

x = 25, y = 25,
width = "50%", height = "50%",
attrs = svg_attrs_pres(filter = "image")

)
}

filter_offset Filter: offset an element a specified amount

Description

The offset filter applies an offset in the x and y directions to an existing element. The offset is
handled by setting values for dx and dy.

Usage

filter_offset(dx = NULL, dy = NULL, what = "source")

Arguments

dx, dy The offset of the element position compared to its initial position.

what What exactly should be offset? By default, it is the "source" image.

Value

An svg object.

info_lineawesome 17

Examples

if (interactive()) {

Add a circle element to an
SVG drawing and offset it
by 10px to the right
SVG(width = 150, height = 150) %>%

svg_filter(
id = "offset_right",
filters = list(

filter_offset(dx = 50, dy = 0)
)

) %>%
svg_circle(

x = 30, y = 30,
diameter = 40,
attrs = svg_attrs_pres(

fill = "red",
filter = "offset_right"

)
)

}

info_lineawesome Get an information table showing all Line Awesome icons

Description

This informative table shows which Line Awesome icons are available inside of omsvg. The icons
are composed of lines and they look awesome! There are plenty to choose from also, nearly 1400
icons across 69 categories. Just take note of the ones you like and get their names, you’ll need them
when using the SVG_la() function.

Usage

info_lineawesome()

Value

Invisibly returns NULL. The side effect of displaying a table of icons is the purpose of this function.

18 step_start

linear Use a linear movement for animation

Description

The linear() function can be used as a value for the easing_fn argument, which is available in
every anim_*() function (e.g., anim_position()).

Usage

linear()

Value

A linear function call as a string for use as a CSS property.

step_end Use a ’step-end’ animation

Description

The step_end() function can be used as a value for the easing_fn argument, which is available in
every anim_*() function (e.g., anim_position()).

Usage

step_end()

Value

A step-end function call as a string for use as a CSS property.

step_start Use a ’step-start’ animation

Description

The step_start() function can be used as a value for the easing_fn argument, which is available
in every anim_*() function (e.g., anim_position()).

Usage

step_start()

Value

A step-start function call as a string for use as a CSS property.

SVG 19

SVG Create an svg object

Description

The SVG() function is the entry point for building an SVG from the ground up. We can provide
predefined height and width attributes that define the canvas size for the SVG. From here, we
would want to use functions that add elements to the SVG object (e.g., svg_rect(), svg_circle(),
etc.) and thus progressively build the graphic.

Usage

SVG(
width = NULL,
height = NULL,
viewbox = NULL,
title = NULL,
desc = NULL,
incl_xmlns = FALSE,
oneline = FALSE,
anim_iterations = "infinite"

)

Arguments

width, height The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

viewbox An optional set of dimensions that defines the SVG viewBox attribute. The
viewBox for an SVG element is the position and dimension, in user space, of an
SVG viewport. If supplied, this could either be in the form of a four-element, nu-
meric vector corresponding to the "min-x", "min-y", "width", and "height"
of the rectangle, or, as TRUE which uses the vector c(0, 0, width, height).
Using NULL, the default, excludes this attribute.

title The <title> tag for the finalized SVG.

desc The <desc> tag for the finalized SVG.

incl_xmlns Should the xmlns attribute be included in the <svg> tag? This attribute is only
required on the outermost svg element of SVG documents, and, it’s unnecessary
for inner svg elements or inside of HTML documents. By default, this is set to
FALSE.

oneline An option to compress the resulting SVG tags such that they are reduced to one
line.

20 SVG_

anim_iterations

How many should an SVG animation (if defined by use of the anims() function)
be played? By default this is "infinite" (i.e., looped indefinitely) but we can
specify the animation iteration count as a positive number.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with nothing drawn
within it
svg <- SVG(width = 200, height = 100)

Add a rectangle and then a circle
svg <-

svg %>%
svg_rect(x = 20, y = 20, width = 40, height = 40) %>%
svg_circle(x = 100, y = 40, diameter = 40)

}

SVG_ Create a compact svg object

Description

The SVG_() function is a variation on SVG() (the entry point for building an SVG) in that the output
tags will be as compact as possible (fewer linebreaks, less space characters). This is a reasonable
option if the eventual use for the generated SVG is as inline SVG within HTML documents.

Usage

SVG_(width = NULL, height = NULL, viewbox = TRUE)

Arguments

width The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

svg_attrs_pres 21

height The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

viewbox An optional set of dimensions that defines the SVG viewBox attribute. The
viewBox for an SVG element is the position and dimension, in user space, of an
SVG viewport. If supplied, this could either be in the form of a four-element, nu-
meric vector corresponding to the "min-x", "min-y", "width", and "height"
of the rectangle, or, as TRUE which uses the vector c(0, 0, width, height).
Using NULL, the default, excludes this attribute.

Value

An svg object.

Examples

if (interactive()) {

Create a simple SVG with a rectangle and a circle
svg <-

SVG_(width = 100, height = 50) %>%
svg_rect(x = 0, y = 0, width = 30, height = 20) %>%
svg_circle(x = 50, y = 10, diameter = 20)

}

svg_attrs_pres Define SVG presentation attributes for an element

Description

The svg_attrs_pres() helper function can be used to more easily generate a valid presentation at-
tribute list for the attrs argument that is present in every SVG element function (e.g., svg_rect(),
svg_text(), etc.). All of the presentation attributes formally included here as options can be ani-
mated.

Usage

svg_attrs_pres(
stroke = NULL,
stroke_width = NULL,
stroke_opacity = NULL,
fill = NULL,
fill_opacity = NULL,
font_family = NULL,

22 svg_attrs_pres

font_size = NULL,
font_weight = NULL,
font_style = NULL,
text_decoration = NULL,
transform = NULL,
filter = NULL,
mask = NULL,
clip_path = NULL,
clip_rule = NULL,
stroke_dasharray = NULL,
stroke_dashoffset = NULL,
stroke_linecap = NULL,
stroke_linejoin = NULL,
stroke_miterlimit = NULL,
fill_rule = NULL,
color = NULL,
opacity = NULL,
color_interpolation = NULL,
color_interpolation_filters = NULL,
lighting_color = NULL,
flood_color = NULL,
flood_opacity = NULL,
stop_color = NULL,
stop_opacity = NULL,
font_variant = NULL,
font_stretch = NULL,
font_size_adjust = NULL,
text_anchor = NULL,
letter_spacing = NULL,
word_spacing = NULL,
dominant_baseline = NULL,
alignment_baseline = NULL,
baseline_shift = NULL,
direction = NULL,
writing_mode = NULL,
overflow = NULL,
marker_start = NULL,
marker_mid = NULL,
marker_end = NULL,
pointer_events = NULL,
cursor = NULL,
vector_effect = NULL,
shape_rendering = NULL,
color_rendering = NULL,
text_rendering = NULL,
image_rendering = NULL,
display = NULL,
visibility = NULL

svg_attrs_pres 23

)

Arguments

stroke The color used to paint the outline of the shape.

stroke_width The width of the stroke to be applied to the shape. Can be expressed in px or
percentage units.

stroke_opacity The opacity of the stroke of a shape. We can use a real number from 0 to 1 or a
value in percentage units.

fill The color used to fill the inside of the element.

fill_opacity The opacity of the color or the content the current object is filled with. We can
use a real number from 0 to 1 or a value in percentage units.

font_family Which font family will be used to render the text of the element?

font_size The size of the font.

font_weight The weight or boldness of the font. Possible values are "normal", "bold",
"lighter", "bolder", and the values 100, 200, and so on, up to 900.

font_style Whether a font should be styled with a "normal", "italic", or "oblique" face
from its font_family.

text_decoration

Add decorative lines on text. Options are "underline", "overline", "line-through",
and "blink".

transform A list of transform definitions that are applied to an element and the element’s
children.

filter The filter effects defined by a <filter> element that shall be applied to its
element. Requires a reference to a <filter> id attribute.

mask The mask defined by a <mask> element that shall be applied to its element.
Requires a reference to a <mask> id attribute.

clip_path The clipping path defined by a <clipPath> element that shall be applied to its
element. Requires a reference to a <clipPath> id attribute.

clip_rule A rule for determining what side of a path is inside of a shape in order to know
how clip_path should clip its target. Options are "nonzero", "evenodd", and
"inherit".

stroke_dasharray

The pattern of dashes and gaps used to paint the outline of the shape.
stroke_dashoffset

Defines an offset on the rendering of the associated dash array.

stroke_linecap The shape to be used at the end of open subpaths when they are stroked. We can
use the options "butt", "round", or "square".

stroke_linejoin

The shape to be used at the corners of paths when they are stroked ("arcs",
"bevel", "miter", "miter-clip", and "round").

stroke_miterlimit

The limit on the ratio of the miter length to the stroke_width Used to draw a
miter join. A numeric value should be used to define the limit.

24 svg_attrs_pres

fill_rule A rule for determining what side of a path is inside of a shape. Options are
"nonzero", "evenodd", and "inherit".

color Potentially provides an indirect value (as the currentColor) for fill, stroke,
stop_color, flood_color and lighting_color options.

opacity Specifies the transparency of an object or a group of objects. We can use a real
number from 0 to 1 or a value in percentage units.

color_interpolation

The color space for gradient interpolations, color animations, and alpha com-
positing. Allowed values are: "auto", "sRGB", "linearRGB", and "inherit".

color_interpolation_filters

The color space for imaging operations performed via filter effects. Allowed
values are: "auto", "sRGB", "linearRGB", and "inherit".

lighting_color The color of the light source for filter primitives elements <feSpecularLighting>
and <feDiffuseLighting>.

flood_color, flood_opacity

The color and opacity level to use to flood the current filter primitive subregion
defined through the <feFlood> or <feDropShadow> element.

stop_color, stop_opacity

Sets the color and opacity at a gradient stop.

font_variant Determines whether a font should be used with some of their variation such as
small caps or ligatures.

font_stretch Allows for a selection of a normal, condensed, or expanded face from a font.
font_size_adjust

Specifies that the font size should be chosen based on the height of lowercase
letters rather than the height of capital letters.

text_anchor The vertical alignment a string of text. We can use the values "start", "middle",
"end", or "inherit".

letter_spacing, word_spacing

The spacing between text characters and between words.
dominant_baseline

The baseline used to align the box’s text and inline-level contents. The op-
tions for this are: "auto", "text-bottom", "alphabetic", "ideographic",
"middle", "central", "mathematical", "hanging", and "text-top".

alignment_baseline

Determines how an object is to be aligned along the font baseline with re-
spect to its parent. Allowed values are: "auto", "baseline", "before-edge",
"text-before-edge", "middle", "central", "after-edge", "text-after-edge",
"ideographic", "alphabetic", "hanging", "mathematical", and "inherit".

baseline_shift An option for repositioning of the dominant-baseline relative to the dominant-
baseline of the parent text content element. Valid options are: "auto", "baseline",
"super", "sub", "inherit", a length value, or a percentage value.

direction The base writing direction of text. Can be either "ltr", "rtl", or "inherit".

writing_mode The initial inline-progression-direction for a <text> element (can be left-to-
right, right-to-left, or top-to-bottom). Valid values are "lr-tb", "rl-tb", "tb-rl",
"lr", "rl", "tb", or "inherit".

svg_circle 25

overflow The overflow behavior for the content of a block-level element when it overflows
the element’s box. Options are: "visible", "hidden", "scroll", "auto", and
"inherit".

marker_start, marker_mid, marker_end

The arrowhead or polymarker that will be drawn at the first node, the final node,
or, the in-between nodes. This applies to a <path> element or a basic shape.
These attributes can be applied to any element but only have an effect on the
following seven elements: <rect>, <circle>, <ellipse>, <line>, <path>,
<polygon>, and <polyline>. Requires a reference to a <marker> id attribute
(defined within the SVG’s <defs> area).

pointer_events Defines whether or when an element may be the target of a mouse event. Options
are: "bounding-box", "visiblePainted", "visibleFil", "visibleStroke",
"visible"| "painted", "fill", "stroke", "all", and "none".

cursor The mouse cursor displayed when the mouse pointer is over an element.

vector_effect The vector effect to use when drawing an object. Options are: "default",
"non-scaling", "stroke", and "inherit".

shape_rendering, color_rendering, text_rendering, image_rendering

A quality setting parameter for shapes, color interpolation and compositing, text,
and image processing. All of the rendering attributes can use the "auto" and
"optimizeSpeed" directives. For shape rendering, we can elect for "crispEdges",
"geometricPrecision", or just "inherit". When rendering color, additional
choices are "optimizeQuality" and "inherit". Text rendering allows us the
additional "optimizeLegibility", "geometricPrecision", and "inherit"
options. With image rendering, we can furthermore choose to "optimizeSpeed".

display Allows for control of the rendering of graphical or container elements. A value
of "none" indicates that the given element and its children will not be rendered.
Any value other than "none" or "inherit" indicates that the given element will
be rendered by the browser.

visibility The visibility attribute lets us control the visibility of graphical elements. With
a value of "hidden" or "collapse", the element is invisible.

Value

A named list of presentational SVG properties. This object can be used as a value for the attrs
argument, which is present in every SVG element function (e.g,. svg_rect()).

svg_circle Addition of a circle element

Description

The svg_circle() function adds a circle to an svg object. The position of the circle is given by
x and y, and this refers to the center point of the point of the circle. The diameter of the circle is
given in units of px.

26 svg_circle

Usage

svg_circle(
svg,
x,
y,
diameter,
stroke = NULL,
stroke_width = NULL,
fill = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

x, y The x and y positions of the center of the circle to be drawn. The x and y values
are relative to upper left of the SVG drawing area.

diameter The diameter of the circle shape in units of px.

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

fill The fill color of the element.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

svg_ellipse 27

Examples

if (interactive()) {

Create an SVG with a single
circle element
svg <-

SVG(width = 80, height = 80) %>%
svg_circle(

x = 30, y = 30,
diameter = 40,
stroke = "magenta",
fill = "olive"

)
}

svg_ellipse Addition of an ellipse element

Description

The svg_ellipse() function adds an ellipse to an svg object. The position of the ellipse is given
by x and y, and they refer to the center point of the point of the ellipse. The width and the height,
both in units of px, provide the horizontal and vertical extents of the ellipse.

Usage

svg_ellipse(
svg,
x,
y,
width,
height,
stroke = NULL,
stroke_width = NULL,
fill = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

x, y The x and y positions of the center of the ellipse to be drawn. The x and y values
are relative to upper left of the SVG drawing area.

28 svg_filter

width, height The width and height of the ellipse that is to be drawn. The width is the overall
width of the ellipse in the ’x’ direction, centered on point x. The height is the
distance in the ’y’ direction, centered on point y.

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

fill The fill color of the element.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with a single
ellipse element
svg <-

SVG(width = 60, height = 60) %>%
svg_ellipse(

x = 30, y = 30,
width = 50, height = 30,
fill = "purple"

)
}

svg_filter Build an SVG <filter>

Description

The svg_filter() let’s us create a named <filter> element that we can apply to any SVG
elements (such as shapes). We can bundle one or more filter elements by supplying a list of
filter_*() calls to the filters argument.

svg_filter 29

Usage

svg_filter(svg, id, width = NULL, height = NULL, filters = list())

Arguments

svg The svg object that is created using the SVG() function.

id The ID value to assign to the filter. This must be provided and it should be
unique among all <filter> elements.

width, height The lengths of width and height define the extent of the filter.

filters A list of filter_*() function calls. Examples include filter_image() and
filter_gaussian_blur().

Value

An svg object.

Examples

if (interactive()) {

Set up an `svg_filter()` (called
`"blur"`) that has the blur effect
(using the `filter_gaussian_blur()`
function); have the ellipse element
use the filter by referencing it
by name via the `"filter"` attribute
SVG(width = 200, height = 100) %>%

svg_filter(
id = "blur",
filters = list(

filter_gaussian_blur(stdev = 2)
)

) %>%
svg_ellipse(

x = 40, y = 40,
width = 50, height = 30,
attrs = svg_attrs_pres(

fill = "green",
filter = "blur"

)
)

}

30 svg_group

svg_group Addition of a group element

Description

The svg_group() function allows for grouping of several SVG elements. This is useful if we’d like
to pass presentation attributes to several elements at once.

Usage

svg_group(
svg,
...,
.list = list2(...),
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

... a collection of named arguments that consist of presentation attributes (e.g.,
stroke = "blue") and formulas that represent elements (e.g, ~ svg_rect(.,
x = 60, y = 60, width = 50, height = 50)).

.list Allows for the use of a list as an input alternative to

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

svg_image 31

Examples

if (interactive()) {

Create an SVG with two rectangles
contained within a group
SVG(width = 300, height = 300) %>%

svg_group(
fill = "steelblue", stroke = "red", opacity = 0.5,
~ svg_rect(., x = 20, y = 20, width = 50, height = 50),
~ svg_rect(., x = 40, y = 40, width = 50, height = 50, fill = "red")

)

Create an SVG with two rectangles
that are nested within two
different groups
SVG(width = 300, height = 300) %>%

svg_group(
fill = "green", stroke = "red",
~ svg_rect(., x = 30, y = 30, width = 40, height = 50),
~ svg_group(.,

fill = "steelblue", opacity = 0.5,
~ svg_rect(., x = 60, y = 60, width = 50, height = 50)
)

)
}

svg_image Addition of an image element

Description

The svg_image() function adds an image to an svg object. The starting position is defined by x
and y values. The image width and height are also required. All of these attributes are expressed
in units of px.

Usage

svg_image(
svg,
x,
y,
image,
width = NULL,
height = NULL,
preserve_aspect_ratio = NULL,
opacity = NULL,
attrs = list(),

32 svg_image

anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

x, y The x and y positions of the upper left of the image to be included. The x and y
values are relative to upper left of the SVG drawing area itself.

image The URL for the image file.

width, height The width and height of the rectangle in which the image will be placed. If
both are not provided, the image’s original dimensions will be used. If one of
these is provided, then the image will be scaled to the provided value with the
aspect ratio intact. Providing both will result in the image placed in center of the
rectangle with the aspect ratio preserved.

preserve_aspect_ratio

Controls how the aspect ratio of the image is preserved. Use "none" if the
image’s original aspect ratio should not be respected; this will fill the rectangle
defined by width and height with the image (and this is only if both values are
provided).

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with an SVG image
(the R logo) contained within it
svg <-

SVG(width = 300, height = 300) %>%
svg_image(

SVG_import 33

x = 20, y = 20,
width = 100,
height = 100,
image = "https://www.r-project.org/logo/Rlogo.svg"

)
}

SVG_import Import an SVG file and create an svg object

Description

Import an SVG file and create an svg object

Usage

SVG_import(
data = NULL,
width = NULL,
height = NULL,
viewbox = NULL,
title = NULL,
desc = NULL,
incl_xmlns = FALSE,
oneline = FALSE,
anim_iterations = "infinite"

)

Arguments

data Either a file path to an SVG file or the SVG code itself as a character vector of
length 1.

width The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

height The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

34 SVG_la

viewbox An optional set of dimensions that defines the SVG viewBox attribute. The
viewBox for an SVG element is the position and dimension, in user space, of an
SVG viewport. If supplied, this could either be in the form of a four-element, nu-
meric vector corresponding to the "min-x", "min-y", "width", and "height"
of the rectangle, or, as TRUE which uses the vector c(0, 0, width, height).
Using NULL, the default, excludes this attribute.

title The <title> tag for the finalized SVG.

desc The <desc> tag for the finalized SVG.

incl_xmlns Should the xmlns attribute be included in the <svg> tag? This attribute is only
required on the outermost svg element of SVG documents, and, it’s unnecessary
for inner svg elements or inside of HTML documents. By default, this is set to
FALSE.

oneline An option to compress the resulting SVG tags such that they are reduced to one
line.

anim_iterations

How many should an SVG animation (if defined by use of the anims() function)
be played? By default this is "infinite" (i.e., looped indefinitely) but we can
specify the animation iteration count as a positive number.

Value

An svg object.

SVG_la Create an svg object with a Line Awesome glyph

Description

Create an svg object with a Line Awesome glyph

Usage

SVG_la(
name = "500px",
height = "0.75em",
width = NULL,
viewbox = NULL,
title = NULL,
desc = NULL,
incl_xmlns = FALSE,
anim_iterations = "infinite"

)

svg_line 35

Arguments

name The name of the Line Awesome glyph.

height The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

width The width and height attributes on the top-level <svg> element. Both of these
attributes are optional but, if provided, take in a variety of dimensions and key-
words. If numerical values are solely used, they are assumed to be ’px’ length
values. Dimensions can be percentage values (i.e., "75%") or length values with
the following units: "em", "ex", "px", "in", "cm", "mm", "pt", and "pc". Using
NULL, the default, excludes the attribute.

viewbox An optional set of dimensions that defines the SVG viewBox attribute. The
viewBox for an SVG element is the position and dimension, in user space, of an
SVG viewport. If supplied, this could either be in the form of a four-element, nu-
meric vector corresponding to the "min-x", "min-y", "width", and "height"
of the rectangle, or, as TRUE which uses the vector c(0, 0, width, height).
Using NULL, the default, excludes this attribute.

title The <title> tag for the finalized SVG.

desc The <desc> tag for the finalized SVG.

incl_xmlns Should the xmlns attribute be included in the <svg> tag? This attribute is only
required on the outermost svg element of SVG documents, and, it’s unnecessary
for inner svg elements or inside of HTML documents. By default, this is set to
FALSE.

anim_iterations

How many should an SVG animation (if defined by use of the anims() function)
be played? By default this is "infinite" (i.e., looped indefinitely) but we can
specify the animation iteration count as a positive number.

Value

An svg object.

svg_line Addition of an line element

Description

The svg_line() function adds a line to an svg object. The line is drawn using a start point (x1 and
y1) and an end point (x2 and y2) points. These positions are in units of px.

36 svg_line

Usage

svg_line(
svg,
x1,
y1,
x2,
y2,
stroke = NULL,
stroke_width = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

x1, y1 The x and y positions of the line’s start point.

x2, y2 The x and y positions of the line’s end point.

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with a single
line element

svg_path 37

svg <-
SVG(width = 100, height = 50) %>%
svg_line(

x1 = 5, y1 = 5,
x2 = 95, y2 = 45,
stroke = "blue"

)
}

svg_path Addition of an path element

Description

The svg_path() function adds a path to an svg object. A path can potentially be quite complex
(with an interplay of line and curve commands), so, a hand-encoded path string is not often done
by hand. For this reason, the path argument accepts only a formatted string that complies with the
input requirements for the d attribute of the SVG <path> tag. All point positions are in units of px.

Usage

svg_path(
svg,
path,
stroke = NULL,
stroke_width = NULL,
fill = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

path A single-length character vector that holds the formatted path string.

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

fill The fill color of the element.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

38 svg_polygon

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with a single
path element
svg <-

SVG(width = 300, height = 300) %>%
svg_path(

path = "M 50 160 q 100 -300 200 0",
stroke = "magenta",
stroke_width = 5,
fill = "lightblue"

)
}

svg_polygon Addition of an polygon element

Description

The svg_polygon() function adds a polygon to an svg object. In the context of an SVG shape
a polygon is similar to a polyline (defined by a series of points) except that the path will be auto-
matically closed (i.e., last point connects to the first point). Like a polyline, a polygon is drawn
by connecting a series of points with straight lines. The points can be provided as a vector that’s
exactly divisible by two, or, as a formatted string that adheres to the specification of the points
attribute of the SVG <polygon> tag. All point positions are in units of px.

Usage

svg_polygon(
svg,
points,
stroke = NULL,
stroke_width = NULL,

svg_polygon 39

fill = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

points A numeric vector of points (with alternating values for x and y positions) that de-
fine the polygon. This can also be a single-length character vector that holds the
formatted points string (space-separated x and y values, and comma-separated
points).

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

fill The fill color of the element.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with a single
polygon element
svg <-

SVG(width = 300, height = 300) %>%
svg_polygon(

points = "100,10 40,198 190,78 10,78 160,198",
stroke = "orange",
stroke_width = 4,

40 svg_polyline

fill = "yellow"
)

}

svg_polyline Addition of an polyline element

Description

The svg_polyline() function adds a polyline to an svg object. The polyline is drawn by con-
necting a series of points with straight lines. The points can be provided as a vector that’s exactly
divisible by two, or, as a formatted string that adheres to the specification of the points attribute of
the SVG <polyline> tag. All point positions are in units of px.

Usage

svg_polyline(
svg,
points,
stroke = NULL,
stroke_width = NULL,
fill = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

points A numeric vector of points (with alternating values for x and y positions) that de-
fine the polyline. This can also be a single-length character vector that holds the
formatted points string (space-separated x and y values, and comma-separated
points).

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

fill The fill color of the element.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

svg_rect 41

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with a single
polyline element; here `points`
is a numeric vector where pairs
of values are the `x` and `y`
point position
svg_1 <-

SVG(width = 300, height = 300) %>%
svg_polyline(

points = c(
10, 10, 15, 20, 20, 15, 25, 30, 30, 25,
35, 40, 40, 35, 45, 50, 50, 45

),
stroke = "blue"

)

Create the same SVG with a single
polyline element; this time `points`
is a formatted points string
svg_2 <-

SVG(width = 300, height = 300) %>%
svg_polyline(

points =
"10,10 15,20 20,15 25,30 30,25 35,40 40,35 45,50 50,45",

stroke = "blue"
)

}

svg_rect Addition of a rect element

42 svg_rect

Description

The svg_rect() function adds a rectangle to an svg object. The position of the rectangle is given
by x and y, and this refers to the upper left point of the rectangle. The width and the height are
the dimensions of the rectangle. All of these dimensions are in units of px. The optional rx and ry
parameter are corner radius values (again, in px units) that define x and y radius of the corners of
the rectangle.

Usage

svg_rect(
svg,
x,
y,
width,
height,
rx = NULL,
ry = NULL,
stroke = NULL,
stroke_width = NULL,
fill = NULL,
opacity = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

x, y The x and y positions of the upper left point of the rectangle to be drawn. The x
and y values are relative to upper left of the SVG drawing area.

width, height The width and height of the element that is to be drawn. The width is the
distance in the ’x’ direction from point x (proceeding right) and the height is
the distance in the ’y’ direction from point y (proceeding downward).

rx, ry Optional corner radius values in the ’x’ and ’y’ directions. Applies to all corners
of the rectangle. If only one value is provided (say, just for rx) then the unset
value will take that set value as well.

stroke The color of the stroke applied to the element (i.e., the outline).

stroke_width The width of the stroke in units of pixels.

fill The fill color of the element.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

svg_rect 43

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

Value

An svg object.

Examples

if (interactive()) {

Create an SVG with a single
rectangle element
svg_1 <-

SVG(width = 100, height = 100) %>%
svg_rect(

x = 20, y = 10,
width = 40, height = 15,
stroke = "blue", fill = "yellow"

)

Create an SVG with a single
rectangle element that moves
to new `x` positions
svg_2 <-

SVG(width = 300, height = 300) %>%
svg_rect(

x = 50, y = 50,
width = 50, height = 50,
stroke = "magenta", fill = "lightblue",
anims = anims(

0.5 ~ list(
anim_position(

x = 50, y = 50,
easing_fn = ease_out()

),
anim_rotation(rotation = 0)

),
2.0 ~ list(

anim_position(
x = 200, y = 50,
easing_fn = ease_in_out()

),
anim_rotation(rotation = 90)

)
)

)

44 SVG_t

}

SVG_t Create a text-height svg object

Description

The SVG_t() function is a variation on SVG() (the entry point for building an SVG) in that the
output tags will be both as compact as possible (fewer linebreaks, less space characters) and the
height is relative to line height of text (at "0.75em"). This is a good option if the eventual use for
the generated SVG is to be integrated with text in HTML <p> elements. For scaling to function
properly, the provision of the viewbox is required here.

Usage

SVG_t(height = "0.75em", viewbox)

Arguments

height The height attribute on the top-level <svg> element. The default of "0.75em" is
recommended here so that SVGs are scaled nicely to any adjacent text.

viewbox An optional set of dimensions that defines the SVG viewBox attribute. The
viewBox for an SVG element is the position and dimension, in user space, of an
SVG viewport. If supplied, this could either be in the form of a four-element, nu-
meric vector corresponding to the "min-x", "min-y", "width", and "height"
of the rectangle, or, as TRUE which uses the vector c(0, 0, width, height).
Using NULL, the default, excludes this attribute.

Value

An svg object.

Examples

if (interactive()) {

Create a simple SVG with a rectangle and a circle
svg <-

SVG_t(viewbox = c(0, 0, 60, 20)) %>%
svg_rect(x = 0, y = 0, width = 30, height = 20) %>%
svg_circle(x = 50, y = 10, diameter = 20)

}

svg_text 45

svg_text Addition of a text element

Description

The svg_text() function adds text to an svg object. As with many of the functions that create
shape elements (such as svg_rect()), the starting position is defined by x and y values. All point
positions are in units of px.

Usage

svg_text(
svg,
x,
y,
text,
fill = NULL,
opacity = NULL,
path = NULL,
attrs = list(),
anims = list(),
filters = list(),
id = NULL

)

Arguments

svg The svg object that is created using the SVG() function.

x, y The x and y positions of the upper left of the text to be drawn. The x and y
values are relative to upper left of the SVG drawing area itself.

text A character vector that contains the text to be rendered.

fill The color of the text.

opacity The opacity of the element. Must be a value in the range of 0 to 1.

path A single-length character vector that holds the formatted path string.

attrs A presentation attribute list. The helper function svg_attrs_pres() can help
us easily generate this named list object. For the most part, the list’s names are
the presentation attribute names and the corresponding values are the matching
attribute values.

anims An animation directive list for the element. This should be structured using the
anims() function.

filters A filter directive list for the element. This is easily created by using a list of
filter_*() functions (e.g., list(filter_gaussian_blur(2), filter_drop_shadow(2,
2))).

id An optional ID value to give to the built tag. This is useful for modifying this
element in a later function call or for interacting with CSS.

46 svg_text

Value

An svg object.

Index

anim_opacity, 5
anim_position, 6
anim_position(), 2, 10, 11, 18
anim_rotation, 7
anim_rotation(), 2
anim_scale, 8
anims, 2
anims(), 5–8, 20, 26, 28, 30, 32, 34–36, 38,

39, 41, 43, 45

cubic_bezier, 9

ease_in, 10
ease_in(), 5–8
ease_in_out, 10
ease_in_out(), 5–8
ease_out, 11
ease_out(), 5–8

filter_dilate, 11
filter_drop_shadow, 12
filter_erode, 13
filter_gaussian_blur, 14
filter_gaussian_blur(), 29
filter_image, 15
filter_image(), 29
filter_offset, 16

info_lineawesome, 17

linear, 18
linear(), 5–8

step_end, 18
step_end(), 5–8
step_start, 18
step_start(), 5–8
SVG, 19
SVG(), 20, 26, 27, 29, 30, 32, 36, 37, 39, 40,

42, 44, 45
SVG_, 20

svg_attrs_pres, 21
svg_attrs_pres(), 26, 28, 30, 32, 36, 37, 39,

40, 42, 45
svg_circle, 25
svg_circle(), 19
svg_ellipse, 27
svg_filter, 28
svg_group, 30
svg_image, 31
SVG_import, 33
SVG_la, 34
SVG_la(), 17
svg_line, 35
svg_path, 37
svg_polygon, 38
svg_polyline, 40
svg_rect, 41
svg_rect(), 19, 21, 25, 45
SVG_t, 44
svg_text, 45
svg_text(), 21

47

	anims
	anim_opacity
	anim_position
	anim_rotation
	anim_scale
	cubic_bezier
	ease_in
	ease_in_out
	ease_out
	filter_dilate
	filter_drop_shadow
	filter_erode
	filter_gaussian_blur
	filter_image
	filter_offset
	info_lineawesome
	linear
	step_end
	step_start
	SVG
	SVG_
	svg_attrs_pres
	svg_circle
	svg_ellipse
	svg_filter
	svg_group
	svg_image
	SVG_import
	SVG_la
	svg_line
	svg_path
	svg_polygon
	svg_polyline
	svg_rect
	SVG_t
	svg_text
	Index

