Package 'noisySBM'

October 13, 2022

Type Package Title Noisy Stochastic Block Mode: Graph Inference by Multiple Testing Version 0.1.4 Author Tabea Rebafka [aut, cre], Etienne Roquain [ctb], Fanny Villers [aut] Maintainer Tabea Rebafka <tabea.rebafka@sorbonne-universite.fr> Description Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <arXiv:1907.10176>. License GPL-2 **Encoding** UTF-8 LazyData true Imports parallel, gtools, ggplot2, RColorBrewer RoxygenNote 7.1.1 Suggests knitr, rmarkdown VignetteBuilder knitr **Depends** R (>= 2.10) NeedsCompilation no **Repository** CRAN

Date/Publication 2020-12-16 10:40:06 UTC

R topics documented:

addRowToTau																			•												•			3
ARI	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	3

classInd	4
convertGroupPair	4
convertGroupPairIdentifier	5
convertNodePair	5
correctTau	6
emv_gamma	6
fitNSBM	7
getBestQ	9
getRho	10
getTauql	10
graphInference	11
ICL_Q	12
initialPoints	13
initialPointsByMerge	14
initialPointsBySplit	15
initialRho	16
initialTau	18
J.gamma	18
JEvalMstep	19
listNodePairs	19
lvaluesNSBM	20
mainVEM_Q	20
mainVEM_Q_par	21
modelDensity	22
Mstep	23
plotGraphs	24
plotICL	24
qvaluesNSBM	25
q_delta_ql	25
res_exp	26
res_gamma	26
res_gauss	27
rnsbm	27
spectralClustering	28
tauDown	28
tauUp	29
tauUpdate	29
update_newton_gamma	30
VEstep	30

Index

addRowToTau

Description

split group q of provided tau randomly into two into

Usage

addRowToTau(tau, q)

Arguments

tau	provided tau
q	indice of group to split

Value

new tau

ARI

Evalute the adjusted Rand index

Description

Compute the adjusted Rand index to compare two partitions

Usage

ARI(x, y)

Arguments

Х	vector (of length n) or matrix (with n columns) providing a partition
У	vector or matrix providing a partition

Details

the partitions may be provided as n-vectors containing the cluster memberships of n entities, or by Qxn - matrices whose entries are all 0 and 1 where 1 indicates the cluster membership

Value

the value of the adjusted Rand index

Examples

```
clust1 <- c(1,2,1,2)
clust2 <- c(2,1,2,1)
ARI(clust1, clust2)
clust3 <- matrix(c(1,1,0,0, 0,0,1,1), nrow=2, byrow=TRUE)
clust4 <- matrix(c(1,0,0,0, 0,1,0,0, 0,0,1,1), nrow=3, byrow=TRUE)
ARI(clust3, clust4)
```

classInd

convert a clustering into a 0-1-matrix

Description

convert a clustering into a 0-1-matrix

Usage

classInd(cl, nbClusters)

Arguments

cl	cluster in vector form
nbClusters	number of clusters

Value

a 0-1-matrix encoding the clustering

convertGroupPair transform a pair of block identifiers (q,l) into an identifying integer

Description

this is the inverse function of convertGroupPairIdentifier()

Usage

```
convertGroupPair(q, 1, Q, directed)
```

Arguments

q	indicator of a latent block
1	indicator of a latent block
Q	number of latent blocks
directed	indicates if the graph is directed

4

```
{\tt convert} {\tt Group} {\tt PairIdentifier}
```

takes a scalar indice of a group pair (q,l) and returns the values q and l

Description

this is the inverse function of convertGroupPair()

Usage

```
convertGroupPairIdentifier(ind_ql, Q)
```

Arguments

ind_ql	indicator for a pair of latent blocks
Q	number of latent blocks

convertNodePair transform a pair of nodes (i,j) into an identifying integer

Description

Associates an identifying integer with a pair of nodes (i,j)

Usage

convertNodePair(i, j, n, directed)

Arguments

i	scalar or vector
j	scalar or vector, same length as i
n	number of vertices
directed	booelan to indicate whether the model is directed or undirected

Details

returns the row number of the matrix build by listNodePairs(n) containing the pair (i,j)

correctTau

Description

corrects values of the variational parameters tau that are too close to the 0 or 1

Usage

correctTau(tau)

Arguments

tau

variational parameters

emv_gamma	compute th	e MLE in	n the	Gamma	model	using	the	Newton-Raphson
	method							

Description

compute the MLE in the Gamma model using the Newton-Raphson method

Usage

```
emv_gamma(L, M, param.old, epsilon = 0.001, nb.iter.max = 10)
```

Arguments

L	weighted mean of log(data)
Μ	weighted mean of the data
param.old	parameters of the Gamma distribution
epsilon	threshold for the stopping criterion
nb.iter.max	maximum number of iterations

Value

updated parameters of the Gamma distribution

fitNSBM

VEM algorithm to adjust the noisy stochastic block model to an observed dense adjacency matrix

Description

 ${\tt fitNSBM}()$ estimates model parameters of the noisy stochastic block model and provides a clustering of the nodes

Usage

```
fitNSBM(
  dataMatrix,
  model = "Gauss0",
  sbmSize = list(Qmin = 1, Qmax = NULL, explor = 1.5),
  filename = NULL,
  initParam = list(nbOfTau = NULL, nbOfPointsPerTau = NULL, maxNbOfPasses = NULL,
   minNbOfPasses = 1),
  nbCores = parallel::detectCores()
)
```

dataMatrix	observed dense adjacency matrix
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters

	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters
sbmSize	list of parameters determining the size of SBM (the number of latent blocks) to be expored
	Qmin minimum number of latent blocks
	Qmax maximum number of latent blocks
	explor if Qmax is not provided, then Qmax is automatically determined as explor times the number of blocks where the ICL is maximal
filename	results are saved in a file with this name (if provided)
initParam	list of parameters that fix the number of initializations
	nb0fTau number of initial points for the node clustering (i. e. for the variational parameters tau)
	nbOfPointsPerTau number of initial points of the latent binary graph
	maxNbOfPasses maximum number of passes through the SBM models, that is, passes from Qmin to Qmax or inversely
	minNbOfPasses minimum number of passes through the SBM models
nbCores	number of cores used for parallelization

Details

fitNSBM() supports different probability distributions for the edges and can estimate the number of node blocks

Value

Returns a list of estimation results for all numbers of latent blocks considered by the algorithm. Every element is a list composed of:

theta estimated parameters of the noisy stochastic block model; a list with the following elements:

- pi parameter estimate of pi
- w parameter estimate of w
- nu0 parameter estimate of nu0
- nu parameter estimate of nu

clustering node clustering obtained by the noisy stochastic block model, more precisely, a hard clustering given by the maximum aposterior estimate of the variational parameters sbmParam\$edgeProba

- sbmParam further results concerning the latent binary stochastic block model. A list with the following elements:
 - Q number of latent blocks in the noisy stochastic block model
 - clusterProba soft clustering given by the conditional probabilities of a node to belong to a given latent block. In other words, these are the variational parameters tau; (Q x n)-matrix
 - edgeProba conditional probabilities rho of an edges given the node memberships of the interacting nodes; (N_Q x N)-matrix
 - ICL value of the ICL criterion at the end of the algorithm

getBestQ

convergence a list of convergence indicators:

J value of the lower bound of the log-likelihood function at the end of the algorithm complLogLik value of the complete log-likelihood function at the end of the algorithm converged indicates if algorithm has converged nbIter number of iterations performed

Examples

getBestQ

optimal number of SBM blocks

Description

returns the number of SBM blocks that maximizes the ICL

Usage

```
getBestQ(bestSolutionAtQ)
```

Arguments

bestSolutionAtQ

output of fitNSBM(), i.e. a list of estimation results for varying number of latent blocks

Value

a list the maximal value of the ICL criterion among the provided solutions along with the best number of latent blocks

Examples

```
# res_gauss is the output of a call of fitNSBM()
getBestQ(res_gauss)
```

getRho

Description

compute rho associated with given values of w, nu0 and nu

Usage

getRho(Q, w, nu0, nu, data, modelFamily)

Arguments

Q	number of latent blocks in the noisy stochastic block model
W	weight parameter in the noisy stochastic block model
nu0	null parameter in the noisy stochastic block model
nu	alternative parameter in the noisy stochastic block model
data	data vector in the undirected model, data matrix in the directed model
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma

Value

a matrix of conditional probabilities of an edge given the node memberships of the interacting nodes

getTauql	Evaluate tau_q*tau_l in the noisy stochastic block model	
----------	--	--

Description

Evaluate tau_q*tau_l in the noisy stochastic block model

Usage

```
getTauql(q, l, tau, n, directed)
```

q	indicator of a latent block
1	indicator of a latent block
tau	variational parameters
n	number of vertices
directed	booelan to indicate whether the model is directed or undirected

graphInference *new graph inference procedure*

Description

new graph inference procedure

Usage

```
graphInference(
   dataMatrix,
   nodeClustering,
   theta,
   alpha = 0.05,
   modelFamily = "Gauss"
)
```

Arguments

dataMatrix	observed adjacency matrix, nxn matrix
nodeClustering	n-vector of hard node Clustering
theta	parameter of the noisy stochastic block model
alpha	confidence level
modelFamily	probability distribution for the edges. Possible values: Gauss and Gamma

Details

graph inference procedure based on conditional q-values in the noisy stochastic block model. It works in the Gaussian model, and also in the Gamma model, but only if the shape parameters of the Gamma distributions under the null and the alternatives are identical (e.g. when all distributions are exponentials).

Value

a list with:

A resulting binary adjacency matrix

qvalues vector with conditional q-values in the noisy stochastic block model

Examples

```
set.seed(1)
theta <- list(pi=c(.5,.5), w=c(.8,.1,.2), nu0=c(0,1), nu=matrix(c(-1,5,10, 1,1,1), ncol=2))
obs <- rnsbm(n=30, theta)
# res_gauss <- fitNSBM(obs$dataMatrix, nbCores=1)
resGraph <- graphInference(obs$dataMatrix, res_gauss[[2]]$clustering, theta, alpha=0.05)
sum((resGraph$A))/2 # nb of derived edges
sum(obs$latentAdj)/2 # correct nb of edges</pre>
```

ICL_Q

Description

computation of the Integrated Classification Likelihood criterion for a result provided by main-VEM_Q()

Usage

ICL_Q(solutionThisRun, model)

Arguments

solutionThisRun

	result provided by mainVEM_Q()
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative dis- tribution
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters

Value

value of the ICL criterion

initialPoints

Description

compute a list of initial points of tau and rhofor the VEM algorithm for a given number of blocks; returns nbOfTau*nbOfPointsPerTau initial points

Usage

```
initialPoints(
   Q,
   dataMatrix,
   nbOfTau,
   nbOfPointsPerTau,
   modelFamily,
   model,
   directed
)
```

Q	number of latent blocks in the noisy stochastic block model
dataMatrix	observed dense adjacency matrix
nbOfTau	number of initializations for the latent block memberships
nbOfPointsPerTa	u
	number of initializations of the latent binary graph associated with each initial latent block memberships
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution

	GaussAffil compared to Gauss, for the alternative distribution, there's a dis-
	tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma
	distributions with shape parameter equal to one) with unknown scale pa-
	rameters
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters
directed	booelan to indicate whether the model is directed or undirected

Value

list of inital points of tau and rho of length nbOfTau*nbOfPointsPerTau

initialPointsByMerge	Construct initial values with Q groups by meging groups of a solution
	obtained with Q+1 groups

Description

Construct initial values with Q groups by meging groups of a solution obtained with Q+1 groups

Usage

```
initialPointsByMerge(
  tau_Qp1,
  nbOfTau,
  nbOfPointsPerTau,
  data,
  modelFamily,
  model,
  directed
)
```

tau_Qp1	tau for a model with Q+1 latent blocks
caa_qp1	
nbOfTau	number of initializations for the latent block memberships
nbOfPointsPerTa	au l
	number of initializations of the latent binary graph associated with each initial latent block memberships
data	data vector in the undirected model, data matrix in the directed model
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters

	Gauss0 compared to Gauss, the mean of the null distribution is set to 0
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative dis- tribution
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters
directed	booelan to indicate whether the model is directed or undirected

Value

list of inital points of tau and rho of length nbOfTau*nbOfPointsPerTau

initialPointsBySplit	Construct initial values with Q groups by splitting groups of a solution
	obtained with Q-1 groups

Description

Construct initial values with Q groups by splitting groups of a solution obtained with Q-1 groups

Usage

```
initialPointsBySplit(
  tau_Qm1,
  nbOfTau,
  nbOfPointsPerTau,
  data,
  modelFamily,
  model,
  directed
)
```

Arguments

tau_Qm1	tau for a model with Q-1 latent blocks
nb0fTau	number of initializations for the latent block memberships
nbOfPointsPerTa	au
	number of initializations of the latent binary graph associated with each initial latent block memberships
data	data vector in the undirected model, data matrix in the directed model
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters
directed	booelan to indicate whether the model is directed or undirected

Value

list of inital points of tau and rho of length nbOfTau*nbOfPointsPerTau

initialRho

compute initial values of rho

Description

for every provided initial point of tau nbOfPointsPerTau initial values of rho are computed in the Gamma model also initial values of nu are computed

initialRho

Usage

initialRho(listOfTau, nbOfPointsPerTau, data, modelFamily, model, directed)

Arguments

listOfTau	output of initialTau()	
nbOfPointsPerTau		
	number of initializations of the latent binary graph associated with each initial latent block memberships	
data	data vector in the undirected model, data matrix in the directed model	
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma	
model	Implemented models:	
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters	
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0	
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$	
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown	
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0	
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$	
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative dis- tribution	
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions	
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters	
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters	
directed	booelan to indicate whether the model is directed or undirected	

Value

list of inital points of tau and rho

initialTau

Description

returns a list of length nbOfTau of initial points for tau using spectral clustering with absolute values, kmeans and random perturbations of these points

Usage

initialTau(Q, dataMatrix, nbOfTau, percentageOfPerturbation, directed)

Arguments

Q	number of latent blocks in the noisy stochastic block model	
dataMatrix	observed dense adjacency matrix	
nb0fTau	number of initializations for the latent block memberships	
percentageOfPerturbation		
	percentage of node labels that are perturbed to obtain further initial points	
directed	booelan to indicate whether the model is directed or undirected	

Value

a list of length nbOfTau of initial points for tau

J.gamma evaluate the objective in the Gamma model

Description

evaluate the objective in the Gamma model

Usage

J.gamma(param, L, M)

Arguments

param	parameters of the Gamma distribution
L	weighted mean of log(data)
Μ	weighted mean of the data

Value

value of the lower bound of the log-likelihood function

JEvalMstep

Description

evaluation of the objective in the Gauss model

Usage

JEvalMstep(VE, mstep, data, modelFamily, directed)

Arguments

VE	list with variational parameters tau and rho
mstep	list with current model parameters and additional auxiliary terms
data	data vector in the undirected model, data matrix in the directed model
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
directed	booelan to indicate whether the model is directed or undirected

Value

value of the ELBO and the complete log likelihood function

listNodePairs returns a list of all possible node pairs (i,j)

Description

returns a list of all possible node pairs (i,j)

Usage

listNodePairs(n, directed = FALSE)

Arguments

n	number of nodes
directed	indicates if the graph is directed

Value

a 2-column matrix with all possible node pairs (i,j)

lvaluesNSBM

Description

compute conditional l-values in the noisy stochastic block model

Usage

lvaluesNSBM(dataVec, Z, theta, directed = FALSE, modelFamily = "Gauss")

Arguments

dataVec	data vector
Z	a node clustering
theta	list of parameters for a noisy stochastic block model
directed	indicates if the graph is directed
modelFamily	probability distribution for the edges. Possible values: Gauss and Gamma

Value

conditional l-values in the noisy stochastic block model

mainVEM_Q	main function of VEM algorithm with fixed number of SBM blocks
-----------	--

Description

main function of VEM algorithm with fixed number of SBM blocks

Usage

```
mainVEM_Q(init, modelFamily, model, data, directed)
```

init	list of initial points for the algorithm
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0

	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative dis- tribution
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters
data	data vector in the undirected model, data matrix in the directed model
directed	booelan to indicate whether the model is directed or undirected

Value

list of estimated model parameters and a node clustering; like the output of fitNSBM()

mainVEM_Q_par	main function of VEM algorithm for fixed number of latent blocks in
	parallel computing

Description

runs the VEM algorithm the provided initial point

Usage

```
mainVEM_Q_par(s, ListOfTauRho, modelFamily, model, data, directed)
```

S	indice of initial point in ListOfTauRho to be used for this run
ListOfTauRho	a list of initial points
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
model	Implemented models:
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters

	Gauss0 compared to Gauss, the mean of the null distribution is set to 0
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
	<code>Gauss0EqVar</code> compared to <code>GaussEqVar</code> , the mean of the null distribution is set to 0
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative dis- tribution
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters
data	data vector in the undirected model, data matrix in the directed model
directed	booelan to indicate whether the model is directed or undirected

Value

list of estimated model parameters and a node clustering; like the output of fitNSBM()

modelDensity

evaluate the density in the current model

Description

evaluate the density in the current model

Usage

```
modelDensity(x, nu, modelFamily = "Gauss")
```

х	vector with points where to evaluate the density	
nu	distribution parameter	
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma, ${\tt Poisson}$	

Mstep

Description

performs one M-step, that is, update of pi, w, nu, nu0

Usage

Mstep(VE, mstep, model, data, modelFamily, directed)

Arguments

VE	list with variational parameters tau and rho	
mstep	list with current model parameters and additional auxiliary terms	
model	Implemented models:	
	Gauss all Gaussian parameters of the null and the alternative distributions are unknown ; this is the Gaussian model with maximum number of unknown parameters	
	Gauss0 compared to Gauss, the mean of the null distribution is set to 0	
	Gauss01 compared to Gauss, the null distribution is set to $N(0,1)$	
	GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown	
Gauss 0 EqVar compared to GaussEqVar, the mean of the null distributo 0		
	Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$	
	Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative dis- tribution	
	GaussAffil compared to Gauss, for the alternative distribution, there's a dis- tribution for inter-group and another for intra-group interactions	
	Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters	
	ExpGamma the null distribution is an unknown exponential, the alterantive dis- tribution are Gamma distributions with unknown parameters	
data	data vector in the undirected model, data matrix in the directed model	
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma	
directed	booelan to indicate whether the model is directed or undirected	

Value

updated list mstep with current model parameters and additional auxiliary terms

plotGraphs

Description

plot the data matrix, the inferred graph and/or the true binary graph

Usage

```
plotGraphs(dataMatrix = NULL, inferredGraph = NULL, binaryTruth = NULL)
```

Arguments

dataMatrix	observed data matrix
inferredGraph	graph inferred by the multiple testing procedure via graphInference()
binaryTruth	true binary graph

Value

a list of FDR and TDR values, if possible

plotICL plot ICL curve

Description

plot ICL curve

Usage

plotICL(res)

Arguments

res output of fitNSBM()

Value

figure of ICL curve

Examples

res_gauss is the output of a call of fitNSBM()
plotICL(res_gauss)

qvaluesNSBM

Description

compute q-values in the noisy stochastic block model

Usage

```
qvaluesNSBM(
   dataVec,
   Z,
   theta,
   lvalues,
   modelFamily = "Gauss",
   directed = FALSE
)
```

Arguments

dataVec	data vector
Z	a node clustering
theta	list of parameters for a noisy stochastic block model
lvalues	conditional l-values in the noisy stochastic block model
modelFamily	probability distribution for the edges. Possible values: Gauss and Gamma
directed	indicates if the graph is directed

Value

q-values in the noisy stochastic block model

q_delta_ql	auxiliary function for the computation of q-values	
------------	--	--

Description

auxiliary function for the computation of q-values

Usage

```
q_delta_ql(theta, ind, t, modelFamily = "Gauss")
```

res_gamma

Arguments

theta	list of parameters for a noisy stochastic block model
ind	indicator for a pair of latent blocks
t	l-values
modelFamily	probability distribution for the edges. Possible values: Gauss and Gamma

res_exp

Output of fitNSBM() on a dataset applied in the exponential NSBM

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

res_exp

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()

res_gamma

Output of fitNSBM() on a dataset applied in the Gamma NSBM

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

res_gamma

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()

26

res_gauss

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

res_gauss

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()

simulation of a graph according the noisy stochastic block model

Description

simulation of a graph according the noisy stochastic block model

Usage

rnsbm(n, theta, modelFamily = "Gauss", directed = FALSE)

Arguments

n	number of nodes	
theta model parameters of the noisy stochastic block model		
pi latent block proportions, Q-vector		
w connectivity parameters, N_Q-vector		
nu0 parameters of the null distribution		
	nu parameters of the alternative distribution	
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma, Poisson	
directed	indicates if the graph is directed (boolean)	

Value

a list with:

dataMatrix simulated matrix from the noisy stochastic block modeltheta model parameters of the noisy stochastic block modellatentZ underlying latent node membershipslatentAdj underlying latent binary graph

Examples

```
n <- 10
Q <- 2
theta <- list(pi= rep(1/Q,Q), nu0=c(0,1))
theta$nu <- matrix(c(-2,10,-2, 1,1,1),nrow=Q*(Q+1)/2,ncol=2)
theta$w <- c(.5, .9, .3)
obs <- rnsbm(n, theta, modelFamily='Gauss')
obs
```

spectralClustering spectral clustering with absolute values

Description

performs absolute spectral clustering of an adjacency matrix

Usage

spectralClustering(A, K)

Arguments

A	adjacency matrix
К	number of desired clusters

Value

a vector containing a node clustering into K groups

```
tauDown
```

Create new initial values by merging pairs of groups of provided tau

Description

Create nbOfMerges new initial values by merging nbOfMerges (or all possible) pairs of groups of provided tau

Usage

tauDown(tau, nbOfMerges)

Arguments

tau	soft node clustering
nbOfMerges	number of required merges of blocks

28

tauUp

Value

a list of length nbOfMerges (at most) of initial points for tau

tau	ιU	р
-----	----	---

Create new values of tau by splitting groups of provided tau

Description

Create nbOfSplits (or all) new values of tau by splitting nbOfSplits (or all) groups of provided tau

Usage

tauUp(tau, nbOfSplits = 1)

Arguments

tau	soft node clustering
nbOfSplits	number of required splits of blocks

Value

a list of length nbOfSplits (at most) of initial points for tau

tauUpdate	<i>Compute one iteration to solve the fixed point equation in the VE-</i>	-step
-----------	---	-------

Description

Compute one iteration to solve the fixed point equation in the VE-step

Usage

```
tauUpdate(tau, log.w, log.1mw, data, VE, mstep, modelFamily, directed)
```

tau	current value of tau
log.w	value of log(w)
log.1mw	value of log(1-w)
data	data vector in the undirected model, data matrix in the directed model
VE	list with variational parameters tau and rho
mstep	list with current model parameters and additional auxiliary terms
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
directed	booelan to indicate whether the model is directed or undirected

Value

updated value of tau

update_newton_gamma Perform one iteration of the Newton-Raphson to compute the MLE of the parameters of the Gamma distribution

Description

Perform one iteration of the Newton-Raphson to compute the MLE of the parameters of the Gamma distribution

Usage

```
update_newton_gamma(param, L, M)
```

Arguments

param	current parameters of the Gamma distribution
L	weighted mean of log(data)
М	weighted mean of the data

Value

updated parameters of the Gamma distribution

VEstep

VE-step

Description

performs one VE-step, that is, update of tau and rho

Usage

```
VEstep(VE, mstep, data, modelFamily, directed, fix.iter = 5)
```

Arguments

VE	list with variational parameters tau and rho
mstep	list with current model parameters and additional auxiliary terms
data	data vector in the undirected model, data matrix in the directed model
modelFamily	probability distribution for the edges. Possible values: Gauss, Gamma
directed	booelan to indicate whether the model is directed or undirected
fix.iter	maximal number of iterations for fixed point equation

30

VEstep

Value

updated list VE with variational parameters tau and rho

Index

* datasets res_exp, 26 $res_gamma, 26$ res_gauss, 27 addRowToTau, 3 ARI, 3 classInd, 4 convertGroupPair,4 convertGroupPairIdentifier, 5 convertNodePair, 5 correctTau, 6 emv_gamma, 6 fitNSBM, 7 getBestQ, 9 getRho, 10 getTauql, 10 graphInference, 11 ICL_Q, 12 initialPoints, 13 initialPointsByMerge, 14 initialPointsBySplit, 15 initialRho, 16 initialTau, 18 J.gamma, 18 JEvalMstep, 19 listNodePairs, 19 lvaluesNSBM, 20 mainVEM_Q, 20 mainVEM_Q_par, 21 modelDensity, 22 Mstep, 23

plotGraphs, 24

plotICL, 24

q_delta_ql, 25
qvaluesNSBM, 25

res_exp, 26 res_gamma, 26 res_gauss, 27 rnsbm, 27

spectralClustering, 28

tauDown, 28 tauUp, 29 tauUpdate, 29

update_newton_gamma, 30

VEstep, 30