Package ‘nofrills’

October 13, 2022
Type Package
Title Low-Cost Anonymous Functions
Version 0.3.2

Description Provides a compact variation of the usual syntax of function
declaration, in order to support tidyverse-style quasiquotation of a
function's arguments and body.

License MIT + file LICENSE

Encoding UTF-8

ByteCompile true

Depends R (>=3.3.0)

Imports rlang (>=1.0.0)

Suggests testthat (>= 3.0.0), dplyr (>= 0.7.0)

URL https://github.com/egnha/nofrills

BugReports https://github.com/egnha/nofrills/issues

Collate 'nofrills.R' 'closure.R' 'exprs.R' 'fn.R' 'as-fn.R’
'make-fn-aware.R' 'curry.R’

RoxygenNote 7.1.2

Config/testthat/edition 2
NeedsCompilation no

Author Eugene Ha [aut, cre]

Maintainer Eugene Ha <eha@posteo.de>
Repository CRAN

Date/Publication 2022-02-03 13:30:02 UTC

R topics documented:

https://github.com/egnha/nofrills
https://github.com/egnha/nofrills/issues

2 as_fn

Index 9

as_fn Abbreviated functional arguments

Description

as_fn() is for functions that take functional arguments. Use as_fn() inside a function to enable
it to comprehend a minimal anonymous-function notation for arguments that are functions. This
notation is that of fn(), but with ‘fn’ replaced by ‘.’ (dot).

Usage
as_fn(.f)
Arguments
f A function or an abbreviated anonymous-function expression of the form . (. . .),
where ... is a function declaration (i.e., . (dot) in this context is an alias of
fn()). Quasiquotation is supported.
Details

as_fn() cannot follow promise expressions across function calls. It is only intended to work in the
immediate context in which a function declaration is to be interpreted (see Examples).

Value

If . f is a function, it is simply returned, otherwise the function determined by the function declara-
tion is returned.

See Also

fn(), make_fn_aware()

Examples

call_fn <- function(.f, x) {
f <- as_fn(.f)
f(x)
3
call_fn(log, 1)
call_fn(.(. ~ sin(.) * 2), 1)
simplified function expressions support quasiquotation
f <- sin
call_fn(. . ~ (1!I)YC)Y »2), 1D

wrap Map() to accept abbreviated anonymous function expressions
Map_ <- function (f, ...) {
f <- as_fn(f)

curry 3

mapply(FUN = f, ..., SIMPLIFY = FALSE)
3
you can call Map_() just like Map()
Map_(function(x, y, z) paste(x, y, paste("and"”, z), sep =", "), 1:3, 4:6, 7:9)
or use a simplified function expression
Map_(.(x, y, z ~ paste(x, y, paste("and", z), sep =", ")), 1:3, 4:6, 7:9)

abbreviated anonymous functions are interpreted in the calling environment
so this works, as expected

foo <- function(a) as_fn(a)

foo(.(x ~ x + 1))

but as_fn() can't interpret abbreviated anonymous functions across calls
foo <- function(a) bar(a)

bar <- function(b) as_fn(b)

Not run:

foo(.(x ~ x + 1))

End(Not run)

curry Curry a function

Description

curry() curries functions—it reconstitutes a function as a succession of single-argument functions.
For example, curry () produces the the function

function(x) {
function(y) {
function(z) {
X %y %z

}

from the function function(x, y, z) x *y * z.

curry_fn() produces a curried function from an fn()-style function declaration, which supports
quasiquotation of a function’s body and (default) argument values.

Usage

curry(f, env = environment(f))

curry_fn(..., ..env = parent.frame())

https://en.wikipedia.org/wiki/Currying

4 fn
Arguments
f Function.
env Environment of the curried function or NULL. If NULL, the environment of the
curried function is the calling environment.
Function declaration, which supports quasiquotation.
.env Environment in which to create the function (i.e., the function’s enclosing envi-
ronment).
Details
Dots (. ..) are treated as a unit when currying. For example, curry() transforms function(x,
...) list(x, ...) to function(x) { function(...) list(x, ...) }.
Value
A function of nested single-argument functions.
See Also
fnQ)
Examples
curry(function(x, y, z = 0) x +y + z)
double <- curry(***)(2)
double(3) # 6
curry_fn(x, y, z=0 ~x +y + z)
curry_fn(target, . ~ identical(target, ...))
Delay unquoting to embed argument values into the innermost function
compare_to <- curry_fn(target, x ~ identical(x, QUQ(target)))
is_this <- compare_to("this")
is_this("that”) # FALSE
is_this("this"”) # TRUE
classify_as <- curry_fn(class, x ~ ‘class<-‘(x, QUQ(class)))
as_this <- classify_as("this")
as_this("Some object”) # String of class "this”
fn Low-cost anonymous functions

fn 5

Description

fn() enables you to create (anonymous) functions, of arbitrary call signature. Use it in place of the
usual function() invocation whenever you want to:

* type less:

fn(x, y =1~x+y)
function(x, y = 1) x +y

are equivalent

 guard against changes in lexical scope: by enabling tidyverse quasiquotation, fn() allows you
to “burn in” values at the point of function creation (see Pure functions via quasiquotation)

Usage
fn(..., ..env = parent.frame())
Arguments
Function declaration, which supports quasiquotation.
.env Environment in which to create the function (i.e., the function’s enclosing envi-
ronment).
Value

A function whose enclosing environment is . . env.

Function declarations

A function declaration is an expression that specifies a function’s arguments and body, as a comma-
separated expression of the form

argl, arg2, ..., argN ~ body
or
argl, arg2, ..., argN, ~ body

(Note in the second form that the body is a one-sided formula. This distinction is relevant for
argument splicing, see below.)

* To the left of ~, you write a conventional function-argument declaration, just as in function(<arguments>):
each of argl, arg2, ..., argN is either a bare argument (e.g., x or .. .) or an argument with
default value (e.g., x = 1).

* To the right of ~, you write the function body, i.e., an expression of the arguments.

Quasiquotation: All parts of a function declaration support tidyverse quasiquotation:

* To unquote values (of arguments or parts of the body), use ! !:

z<-0
fn(x, y = !lz ~x +y)
fn(x ~x > !12)

 To unquote argument names (with default value), use : = (definition operator):
arg <- "y"
fn(x, !larg := @ ~ x + !las.name(arg))

* To splice in a (formal) list of arguments, use !!!:
fn(!!lalist(x, y =0), ~ x +y)

(Note that the body, in this case, must be given as a one-sided formula.)
 To write literal unquoting operators, use QUQ(), QUQS():

library(dplyr)

my_summarise <- fn(df, ... ~ {
group_by <- quos(...)
df %>%

group_by(QUQS(group_by)) %>%
summarise(a = mean(a))

1

(Source: Programming with dplyr)

Pure functions via quasiquotation

Functions in R are generally impure, i.e., the return value of a function will not in general be
determined by the value of its inputs alone. This is because a function may depend on mutable
objects in its lexical scope. Normally this isn’t an issue. But if you are working interactively and
sourcing files into the global environment, say, or using a notebook interface (like Jupyter or R
Notebook), it can be tricky to ensure that you haven’t unwittingly mutated an object that an earlier
function depends upon.

Example — Consider the following function:

a<-1
foo <- function(x) x + a

What is the value of foo(1)? It is not necessarily 2, because the value of a may have changed
between the creation of foo() and the calling of foo(1):

foo(1) #> [1] 2
a<-20
foo(1) #> [11 1

In other words, foo() is impure because the value of foo(x) depends not only on the value of x but
also on the externally mutable value of a.

fn() enables you to write pure functions by using quasiquotation to eliminate such indeterminacy.
Example — With fn(), you can unquote a to “burn in” its value at the point of creation:

a <-1
foo <= fn(x ~ x + !!a)

https://dplyr.tidyverse.org/articles/programming.html
https://en.wikipedia.org/wiki/Pure_function
https://adv-r.hadley.nz/functions.html#lexical-scoping

fn
Now foo() is a pure function, unaffected by changes in its lexical scope:

foo(1) #> [1]1 2
a<-20
foo(1) #> [1] 2

See Also

as_fn(), make_fn_aware(), curry_fn()

Examples

fn(x ~x + 1)
fn(x, y ~ x +y)
fn(x, y =2~ x+y)

fn(x, y =1, ... ~log(x +vy, ...))
to specify '...' in the middle, write '... ="'
fn(x, ... =,y ~log(x +vy, ...))

use one-sided formula for constant functions or commands
fn(~ NA)
fn(~ message("!"))

unquoting is supported (using ‘!!‘ from rlang)
zero <- @
fn(x = !lzero ~ x > !lzero)

formals and function bodies can also be spliced in

f <- function(x, y) x +y

g <- function(y, x, ...) x -y

frankenstein <- fn(!!!formals(f), ~ !!body(g))
stopifnot(identical(frankenstein, function(x, y) x - y))

mixing unquoting and literal unquoting is possible
if (suppressWarnings(require(dplyr))) {
summariser <- quote(mean)

my_summarise <- fn(df, ... ~ {
group_by <- quos(...)
df %>%

group_by (QUQS(group_by)) %>%
summarise(a = “!!*(summariser)(a))

D

my_summarise

}

8 make_fn_aware

make_fn_aware Make a function aware of abbreviated functional arguments

Description

make_fn_aware() is a functional operator that enhances a function by enabling it to interpret ab-
breviated functional arguments.

Usage
make_fn_aware(f, ...)
Arguments
f Function, or symbol or name of a function.
Name(s) of functional argument(s) of f (strings) or NULL. Unsplicing of lists of
strings is supported via ! !!.
Value

A function with the same call signature as f, but whose function arguments, as designated by . . .,
may be specified using an abbreviated function expression of the form . (...), cf. as_fn(). If ...
is empty or NULL, then f is simply returned.

See Also

as_fn()

Examples

reduce <- make_fn_aware(Reduce, "f")

reduce() behaves just like Reduce()
Reduce(function(u, v) u+1 /v, c(3, 7, 15, 1, 292), right = TRUE)
reduce(function(u, v) u+ 1 / v, c(3, 7, 15, 1, 292), right = TRUE)

reduce() can also interpret abbreviated function expressions
reduce(.(u, v ~u+ 1/ v), c(3, 7, 15, 1, 292), right = TRUE)

Index

as_fn, 2
as_fn(),7, 8

curry, 3
curry_fn (curry), 3
curry_fn(), 7

enclosing environment, 4, 5
fn, 4
fn(), 24

function declaration, 2

make_fn_aware, 8
make_fn_aware(), 2,7

Quasiquotation, 2
quasiquotation, 3-5

splicing, 5

	as_fn
	curry
	fn
	make_fn_aware
	Index

