
Package ‘moreparty’
November 22, 2023

Type Package

Title A Toolbox for Conditional Inference Trees and Random Forests

Version 0.4

Depends R (>= 3.5.0), party

Imports partykit, varImp, plyr, foreach, measures, methods, MASS, iml,
pdp, vip (>= 0.4.1), ggplot2, rlang, shiny, shinyWidgets,
rclipboard, DT, datamods, phosphoricons

Suggests doParallel, knitr, rmarkdown, rmdformats, descriptio,
RColorBrewer, caret, pROC, dplyr, e1071

VignetteBuilder knitr

Author Nicolas Robette

Maintainer Nicolas Robette <nicolas.robette@uvsq.fr>

Description Additions to 'party' and 'partykit' packages : tools for the interpretation of forests (surro-
gate trees, prototypes, etc.), feature selection (see Gre-
gorutti et al (2017) <arXiv:1310.5726>, Hapfelmeier and Ulm (2013) <doi:10.1016/j.csda.2012.09.020>, Alt-
mann et al (2010) <doi:10.1093/bioinformatics/btq134>) and parallelized versions of condi-
tional forest and variable importance functions. Also modules and a shiny app for conditional in-
ference trees.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2023-11-22 14:30:02 UTC

R topics documented:
BivariateAssoc . 2
ctree-module . 4

1

https://arxiv.org/abs/1310.5726
https://doi.org/10.1016/j.csda.2012.09.020
https://doi.org/10.1093/bioinformatics/btq134

2 BivariateAssoc

EasyTreeVarImp . 5
fastcforest . 6
fastvarImp . 8
fastvarImpAUC . 9
FeatureSelection . 11
GetAleData . 13
GetCtree . 14
GetInteractionStrength . 15
GetPartialData . 16
GetSplitStats . 18
ggForestEffects . 19
ggVarImp . 20
ictree . 21
NiceTreePlot . 22
NodesInfo . 23
NodeTreePlot . 24
Outliers . 25
PerfsBinClassif . 26
PerfsRegression . 26
Prototypes . 27
SurrogateTree . 28
titanic . 29
TreeStab . 30

Index 32

BivariateAssoc Bivariate association measures for supervised learning tasks.

Description

Computes bivariate association measures between a response and predictor variables (and, option-
naly, between every pairs of predictor variables.)

Usage

BivariateAssoc(Y, X, xx = TRUE)

Arguments

Y the response variable

X the predictor variables

xx whether the association measures should be computed for couples of predictor
variables (default) or not. With a lot of predictors, consider setting xx to FALSE
(for reasons of computation time).

BivariateAssoc 3

Details

For each pair of variable, a permutation test is computed, following the framework used in condi-
tional inference trees to choose a splitting variable. This test produces a p-value, transformed as
-log(1-p) for reasons of comparison stability. The function also computes a "standard" association
measure : kenddal’s tau correlation for pairs of numeric variables, Cramer’s V for pairs of factors
and eta-squared for pairs numeric-factor.

Value

A list of the following items :

YX : a table with the association measures between the response and predictor vari-
ables

XX : a table with the association measures between every couples of predictor vari-
ables

In each table :

measure : name of the "standard" association measure

assoc : value of the "standard" association measure

p.value : p-value from the permutation test

criterion : p-value from the permutation test transformed as -log(1-p), which serves to
sort rows

Note

see also https://stats.stackexchange.com/questions/171301/interpreting-ctree-partykit-output-in-r

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
BivariateAssoc(iris2$Species,iris2[,1:4])

4 ctree-module

ctree-module Shiny module to build and analyse conditional inference trees

Description

The module builds a conditional inference trees according to several parameter inputs. Then it plots
the tree and computes performance measures, variable importance, checks the stability and return
the code to reproduce the analyses.

Usage

ctreeUI(id)

ctreeServer(id, data, name)

Arguments

id Module id. See shiny::callModule().

data shiny::reactive() function returning a data.frame to use for the analyses.

name shiny::reactive() function returning a character string representing data
name.

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

See Also

ictree

Examples

library(shiny)
library(moreparty)

data(titanic)

ui <- fluidPage(
titlePanel("Conditional inference trees"),
ctreeUI(id = "ctree_app")

EasyTreeVarImp 5

)

server <- function(input, output, session) {
rv <- reactiveValues(
data = titanic,
name = deparse(substitute(titanic))

)
ctreeServer(id = "ctree_app", reactive(rv$data), reactive(rv$name))

}

if (interactive())
shinyApp(ui, server)

EasyTreeVarImp Variable importance for conditional inference trees.

Description

Variable importance for partykit conditional inference trees, using various performance measures.

Usage

EasyTreeVarImp(ct, nsim = 1)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).

nsim Integer specifying the number of Monte Carlo replications to perform. Default
is 1. If nsim > 1, the results from each replication are simply averaged together.

Details

If the response variable is a factor, AUC (if response is binary), accuracy, balanced accuracy and
true predictions by class are used. If the response is numeric, r-squared and Kendall’s tau are used.

Value

A data frame of variable importances, with variables as rows and performance measures as columns.

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

6 fastcforest

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
EasyTreeVarImp(iris.ct, nsim = 1)

fastcforest Parallelized conditional inference random forest

Description

Parallelized version of cforest function from party package, which is an implementation of the
random forest and bagging ensemble algorithms utilizing conditional inference trees as base learn-
ers.

Usage

fastcforest(formula, data = list(), subset = NULL, weights = NULL,
controls = party::cforest_unbiased(),
xtrafo = ptrafo, ytrafo = ptrafo, scores = NULL,
parallel = TRUE)

Arguments

formula a symbolic description of the model to be fit. Note that symbols like : and - will
not work and the tree will make use of all variables listed on the rhs of formula

data a data frame containing the variables in the model

subset an optional vector specifying a subset of observations to be used in the fitting
process

weights an optional vector of weights to be used in the fitting process. Non-negative
integer valued weights are allowed as well as non-negative real weights. Ob-
servations are sampled (with or without replacement) according to probabilities
weights / sum(weights). The fraction of observations to be sampled (without
replacement) is computed based on the sum of the weights if all weights are
integer-valued and based on the number of weights greater zero else. Alterna-
tively, weights can be a double matrix defining case weights for all ncol(weights)
trees in the forest directly. This requires more storage but gives the user more
control.

controls an object of class ForestControl-class, which can be obtained using cforest_control
(and its convenience interfaces cforest_unbiased and cforest_classical).

fastcforest 7

xtrafo a function to be applied to all input variables. By default, the ptrafo function
is applied.

ytrafo a function to be applied to all response variables. By default, the ptrafo func-
tion is applied.

scores an optional named list of scores to be attached to ordered factors

parallel Logical indicating whether or not to run fastcforest in parallel using a back-
end provided by the foreach package. Default is TRUE.

Details

See cforest documentation for details. The code for parallelization is inspired by https://
stackoverflow.com/questions/36272816/train-a-cforest-in-parallel

Value

An object of class RandomForest-class.

Author(s)

Nicolas Robette

References

Leo Breiman (2001). Random Forests. Machine Learning, 45(1), 5–32.

Torsten Hothorn, Berthold Lausen, Axel Benner and Martin Radespiel-Troeger (2004). Bagging
Survival Trees. Statistics in Medicine, 23(1), 77–91.

Torsten Hothorn, Peter Buhlmann, Sandrine Dudoit, Annette Molinaro and Mark J. van der Laan
(2006a). Survival Ensembles. Biostatistics, 7(3), 355–373.

Torsten Hothorn, Kurt Hornik and Achim Zeileis (2006b). Unbiased Recursive Partitioning: A Con-
ditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.
Preprint available from https://www.zeileis.org/papers/Hothorn+Hornik+Zeileis-2006.
pdf

Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis and Torsten Hothorn (2007). Bias in Random
Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinformatics,
8, 25. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-25

Carolin Strobl, James Malley and Gerhard Tutz (2009). An Introduction to Recursive Partitioning:
Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and
Random forests. Psychological Methods, 14(4), 323–348.

See Also

cforest, fastvarImp

https://stackoverflow.com/questions/36272816/train-a-cforest-in-parallel
https://stackoverflow.com/questions/36272816/train-a-cforest-in-parallel
https://www.zeileis.org/papers/Hothorn+Hornik+Zeileis-2006.pdf
https://www.zeileis.org/papers/Hothorn+Hornik+Zeileis-2006.pdf
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-25

8 fastvarImp

Examples

classification
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species=="versicolor")
iris.cf = fastcforest(Species~., data=iris2, parallel=FALSE)

fastvarImp Variable importance for conditional inference random forests

Description

Parallelized version of varImp function from varImp package, which computes the variable impor-
tance for arbitrary measures from the measures package.

Usage

fastvarImp(object, mincriterion = 0, conditional = FALSE,
threshold = 0.2, nperm = 1, OOB = TRUE,
pre1.0_0 = conditional, measure = "multiclass.Brier",
parallel = TRUE, ...)

Arguments

object An object as returned by cforest (or fastcforest).

mincriterion The value of the test statistic or 1 - p-value that must be exceeded in order to
include a split in the computation of the importance. The default mincriterion =
0 guarantees that all splits are included.

conditional a logical determining whether unconditional or conditional computation of the
importance is performed.

threshold The threshold value for (1 - p-value) of the association between the variable
of interest and a covariate, which must be exceeded inorder to include the co-
variate in the conditioning scheme for the variable of interest (only relevant if
conditional = TRUE). A threshold value of zero includes all covariates.

nperm The number of permutations performed.

OOB A logical determining whether the importance is computed from the out-of-bag
sample or the learning sample (not suggested).

pre1.0_0 Prior to party version 1.0-0, the actual data values were permuted according to
the original permutation importance suggested by Breiman (2001). Now the
assignments to child nodes of splits in the variable of interest are permuted as
described by Hapfelmeier et al. (2012), which allows for missing values in the
explanatory variables and is more efficient wrt memory consumption and com-
puting time. This method does not apply to conditional variable importances.

measure The name of the measure of the measures package that should be used for the
variable importance calculation.

fastvarImpAUC 9

parallel Logical indicating whether or not to run fastvarImp in parallel using a backend
provided by the foreach package. Default is FALSE.

... Further arguments (like positive or negative class) that are needed by the mea-
sure.

Details

The code is adapted from varImp function in varImp package.

Value

Vector with computed permutation importance for each variable.

Author(s)

Nicolas Robette

See Also

varImp, fastvarImpAUC, cforest, fastcforest

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
fastvarImp(object = iris.cf, measure='ACC', parallel=FALSE)

fastvarImpAUC Variable importance (with AUC performance measure) for conditional
inference random forests

Description

Computes the variable importance regarding the AUC. Bindings are not taken into account in the
AUC definition as they did not provide as good results as the version without bindings in the paper
of Janitza et al. (2013).

Usage

fastvarImpAUC(object, mincriterion = 0, conditional = FALSE,
threshold = 0.2, nperm = 1, OOB = TRUE,
pre1.0_0 = conditional,
parallel = TRUE)

10 fastvarImpAUC

Arguments

object An object as returned by cforest (or fastcforest).

mincriterion The value of the test statistic or 1 - p-value that must be exceeded in order to
include a split in the computation of the importance. The default mincriterion =
0 guarantees that all splits are included.

conditional The value of the test statistic or 1 - p-value that must be exceeded in order to
include a split in the computation of the importance. The default mincriterion =
0 guarantees that all splits are included.

threshold The threshold value for (1 - p-value) of the association between the variable
of interest and a covariate, which must be exceeded inorder to include the co-
variate in the conditioning scheme for the variable of interest (only relevant if
conditional = TRUE). A threshold value of zero includes all covariates.

nperm The number of permutations performed.

OOB A logical determining whether the importance is computed from the out-of-bag
sample or the learning sample (not suggested).

pre1.0_0 Prior to party version 1.0-0, the actual data values were permuted according to
the original permutation importance suggested by Breiman (2001). Now the
assignments to child nodes of splits in the variable of interest are permuted as
described by Hapfelmeier et al. (2012), which allows for missing values in the
explanatory variables and is more efficient wrt memory consumption and com-
puting time. This method does not apply to conditional variable importances.

parallel Logical indicating whether or not to run fastvarImpAUC in parallel using a
backend provided by the foreach package. Default is FALSE.

Details

For using the original AUC definition and multiclass AUC you can use the fastvarImp function and
specify the particular measure. The code is adapted from varImpAUC function in varImp package.

Value

Vector with computed permutation importance for each variable.

Author(s)

Nicolas Robette

References

Janitza, S., Strobl, C. & Boulesteix, A.-L. An AUC-based permutation variable importance measure
for random forests. BMC Bioinform. 14, 119 (2013).

See Also

varImpAUC, fastvarImp, cforest, fastcforest

FeatureSelection 11

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
fastvarImpAUC(object = iris.cf, parallel = FALSE)

FeatureSelection Feature selection for conditional random forests.

Description

Performs feature selection for a conditional random forest model. Four approaches are available
: non-recursive feature elimination (NRFE), recursive feature elimination (RFE), permutation test
approach with permuted response (Altmann et al, 2010), permutation test approach with permuted
predictors (Hapfelmeier et Ulm, 2013).

Usage

FeatureSelection(Y, X, method = 'NRFE', ntree = 1000, measure = NULL,
nperm = 30, alpha = 0.05, distrib = 'approx',
parallel = FALSE, ...)

Arguments

Y response vector. Must be of class factor or numeric

X matrix or data frame containing the predictors

method method for feature selection. Should be ’NRFE’ (non-recursive feature elimi-
nation, default), ’RFE’ (recursive feature elimination), ’ALT’ (permutation of
response) or ’HAPF’ (permutation of predictors)

ntree number of trees contained in a forest

measure the name of the measure of the measures package that should be used for error
and variable importance calculations.

nperm number of permutations. Only for ’ALT’ and ’HAPF’ methods.

alpha alpha level for permutation tests. Only for ’ALT’ and ’HAPF’ methods.

distrib the null distribution of the variable importance can be approximated by its asymp-
totic distribution ("asympt") or via Monte Carlo resampling ("approx", de-
fault). Only for ’ALT’ and ’HAPF’ methods.

parallel Logical indicating whether or not to run fastvarImp in parallel using a backend
provided by the foreach package. Default is FALSE.

... Further arguments (like positive or negative class) that are needed by the mea-
sure.

12 FeatureSelection

Details

To be developed soon !

Value

A list with the following elements :

selection.0se selected variables with the 0 standard error rule

forest.0se forest corresponding the variables selected with the 0 standard error rule

oob.error.0se OOB error of the forest with 0 standard error rule

selection.1se selected variables with the 1 standard error rule

forest.1se forest corresponding the variables selected with the 1 standard error rule

oob.error.1se OOB error of the forest with 1 standard error rule

Note

The code is adapted from Hapfelmeier & Ulm (2013).

Only works for regression and binary classification.

Author(s)

Nicolas Robette

References

B. Gregorutti, B. Michel, and P. Saint Pierre. "Correlation and variable importance in random
forests". arXiv:1310.5726, 2017.

A. Hapfelmeier and K. Ulm. "A new variable selection approach using random forests". Computa-
tional Statistics and Data Analysis, 60:50–69, 2013.

A. Altmann, L. Toloşi, O. Sander et T. Lengauer. "Permutation importance: a corrected feature
importance measure". Bioinformatics, 26(10):1340-1347, 2010.

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
featsel <- FeatureSelection(iris2$Species, iris2[,1:4], measure='ACC', ntree=200)
featsel$selection.0se
featsel$selection.1se

GetAleData 13

GetAleData Accumulated Local Effects for a conditional random forest.

Description

Computes the Accumulated Local Effects for several covariates in a conditional random forest and
gathers them into a single data frame.

Usage

GetAleData(object, xnames=NULL, order=1, grid.size=20, parallel=FALSE)

Arguments

object An object as returned by cforest (or fastcforest).

xnames A character vector of the covariates for which to compute the Accumulated Lo-
cal Effects. If NULL (default), ALE are computed for all the covariates in the
model. Should be of length 2 for 2nd order ALE.

order An integer indicating whether to compute 1st order ALE (1, default) or 2nd
order ALE (2).

grid.size The size of the grid for evaluating the predictions. Default is 20.

parallel Logical indicating whether or not to run the function in parallel using a backend
provided by the foreach package. Default is FALSE.

Details

The computation of Accumulated Local Effects uses FeatureEffect function from iml package
for each covariate. The results are then gathered and reshaped into a friendly data frame format.

Value

A data frame with covariates, their categories and their accumulated local effects.

Author(s)

Nicolas Robette

References

Apley, D. W., Zhu J. "Visualizing the Effects of Predictor Variables in Black Box Supervised Learn-
ing Models". arXiv:1612.08468v2, 2019.

Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Ex-
plainable", 2019. https://christophm.github.io/interpretable-ml-book/.

See Also

FeatureEffect,GetPartialData,GetInteractionStrength

14 GetCtree

Examples

Not run:
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

controls = party::cforest_unbiased(mtry=2, ntree=50))
GetAleData(iris.cf)

End(Not run)

GetCtree Gets a tree from a conditional random forest

Description

This function gets the ith tree from a conditional random forest as produced by cforest.

Usage

GetCtree(object, k = 1)

Arguments

object An object as returned by cforest (or fastcforest).

k The index of the tree to get from the forest. Default is 1.

Value

A tree of class BinaryTree, as returned by ctree from party package.

Note

Code taken from https://stackoverflow.com/questions/19924402/cforest-prints-empty-tree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
plot(GetCtree(iris.cf))

GetInteractionStrength 15

GetInteractionStrength

Strength of interactions

Description

Computes the strength of second order interactions for covariates in a conditional random forest.

Usage

GetInteractionStrength(object, xnames=NULL)

Arguments

object An object as returned by cforest (or fastcforest).

xnames character vector. The names of the variables for which to measure the strength
of second order interactions. If NULL (default), all covariates are included.

Value

A data frame with pairs of variable names and the strength of the interaction between them.

Note

This function calls vint function from an old version of vip package for each interaction. The
results are then gathered and reshaped into a friendly data frame format.

Author(s)

Nicolas Robette

References

Greenwell, B. M., Boehmke, B. C., and McCarthy, A. J.: A Simple and Effective Model-Based
Variable Importance Measure. arXiv preprint arXiv:1805.04755 (2018).

See Also

GetPartialData,GetAleData

Examples

Not run:
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

controls = party::cforest_unbiased(mtry=2, ntree=50))

16 GetPartialData

GetInteractionStrength(iris.cf)

End(Not run)

GetPartialData Partial dependence for a conditional random forest.

Description

Computes the partial dependence for several covariates in a conditional random forest and gathers
them into a single data frame.

Usage

GetPartialData(object, xnames=NULL, ice = FALSE, center = FALSE,
grid.resolution = NULL, quantiles = TRUE, probs = 1:9/10,
trim.outliers = FALSE, which.class = 1L, prob = TRUE,
pred.fun = NULL, parallel = FALSE, paropts = NULL)

Arguments

object An object as returned by cforest (or fastcforest).

xnames A character vector of the covariates for which to compute the partial depen-
dence. If NULL (default), partial dependence is computed for all the covariates
in the model.

ice Logical indicating whether or not to compute individual conditional expectation
(ICE) curves. Default is FALSE. See Goldstein et al. (2014) for details.

center Logical indicating whether or not to produce centered ICE curves (c-ICE curves).
Only used when ice = TRUE. Default is FALSE. See Goldstein et al. (2014) for
details.

grid.resolution

Integer giving the number of equally spaced points to use for the continuous
variables listed in xnames. If left NULL, it will default to the minimum between
51 and the number of unique data points for each of the continuous independent
variables listed in xnames.

quantiles Logical indicating whether or not to use the sample quantiles of the continuous
predictors listed in xnames. If quantiles = TRUE and grid.resolution = NULL
(default), the sample quantiles will be used to generate the grid of joint values
for which the partial dependence is computed.

probs Numeric vector of probabilities with values in [0,1]. (Values up to 2e-14 outside
that range are accepted and moved to the nearby endpoint.) Default is 1:9/10
which corresponds to the deciles of the predictor variables. These specify which
quantiles to use for the continuous predictors listed in xnames when quantiles
= TRUE.

GetPartialData 17

trim.outliers Logical indicating whether or not to trim off outliers from the continuous pre-
dictors listed in xnames (using the simple boxplot method) before generating
the grid of joint values for which the partial dependence is computed. Default is
FALSE.

which.class Integer specifying which column of the matrix of predicted probabilities to use
as the "focus" class. Default is to use the first class. Only used for classification
problems.

prob Logical indicating whether or not partial dependence for classification problems
should be returned on the probability scale, rather than the centered logit. If
FALSE, the partial dependence function is on a scale similar to the logit. Default
is TRUE.

pred.fun Optional prediction function that requires two arguments: object and newdata.
If specified, then the function must return a single prediction or a vector of
predictions (i.e., not a matrix or data frame). Default is NULL.

parallel Logical indicating whether or not to run partial in parallel using a backend
provided by the foreach package. Default is FALSE.

paropts List containing additional options to be passed onto foreach when parallel =
TRUE.

Details

The computation of partial dependence uses partial function from pdp package for each covariate.
The results are then gathered and reshaped into a friendly data frame format.

Value

A data frame with covariates, their categories and their partial dependence effects.

Author(s)

Nicolas Robette

References

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29: 1189-1232, 2001.

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E., Peeking Inside the Black Box: Visualizing
Statistical Learning With Plots of Individual Conditional Expectation. (2014) Journal of Computa-
tional and Graphical Statistics, 24(1): 44-65, 2015.

See Also

partial,GetAleData,GetInteractionStrength

18 GetSplitStats

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

controls = party::cforest_unbiased(mtry=2, ntree=50))
GetPartialData(iris.cf)

GetSplitStats Permutation tests results for each split in a conditional tree.

Description

This function displays the results of the variable selection process for each split of a conditional tree,
i.e. the p-values from permutation tests of independence between every predictor and the dependent
variable. This may help to assess the stability of the tree.

Usage

GetSplitStats(ct)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).

Details

The ratio index represents the ratio between the association test result for the splitting variable and
the association test result for another candidate variable for splitting. It is always greater than 1.
The closer it is to 1, the tighter the competition for the splitting variable, and therefore the more
potentially unstable the node concerned. Conversely, the higher the ratio, the more the splitting
variable has dominated the competition, and the more stable the node is likely to be.

Value

A list of two elements :

details a list of data frames (one for each inner node), with one row per candidate vari-
able, and test statistic and p-value of the permutation test of independence, crite-
rion (equal to log(1-p)) and ratio (criterion/max(criterion) as columns. Variables
are sorted by decreasing degree of association with the dependent variable.

summary a data frame with one row per inner node and 5 variables : the mode id, the split-
ting variable, the best candidate to split among the other variables, the ratio of
the criterion of the splitting variable divided by the criterion of the best variable
among the others.

Note

see also https://stats.stackexchange.com/questions/171301/interpreting-ctree-partykit-output-in-r

ggForestEffects 19

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
GetSplitStats(iris.ct)

ggForestEffects Dot plot of covariates effects

Description

Plots the effects (partial dependence or accumulated local effects) of the covariates of a supervised
learning model in a single a dot plot.

Usage

ggForestEffects(dt, vline=0, xlabel="", ylabel="", main="")

Arguments

dt data frame. Must have three columns : one with the names of the covariates
(named "var"), one with the names of the categories of the covariates (named
"cat"), one with the values of the effects (named "value"). Typically the result
of GetAleData or GetPartialData functions.

vline numeric. Coordinate on the x axis where a vertical line is added.

xlabel character. Title of the x axis.

ylabel character. Title of the y axis.

main character. Title of the plot.

20 ggVarImp

Note

There should be no duplicated categories. If it is the case, duplicated categories have to be renamed
in dt prior to running ggForestEffects.

Author(s)

Nicolas Robette

References

Apley, D. W., Zhu J. "Visualizing the Effects of Predictor Variables in Black Box Supervised Learn-
ing Models". arXiv:1612.08468v2, 2019.

Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Ex-
plainable", 2019. https://christophm.github.io/interpretable-ml-book/.

See Also

GetAleData, GetPartialData

Examples

Not run:
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2, controls = cforest_unbiased(mtry=2))
ale <- GetAleData(iris.cf)
ale$cat <- paste(ale$var,ale$cat,sep='_') # to avoid duplicated categories
ggForestEffects(ale)

End(Not run)

ggVarImp Dot plot of variable importance

Description

Plots the importance of the covariates of a supervised learning model in a dot plot.

Usage

ggVarImp(importance, sort=TRUE, xlabel="Importance", ylabel="Variable", main="")

ictree 21

Arguments

importance numeric vector. The vector of the importances of the covariates. Should be a
named vector.

sort logical. Whether the vector of importances should be sorted or not. Default is
TRUE.

xlabel character. Title of the x axis.

ylabel character. Title of the y axis.

main character. Title of the plot.

Author(s)

Nicolas Robette

See Also

varImp,varImpAUC,fastvarImp,fastvarImpAUC

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
imp <- fastvarImpAUC(object = iris.cf, parallel = FALSE)
ggVarImp(imp)

ictree An interactive app for conditional inference trees

Description

This function launches a shiny app in a web browser in order to build and analyse conditional
inference trees.

Usage

ictree(treedata = NULL)

Arguments

treedata The data frame to be used in the app. If NULL (default), a module is launched
to import data from a file or from the global environment.

Author(s)

Nicolas Robette

22 NiceTreePlot

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

See Also

ctree-module

Examples

if (interactive()) {
ictree(iris)
}

NiceTreePlot Plots conditional inference trees.

Description

Plots a partykit conditional inference tree in a pretty and simple way.

Usage

NiceTreePlot(ct, inner_plots = FALSE, cex = 0.8, justmin = 15)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).

inner_plots Logical. If TRUE, plots are displayed at each inner node. Default is FALSE.

cex Numerical value. Multiplier applied to fontsize. Default is 0.8.

justmin Numerical value. Minimum average edge label length to employ justification
(see panelfunctions documentation from partykit package)

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

NodesInfo 23

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
NiceTreePlot(iris.ct, inner_plots = TRUE)

NodesInfo Informations about terminal nodes

Description

Retrieves informations about terminal nodes of a conditional inference tree : node id, rule set,
frequency, prediction or class probabilities.

Usage

NodesInfo(ct)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).

Value

A data frame.

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

See Also

ctree

24 NodeTreePlot

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
NodesInfo(iris.ct)

NodeTreePlot Plots the results of each node of a conditional inference tree

Description

Plots the results of each node of a partykit conditional inference tree with boxplots (regression)
or lollipops (binary classification) .

Usage

NodeTreePlot(ct)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).

Value

A ggplot2 object.

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
NodeTreePlot(iris.ct)

Outliers 25

Outliers Computes outliers

Description

Computes outlierness scores and detects outliers.

Usage

Outliers(prox, cls=NULL, data=NULL, threshold=10)

Arguments

prox a proximity matrix (a square matrix with 1 on the diagonal and values between
0 and 1 in the off-diagonal positions).

cls Factor. The classes the rows in the proximity matrix belong to. If NULL (de-
fault), all data are assumed to come from the same class.

data A data frame of variables to describe the outliers (optional).

threshold Numeric. The value of outlierness above which an observation is considered an
outlier. Default is 10.

Details

The outlierness score of a case is computed as n / sum(squared proximity), normalized by subtract-
ing the median and divided by the MAD, within each class.

Value

A list with the following elements :

scores numeric vector containing the outlierness scores

outliers numeric vector of indexes of the outliers, or a data frame with the outliers and
their characteristics

Note

The code is adapted from outlier function in randomForest package.

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
prox=proximity(iris.cf)
Outliers(prox, iris2$Species, iris2[,1:4])

26 PerfsRegression

PerfsBinClassif Performance measures for binary classification tasks

Description

Computes various performance measures for binary classification tasks : true positive rate, true
negative rate, accuracy, balanced accuracy, area under curve (AUC).

Usage

PerfsBinClassif(pred, actual)

Arguments

pred numerical vector of predicted values

actual numerical vector of actual values

Value

A numeric vector of performance measures.

Examples

data(titanic)
titanic <- titanic[complete.cases(titanic),]
model <- partykit::ctree(Survived ~ Sex + Pclass, data = titanic)
pred <- predict(model, type = "prob")[,"Yes"]
PerfsBinClassif(pred, titanic$Survived)

PerfsRegression Performance measures for regressions

Description

Computes various performance measures for regression tasks : sum of the squared errors (SSE),
mean squared errors (MSE), root mean squared errors (RMSE), coefficient of determination (R2),
Kendall’s rank correlation (tau).

Usage

PerfsRegression(pred, actual)

Arguments

pred numerical vector of predicted values

actual numerical vector of actual values

Prototypes 27

Value

A numeric vector of performance measures.

Examples

data(titanic)
titanic <- titanic[complete.cases(titanic),]
model <- partykit::ctree(Age ~ Sex + Pclass, data = titanic)
pred <- predict(model)
PerfsRegression(pred, titanic$Age)

Prototypes Prototypes of groups

Description

Prototypes are ‘representative’ cases of a group of data points, given the similarity matrix among
the points. They are very similar to medoids.

Usage

Prototypes(label, x, prox, nProto = 5, nNbr = floor((min(table(label)) - 1)/nProto))

Arguments

label the response variable. Should be a factor.

x matrix or data frame of predictor variables.

prox the proximity (or similarity) matrix, assumed to be symmetric with 1 on the
diagonal and in [0, 1] off the diagonal (the order of row/column must match that
of x)

nProto number of prototypes to compute for each value of the response variables.

nNbr number of nearest neighbors used to find the prototypes.

Details

For each case in x, the nNbr nearest neighors are found. Then, for each class, the case that has
most neighbors of that class is identified. The prototype for that class is then the medoid of these
neighbors (coordinate-wise medians for numerical variables and modes for categorical variables).
One then remove the neighbors used and iterate the first steps to find a second prototype, etc.

Value

A list of data frames with prototypes. The number of data frames is equal to the number of classes
of the response variable.

28 SurrogateTree

Note

The code is an extension of classCenter function in randomForest package.

Author(s)

Nicolas Robette

References

Random Forests, by Leo Breiman and Adele Cutler https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#prototype

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
prox=proximity(iris.cf)
Prototypes(iris2$Species,iris2[,1:4],prox)

SurrogateTree Surrogate tree for conditional inference random forests

Description

Builds a surrogate tree to approximate a conditional random forest model.

Usage

SurrogateTree(object, mincriterion = 0.95, maxdepth = 3)

Arguments

object An object as returned by cforest (or fastcforest).

mincriterion the value of the test statistic (for testtype == "Teststatistic"), or 1 - p-value
(for other values of testtype) that must be exceeded in order to implement a
split.

maxdepth maximum depth of the tree. Default is 3.

Details

A global surrogate model is an interpretable model that is trained to approximate the predictions of
a black box model (see Molnar 2019). Here a conditional inference tree is build to approximate the
prediction of a conditional inference random forest. Practically, the surrogate tree takes the forest
predictions as response and the same predictors as the forest.

titanic 29

Value

A list withe following items :

tree The surrogate tree, of class party

r.squared The R squared of a linear regression with random forests prediction as dependent
variable and surrogate tree prediction as predictor

Note

The surrogate tree is built using ctree from partykit package.

Author(s)

Nicolas Robette

References

Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Ex-
plainable", 2019. https://christophm.github.io/interpretable-ml-book/.

See Also

cforest, ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.cf = party::cforest(Species ~ ., data = iris2,

control = party::cforest_unbiased(mtry = 2, ntree = 50))
surro <- SurrogateTree(iris.cf)
surro$r.squared
plot(surro$tree)

titanic Titanic dataset

Description

A dataset describing the passengers of the Titanic and their survival

Usage

data("titanic")

30 TreeStab

Format

A data frame with 1309 observations and the following 5 variables.

Survived Factor. Whether one survived or not

Pclass Factor. Passenger class

Sex Factor. Sex

Age Numeric vector. Age

Embarked Factor. Port of embarkation

Examples

data(titanic)
str(titanic)

TreeStab Stability assessment of conditional inference trees

Description

Assesses the stability of conditional inference trees through the partition of observations in the
terminal nodes and the frequency of the variables used for splits.

Usage

TreeStab(ct, B = 20)

Arguments

ct A tree of class constparty (as returned by ctree from partykit package).

B Numerical value. The number of bootstrap replications. Default is 20.

Details

The study of splitting variables used in the original tree and in bootstrap trees in directly inspired
from the approach implemented in stablelearner package. The other side of this functions also
uses bootstrap trees, this time to compute the Jaccard index of concordance between partitions, to
assess the stability of the partition of observations in the terminal nodes of the tree.

Value

A list of two elements :

partition average Jaccard index of concordance between the partition (terminal nodes) of
ct and the partitions of bootstrap trees

variables a data frame with splitting variables in rows and two statistics in columns : their
frequency of use in the tree vs in the bootstrap trees, and

TreeStab 31

Author(s)

Nicolas Robette

References

Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. "A lego system for conditional inference". The
American Statistician. 60:257–263, 2006.

Hothorn T, Hornik K, Zeileis A. "Unbiased Recursive Partitioning: A Conditional Inference Frame-
work". Journal of Computational and Graphical Statistics, 15(3):651-674, 2006.

Philipp M, Zeileis A, Strobl C (2016). "A Toolkit for Stability Assessment of Tree-Based Learn-
ers". In A. Colubi, A. Blanco, and C. Gatu (Eds.), Proceedings of COMPSTAT 2016 - 22nd Inter-
national Conference on Computational Statistics (pp. 315-325). The International Statistical Insti-
tute/International Association for Statistical Computing. Preprint available at https://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-
11

See Also

ctree

Examples

data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
iris.ct = partykit::ctree(Species ~ ., data = iris2)
TreeStab(iris.ct, B = 10)

Index

∗ aplot
ggForestEffects, 19
ggVarImp, 20

∗ classif
Outliers, 25
Prototypes, 27

∗ datasets
titanic, 29

∗ tree
ctree-module, 4
EasyTreeVarImp, 5
fastcforest, 6
GetAleData, 13
GetCtree, 14
GetInteractionStrength, 15
GetPartialData, 16
GetSplitStats, 18
ggForestEffects, 19
ggVarImp, 20
ictree, 21
NiceTreePlot, 22
NodesInfo, 23
NodeTreePlot, 24
PerfsBinClassif, 26
PerfsRegression, 26
TreeStab, 30

BivariateAssoc, 2

cforest, 7, 9, 13, 15, 16
cforest_control, 6
ctree-module, 4
ctreeServer (ctree-module), 4
ctreeUI (ctree-module), 4

EasyTreeVarImp, 5

fastcforest, 6, 9, 13, 15, 16
fastvarImp, 7, 8, 21
fastvarImpAUC, 9, 9, 21

FeatureEffect, 13
FeatureSelection, 11
foreach, 13, 17

GetAleData, 13, 15, 17, 20
GetCtree, 14
GetInteractionStrength, 13, 15, 17
GetPartialData, 13, 15, 16, 20
GetSplitStats, 18
ggForestEffects, 19
ggVarImp, 20

ictree, 4, 21
iml, 13

NiceTreePlot, 22
NodesInfo, 23
NodeTreePlot, 24

Outliers, 25

partial, 17
pdp, 17
PerfsBinClassif, 26
PerfsRegression, 26
Prototypes, 27
ptrafo, 7

shiny::callModule(), 4
shiny::reactive(), 4
SurrogateTree, 28

titanic, 29
TreeStab, 30

varImp, 9, 21
varImpAUC, 21
vip, 15

32

	BivariateAssoc
	ctree-module
	EasyTreeVarImp
	fastcforest
	fastvarImp
	fastvarImpAUC
	FeatureSelection
	GetAleData
	GetCtree
	GetInteractionStrength
	GetPartialData
	GetSplitStats
	ggForestEffects
	ggVarImp
	ictree
	NiceTreePlot
	NodesInfo
	NodeTreePlot
	Outliers
	PerfsBinClassif
	PerfsRegression
	Prototypes
	SurrogateTree
	titanic
	TreeStab
	Index

