
Package ‘mlr3mbo’
November 15, 2024

Type Package

Title Flexible Bayesian Optimization

Version 0.2.7

Description A modern and flexible approach to Bayesian Optimization / Model
Based Optimization building on the 'bbotk' package. 'mlr3mbo' is a toolbox
providing both ready-to-use optimization algorithms as well as their fundamental
building blocks allowing for straightforward implementation of custom
algorithms. Single- and multi-objective optimization is supported as well as
mixed continuous, categorical and conditional search spaces. Moreover, using
'mlr3mbo' for hyperparameter optimization of machine learning models within the
'mlr3' ecosystem is straightforward via 'mlr3tuning'. Examples of ready-to-use
optimization algorithms include Efficient Global Optimization by Jones et al.
(1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006)
<doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008)
<doi:10.1007/978-3-540-87700-4_78>.

License LGPL-3

URL https://mlr3mbo.mlr-org.com, https://github.com/mlr-org/mlr3mbo

BugReports https://github.com/mlr-org/mlr3mbo/issues

Depends mlr3tuning (>= 1.1.0), R (>= 3.1.0)

Imports bbotk (>= 1.2.0), checkmate (>= 2.0.0), data.table, lgr (>=
0.3.4), mlr3 (>= 0.21.1), mlr3misc (>= 0.11.0), paradox (>=
1.0.1), spacefillr, R6 (>= 2.4.1)

Suggests DiceKriging, emoa, fastGHQuad, lhs, mlr3learners (>= 0.5.4),
mlr3pipelines (>= 0.4.2), nloptr, ranger, rgenoud, rpart,
redux, rush, stringi, testthat (>= 3.0.0)

ByteCompile no

Encoding UTF-8

Config/testthat/edition 3

Config/testthat/parallel false

NeedsCompilation yes

RoxygenNote 7.3.2

1

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1007/978-3-540-87700-4_78
https://mlr3mbo.mlr-org.com
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/issues

2 Contents

Collate 'mlr_acqfunctions.R' 'AcqFunction.R' 'AcqFunctionAEI.R'
'AcqFunctionCB.R' 'AcqFunctionEHVI.R' 'AcqFunctionEHVIGH.R'
'AcqFunctionEI.R' 'AcqFunctionEIPS.R' 'AcqFunctionMean.R'
'AcqFunctionMulti.R' 'AcqFunctionPI.R' 'AcqFunctionSD.R'
'AcqFunctionSmsEgo.R' 'AcqFunctionStochasticCB.R'
'AcqFunctionStochasticEI.R' 'AcqOptimizer.R' 'aaa.R'
'OptimizerADBO.R' 'OptimizerAsyncMbo.R' 'OptimizerMbo.R'
'mlr_result_assigners.R' 'ResultAssigner.R'
'ResultAssignerArchive.R' 'ResultAssignerSurrogate.R'
'Surrogate.R' 'SurrogateLearner.R'
'SurrogateLearnerCollection.R' 'TunerADBO.R' 'TunerAsyncMbo.R'
'TunerMbo.R' 'mlr_loop_functions.R' 'bayesopt_ego.R'
'bayesopt_emo.R' 'bayesopt_mpcl.R' 'bayesopt_parego.R'
'bayesopt_smsego.R' 'bibentries.R' 'helper.R' 'loop_function.R'
'mbo_defaults.R' 'sugar.R' 'zzz.R'

Author Lennart Schneider [cre, aut] (<https://orcid.org/0000-0003-4152-5308>),
Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>),
Marc Becker [aut] (<https://orcid.org/0000-0002-8115-0400>),
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>),
Florian Pfisterer [aut] (<https://orcid.org/0000-0001-8867-762X>),
Martin Binder [aut],
Sebastian Fischer [aut] (<https://orcid.org/0000-0002-9609-3197>),
Michael H. Buselli [cph],
Wessel Dankers [cph],
Carlos Fonseca [cph],
Manuel Lopez-Ibanez [cph],
Luis Paquete [cph]

Maintainer Lennart Schneider <lennart.sch@web.de>

Repository CRAN

Date/Publication 2024-11-15 16:50:02 UTC

Contents
mlr3mbo-package . 4
acqf . 5
acqfs . 5
AcqFunction . 6
acqo . 9
AcqOptimizer . 9
default_acqfunction . 12
default_acqoptimizer . 13
default_gp . 14
default_loop_function . 14
default_result_assigner . 15
default_rf . 16

https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-8867-762X
https://orcid.org/0000-0002-9609-3197

Contents 3

default_surrogate . 16
loop_function . 18
mbo_defaults . 18
mlr_acqfunctions . 19
mlr_acqfunctions_aei . 19
mlr_acqfunctions_cb . 22
mlr_acqfunctions_ehvi . 23
mlr_acqfunctions_ehvigh . 26
mlr_acqfunctions_ei . 28
mlr_acqfunctions_eips . 30
mlr_acqfunctions_mean . 32
mlr_acqfunctions_multi . 34
mlr_acqfunctions_pi . 36
mlr_acqfunctions_sd . 38
mlr_acqfunctions_smsego . 40
mlr_acqfunctions_stochastic_cb . 43
mlr_acqfunctions_stochastic_ei . 46
mlr_loop_functions . 48
mlr_loop_functions_ego . 49
mlr_loop_functions_emo . 52
mlr_loop_functions_mpcl . 54
mlr_loop_functions_parego . 56
mlr_loop_functions_smsego . 59
mlr_optimizers_adbo . 61
mlr_optimizers_async_mbo . 64
mlr_optimizers_mbo . 68
mlr_result_assigners . 72
mlr_result_assigners_archive . 73
mlr_result_assigners_surrogate . 74
mlr_tuners_adbo . 75
mlr_tuners_async_mbo . 78
mlr_tuners_mbo . 80
ras . 83
ResultAssigner . 84
srlrn . 86
Surrogate . 87
SurrogateLearner . 89
SurrogateLearnerCollection . 92

Index 96

4 mlr3mbo-package

mlr3mbo-package mlr3mbo: Flexible Bayesian Optimization

Description

A modern and flexible approach to Bayesian Optimization / Model Based Optimization building
on the ’bbotk’ package. ’mlr3mbo’ is a toolbox providing both ready-to-use optimization algo-
rithms as well as their fundamental building blocks allowing for straightforward implementation
of custom algorithms. Single- and multi-objective optimization is supported as well as mixed
continuous, categorical and conditional search spaces. Moreover, using ’mlr3mbo’ for hyperpa-
rameter optimization of machine learning models within the ’mlr3’ ecosystem is straightforward
via ’mlr3tuning’. Examples of ready-to-use optimization algorithms include Efficient Global Op-
timization by Jones et al. (1998) doi:10.1023/A:1008306431147, ParEGO by Knowles (2006)
doi:10.1109/TEVC.2005.851274 and SMS-EGO by Ponweiser et al. (2008) doi:10.1007/9783540-
877004_78.

Author(s)

Maintainer: Lennart Schneider <lennart.sch@web.de> (ORCID)

Authors:

• Jakob Richter <jakob1richter@gmail.com> (ORCID)

• Marc Becker <marcbecker@posteo.de> (ORCID)

• Michel Lang <michellang@gmail.com> (ORCID)

• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

• Florian Pfisterer <pfistererf@googlemail.com> (ORCID)

• Martin Binder <mlr.developer@mb706.com>

• Sebastian Fischer <sebf.fischer@gmail.com> (ORCID)

Other contributors:

• Michael H. Buselli [copyright holder]

• Wessel Dankers [copyright holder]

• Carlos Fonseca [copyright holder]

• Manuel Lopez-Ibanez [copyright holder]

• Luis Paquete [copyright holder]

See Also

Useful links:

• https://mlr3mbo.mlr-org.com

• https://github.com/mlr-org/mlr3mbo

• Report bugs at https://github.com/mlr-org/mlr3mbo/issues

https://doi.org/10.1023/A%3A1008306431147
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1007/978-3-540-87700-4_78
https://doi.org/10.1007/978-3-540-87700-4_78
https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-8867-762X
https://orcid.org/0000-0002-9609-3197
https://mlr3mbo.mlr-org.com
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/issues

acqf 5

acqf Syntactic Sugar Acquisition Function Construction

Description

This function complements mlr_acqfunctions with functions in the spirit of mlr_sugar from mlr3.

Usage

acqf(.key, ...)

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.

Value

AcqFunction

Examples

acqf("ei")

acqfs Syntactic Sugar Acquisition Functions Construction

Description

This function complements mlr_acqfunctions with functions in the spirit of mlr_sugar from mlr3.

Usage

acqfs(.keys, ...)

Arguments

.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3

6 AcqFunction

Value

List of AcqFunctions

Examples

acqfs(c("ei", "pi", "cb"))

AcqFunction Acquisition Function Base Class

Description

Abstract acquisition function class.

Based on the predictions of a Surrogate, the acquisition function encodes the preference to evaluate
a new point.

Super class

bbotk::Objective -> AcqFunction

Active bindings

direction ("same" | "minimize" | "maximize")
Optimization direction of the acquisition function relative to the direction of the objective
function of the bbotk::OptimInstance. Must be "same", "minimize", or "maximize".

surrogate_max_to_min (-1 | 1)
Multiplicative factor to correct for minimization or maximization of the acquisition function.

label (character(1))
Label for this object.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.

archive (bbotk::Archive)
Points to the bbotk::Archive of the surrogate.

fun (function)
Points to the private acquisition function to be implemented by subclasses.

surrogate (Surrogate)
Surrogate.

requires_predict_type_se (logical(1))
Whether the acquisition function requires the surrogate to have "se" as $predict_type.

packages (character())
Set of required packages.

AcqFunction 7

Methods

Public methods:
• AcqFunction$new()

• AcqFunction$update()

• AcqFunction$reset()

• AcqFunction$eval_many()

• AcqFunction$eval_dt()

• AcqFunction$clone()

Method new(): Creates a new instance of this R6 class.
Note that the surrogate can be initialized lazy and can later be set via the active binding $surrogate.

Usage:
AcqFunction$new(
id,
constants = ParamSet$new(),
surrogate,
requires_predict_type_se,
direction,
packages = NULL,
label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1)).
constants (paradox::ParamSet). Changeable constants or parameters.
surrogate (NULL | Surrogate). Surrogate whose predictions are used in the acquisition func-

tion.
requires_predict_type_se (logical(1))

Whether the acquisition function requires the surrogate to have "se" as $predict_type.
direction ("same" | "minimize" | "maximize"). Optimization direction of the acquisition

function relative to the direction of the objective function of the bbotk::OptimInstance. Must
be "same", "minimize", or "maximize".

packages (character())
Set of required packages. A warning is signaled prior to construction if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().

label (character(1))
Label for this object.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.

Method update(): Update the acquisition function.
Can be implemented by subclasses.

Usage:
AcqFunction$update()

8 AcqFunction

Method reset(): Reset the acquisition function.
Can be implemented by subclasses.

Usage:

AcqFunction$reset()

Method eval_many(): Evaluates multiple input values on the objective function.

Usage:

AcqFunction$eval_many(xss)

Arguments:

xss (list())
A list of lists that contains multiple x values, e.g. list(list(x1 = 1, x2 = 2), list(x1 =
3, x2 = 4)).

Returns: data.table::data.table() that contains one y-column for single-objective functions and
multiple y-columns for multi-objective functions, e.g. data.table(y = 1:2) or data.table(y1
= 1:2, y2 = 3:4).

Method eval_dt(): Evaluates multiple input values on the objective function

Usage:

AcqFunction$eval_dt(xdt)

Arguments:

xdt (data.table::data.table())
One point per row, e.g. data.table(x1 = c(1, 3), x2 = c(2, 4)).

Returns: data.table::data.table() that contains one y-column for single-objective functions and
multiple y-columns for multi-objective functions, e.g. data.table(y = 1:2) or data.table(y1
= 1:2, y2 = 3:4).

Method clone(): The objects of this class are cloneable with this method.

Usage:

AcqFunction$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Acquisition Function: mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd,
mlr_acqfunctions_smsego, mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

acqo 9

acqo Syntactic Sugar Acquisition Function Optimizer Construction

Description

This function allows to construct an AcqOptimizer in the spirit of mlr_sugar from mlr3.

Usage

acqo(optimizer, terminator, acq_function = NULL, callbacks = NULL, ...)

Arguments

optimizer (bbotk::OptimizerBatch)
bbotk::OptimizerBatch that is to be used.

terminator (bbotk::Terminator)
bbotk::Terminator that is to be used.

acq_function (NULL | AcqFunction)
AcqFunction that is to be used. Can also be NULL.

callbacks (NULL | list of mlr3misc::Callback) Callbacks used during acquisition function
optimization.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet.

Value

AcqOptimizer

Examples

library(bbotk)
acqo(opt("random_search"), trm("evals"), catch_errors = FALSE)

AcqOptimizer Acquisition Function Optimizer

Description

Optimizer for AcqFunctions which performs the acquisition function optimization. Wraps an
bbotk::OptimizerBatch and bbotk::Terminator.

https://CRAN.R-project.org/package=mlr3

10 AcqOptimizer

Parameters

n_candidates integer(1)
Number of candidate points to propose. Note that this does not affect how the acquisition
function itself is calculated (e.g., setting n_candidates > 1 will not result in computing the
q- or multi-Expected Improvement) but rather the top n_candidates are selected from the
bbotk::ArchiveBatch of the acquisition function bbotk::OptimInstanceBatch. Note that set-
ting n_candidates > 1 is usually not a sensible idea but it is still supported for experimental
reasons. Note that in the case of the acquisition function bbotk::OptimInstanceBatch being
multi-criteria, due to using an AcqFunctionMulti, selection of the best candidates is performed
via non-dominated-sorting. Default is 1.

logging_level character(1)
Logging level during the acquisition function optimization. Can be "fatal", "error", "warn",
"info", "debug" or "trace". Default is "warn", i.e., only warnings are logged.

warmstart logical(1)
Should the acquisition function optimization be warm-started by evaluating the best point(s)
present in the bbotk::Archive of the actual bbotk::OptimInstance (which is contained in the
archive of the AcqFunction)? This is sensible when using a population based acquisition
function optimizer, e.g., local search or mutation. Default is FALSE. Note that in the case of
the bbotk::OptimInstance being multi-criteria, selection of the best point(s) is performed via
non-dominated-sorting.

warmstart_size integer(1) | "all"
Number of best points selected from the bbotk::Archive of the actual bbotk::OptimInstance
that are to be used for warm starting. Can either be an integer or "all" to use all available
points. Only relevant if warmstart = TRUE. Default is 1.

skip_already_evaluated logical(1)
It can happen that the candidate(s) resulting of the acquisition function optimization were
already evaluated on the actual bbotk::OptimInstance. Should such candidate proposals be
ignored and only candidates that were yet not evaluated be considered? Default is TRUE.

catch_errors logical(1)
Should errors during the acquisition function optimization be caught and propagated to the
loop_function which can then handle the failed acquisition function optimization appropri-
ately by, e.g., proposing a randomly sampled point for evaluation? Setting this to FALSE can
be helpful for debugging. Default is TRUE.

Public fields

optimizer (bbotk::OptimizerBatch).
terminator (bbotk::Terminator).
acq_function (AcqFunction).
callbacks (NULL | list of mlr3misc::Callback).

Active bindings

print_id (character)
Id used when printing.

param_set (paradox::ParamSet)
Set of hyperparameters.

AcqOptimizer 11

Methods

Public methods:
• AcqOptimizer$new()

• AcqOptimizer$format()

• AcqOptimizer$print()

• AcqOptimizer$optimize()

• AcqOptimizer$reset()

• AcqOptimizer$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqOptimizer$new(optimizer, terminator, acq_function = NULL, callbacks = NULL)

Arguments:
optimizer (bbotk::OptimizerBatch).
terminator (bbotk::Terminator).
acq_function (NULL | AcqFunction).
callbacks (NULL | list of mlr3misc::Callback)

Method format(): Helper for print outputs.

Usage:
AcqOptimizer$format()

Returns: (character(1)).

Method print(): Print method.

Usage:
AcqOptimizer$print()

Returns: (character()).

Method optimize(): Optimize the acquisition function.

Usage:
AcqOptimizer$optimize()

Returns: data.table::data.table() with 1 row per candidate.

Method reset(): Reset the acquisition function optimizer.
Currently not used.

Usage:
AcqOptimizer$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqOptimizer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

12 default_acqfunction

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("ei", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 1000),
terminator = trm("evals", n_evals = 1000),
acq_function = acq_function)

acq_optimizer$optimize()
}

default_acqfunction Default Acquisition Function

Description

Chooses a default acquisition function, i.e. the criterion used to propose future points. For syn-
chronous single-objective optimization, defaults to mlr_acqfunctions_ei. For synchronous multi-
objective optimization, defaults to mlr_acqfunctions_smsego. For asynchronous single-objective
optimization, defaults to mlr_acqfunctions_stochastic_cb.

default_acqoptimizer 13

Usage

default_acqfunction(instance)

Arguments

instance (bbotk::OptimInstance). An object that inherits from bbotk::OptimInstance.

Value

AcqFunction

See Also

Other mbo_defaults: default_acqoptimizer(), default_gp(), default_loop_function(), default_result_assigner(),
default_rf(), default_surrogate(), mbo_defaults

default_acqoptimizer Default Acquisition Function Optimizer

Description

Chooses a default acquisition function optimizer. Defaults to wrapping bbotk::OptimizerBatchRandomSearch
allowing 10000 function evaluations (with a batch size of 1000) via a bbotk::TerminatorEvals.

Usage

default_acqoptimizer(acq_function)

Arguments

acq_function (AcqFunction).

Value

AcqOptimizer

See Also

Other mbo_defaults: default_acqfunction(), default_gp(), default_loop_function(), default_result_assigner(),
default_rf(), default_surrogate(), mbo_defaults

14 default_loop_function

default_gp Default Gaussian Process

Description

This is a helper function that constructs a default Gaussian Process mlr3::LearnerRegr which is for
example used in default_surrogate.

Constructs a Kriging learner “"regr.km"” with kernel “"matern5_2"”. If noisy = FALSE (default) a
small nugget effect is added nugget.stability = 10^-8 to increase numerical stability to hope-
fully prevent crashes of DiceKriging. If noisy = TRUE the nugget effect will be estimated with
nugget.estim = TRUE. If noisy = TRUE jitter is set to TRUE to circumvent a problem with DiceK-
riging where already trained input values produce the exact trained output. In general, instead of
the default "BFGS" optimization method we use rgenoud ("gen"), which is a hybrid algorithm, to
combine global search based on genetic algorithms and local search based on gradients. This may
improve the model fit and will less frequently produce a constant model prediction.

Usage

default_gp(noisy = FALSE)

Arguments

noisy (logical(1))
Whether the learner will be used in a noisy objective function scenario. See
above.

Value

mlr3::LearnerRegr

See Also

Other mbo_defaults: default_acqfunction(), default_acqoptimizer(), default_loop_function(),
default_result_assigner(), default_rf(), default_surrogate(), mbo_defaults

default_loop_function Default Loop Function

Description

Chooses a default loop_function, i.e. the Bayesian Optimization flavor to be used for optimiza-
tion. For single-objective optimization, defaults to bayesopt_ego. For multi-objective optimization,
defaults to bayesopt_smsego.

https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=DiceKriging

default_result_assigner 15

Usage

default_loop_function(instance)

Arguments

instance (bbotk::OptimInstance)
An object that inherits from bbotk::OptimInstance.

Value

loop_function

See Also

Other mbo_defaults: default_acqfunction(), default_acqoptimizer(), default_gp(), default_result_assigner(),
default_rf(), default_surrogate(), mbo_defaults

default_result_assigner

Default Result Assigner

Description

Chooses a default result assigner. Defaults to ResultAssignerArchive.

Usage

default_result_assigner(instance)

Arguments

instance (bbotk::OptimInstance)
An object that inherits from bbotk::OptimInstance.

Value

ResultAssigner

See Also

Other mbo_defaults: default_acqfunction(), default_acqoptimizer(), default_gp(), default_loop_function(),
default_rf(), default_surrogate(), mbo_defaults

16 default_surrogate

default_rf Default Random Forest

Description

This is a helper function that constructs a default random forest mlr3::LearnerRegr which is for
example used in default_surrogate.

Constructs a ranger learner “"regr.ranger"” with num.trees = 100, keep.inbag = TRUE and se.method
= "jack".

Usage

default_rf(noisy = FALSE)

Arguments

noisy (logical(1))
Whether the learner will be used in a noisy objective function scenario. Cur-
rently has no effect.

Value

mlr3::LearnerRegr

See Also

Other mbo_defaults: default_acqfunction(), default_acqoptimizer(), default_gp(), default_loop_function(),
default_result_assigner(), default_surrogate(), mbo_defaults

default_surrogate Default Surrogate

Description

This is a helper function that constructs a default Surrogate based on properties of the bbotk::OptimInstance.

For numeric-only (including integers) parameter spaces without any dependencies a Gaussian Pro-
cess is constricted via default_gp(). For mixed numeric-categorical parameter spaces, or spaces
with conditional parameters a random forest is constructed via default_rf().

In any case, learners are encapsulated using “"evaluate"”, and a fallback learner is set, in cases where
the surrogate learner errors. Currently, the following learner is used as a fallback: lrn("regr.ranger",
num.trees = 10L, keep.inbag = TRUE, se.method = "jack").

If additionally dependencies are present in the parameter space, inactive conditional parameters
are represented by missing NA values in the training design data. We simply handle those with an
imputation method, added to the random forest, more concretely we use po("imputesample") (for

default_surrogate 17

logicals) and po("imputeoor") (for anything else) from package mlr3pipelines. Characters are
always encoded as factors via po("colapply"). Out of range imputation makes sense for tree-
based methods and is usually hard to beat, see Ding et al. (2010). In the case of dependencies, the
following learner is used as a fallback: lrn("regr.featureless").

If n_learner is 1, the learner is wrapped as a SurrogateLearner. Otherwise, if n_learner is larger
than 1, multiple deep clones of the learner are wrapped as a SurrogateLearnerCollection.

Usage

default_surrogate(
instance,
learner = NULL,
n_learner = NULL,
force_random_forest = FALSE

)

Arguments

instance (bbotk::OptimInstance)
An object that inherits from bbotk::OptimInstance.

learner (NULL | mlr3::Learner). If specified, this learner will be used instead of the de-
faults described above.

n_learner (NULL | integer(1)). Number of learners to be considered in the construction
of the Surrogate. If not specified will be based on the number of objectives as
stated by the instance.

force_random_forest

(logical(1)). If TRUE, a random forest is constructed even if the parameter
space is numeric-only.

Value

Surrogate

References

• Ding, Yufeng, Simonoff, S J (2010). “An Investigation of Missing Data Methods for Clas-
sification Trees Applied to Binary Response Data.” Journal of Machine Learning Research,
11(1), 131–170.

See Also

Other mbo_defaults: default_acqfunction(), default_acqoptimizer(), default_gp(), default_loop_function(),
default_result_assigner(), default_rf(), mbo_defaults

https://CRAN.R-project.org/package=mlr3pipelines

18 mbo_defaults

loop_function Loop Functions for Bayesian Optimization

Description

Loop functions determine the behavior of the Bayesian Optimization algorithm on a global level.
For an overview of readily available loop functions, see as.data.table(mlr_loop_functions).

In general, a loop function is simply a decorated member of the S3 class loop_function. Attributes
must include: id (id of the loop function), label (brief description), instance ("single-crit" and or
"multi_crit"), and man (link to the manual page).

As an example, see, e.g., bayesopt_ego.

See Also

Other Loop Function: mlr_loop_functions, mlr_loop_functions_ego, mlr_loop_functions_emo,
mlr_loop_functions_mpcl, mlr_loop_functions_parego, mlr_loop_functions_smsego

mbo_defaults Defaults for OptimizerMbo

Description

The following defaults are set for OptimizerMbo during optimization if the respective fields are not
set during initialization.

• Optimization Loop: default_loop_function

• Surrogate: default_surrogate

• Acquisition Function: default_acqfunction

• Acqfun Optimizer: default_acqoptimizer

• Result Assigner: default_result_assigner

See Also

Other mbo_defaults: default_acqfunction(), default_acqoptimizer(), default_gp(), default_loop_function(),
default_result_assigner(), default_rf(), default_surrogate()

mlr_acqfunctions 19

mlr_acqfunctions Dictionary of Acquisition Functions

Description

A simple mlr3misc::Dictionary storing objects of class AcqFunction. Each acquisition function has
an associated help page, see mlr_acqfunctions_[id].

For a more convenient way to retrieve and construct an acquisition function, see acqf() and
acqfs().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

See Also

Sugar functions: acqf(), acqfs()

Other Dictionary: mlr_loop_functions, mlr_result_assigners

Other Acquisition Function: AcqFunction, mlr_acqfunctions_aei, mlr_acqfunctions_cb, mlr_acqfunctions_ehvi,
mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

library(data.table)
as.data.table(mlr_acqfunctions)
acqf("ei")

mlr_acqfunctions_aei Acquisition Function Augmented Expected Improvement

Description

Augmented Expected Improvement. Useful when working with noisy objectives. Currently only
works correctly with "regr.km" as surrogate model and nugget.estim = TRUE or given.

20 mlr_acqfunctions_aei

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("aei")
acqf("aei")

Parameters

• "c" (numeric(1))
Constant c as used in Formula (14) of Huang (2012) to reflect the degree of risk aversion.
Defaults to 1.

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionAEI

Public fields

y_effective_best (numeric(1))
Best effective objective value observed so far. In the case of maximization, this already in-
cludes the necessary change of sign.

noise_var (numeric(1))
Estimate of the variance of the noise. This corresponds to the nugget estimate when using a
mlr3learners as surrogate model.

Methods

Public methods:
• AcqFunctionAEI$new()

• AcqFunctionAEI$update()

• AcqFunctionAEI$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
AcqFunctionAEI$new(surrogate = NULL, c = 1)

Arguments:
surrogate (NULL | SurrogateLearner).
c (numeric(1)).

Method update(): Update the acquisition function and set y_effective_best and noise_var.
Usage:
AcqFunctionAEI$update()

Method clone(): The objects of this class are cloneable with this method.
Usage:
AcqFunctionAEI$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_acqfunctions_aei 21

References

• Huang D, Allen TT, Notz WI, Zheng N (2012). “Erratum To: Global Optimization of Stochas-
tic Black-box Systems via Sequential Kriging Meta-Models.” Journal of Global Optimization,
54(2), 431–431.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_cb, mlr_acqfunctions_ehvi,
mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

set.seed(2906)
fun = function(xs) {

list(y = xs$x ^ 2 + rnorm(length(xs$x), mean = 0, sd = 1))
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun,

domain = domain,
codomain = codomain,
properties = "noisy")

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = lrn("regr.km",
covtype = "matern5_2",
optim.method = "gen",
nugget.estim = TRUE,
jitter = 1e-12,
control = list(trace = FALSE))

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("aei", surrogate = surrogate)

acq_function$surrogate$update()

22 mlr_acqfunctions_cb

acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_cb Acquisition Function Confidence Bound

Description

Lower / Upper Confidence Bound.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("cb")
acqf("cb")

Parameters

• "lambda" (numeric(1))
λ value used for the confidence bound. Defaults to 2.

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionCB

Methods

Public methods:
• AcqFunctionCB$new()

• AcqFunctionCB$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionCB$new(surrogate = NULL, lambda = 2)

Arguments:
surrogate (NULL | SurrogateLearner).
lambda (numeric(1)).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionCB$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_acqfunctions_ehvi 23

References

• Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),
Advances in Neural Information Processing Systems, volume 25, 2951–2959.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_ehvi,
mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("cb", surrogate = surrogate, lambda = 3)

acq_function$surrogate$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_ehvi Acquisition Function Expected Hypervolume Improvement

24 mlr_acqfunctions_ehvi

Description

Exact Expected Hypervolume Improvement. Calculates the exact expected hypervolume improve-
ment in the case of two objectives. In the case of optimizing more than two objective functions,
AcqFunctionEHVIGH can be used. See Emmerich et al. (2016) for details.

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionEHVI

Public fields

ys_front (matrix())
Approximated Pareto front. Sorted by the first objective. Signs are corrected with respect to
assuming minimization of objectives.

ref_point (numeric())
Reference point. Signs are corrected with respect to assuming minimization of objectives.

ys_front_augmented (matrix())
Augmented approximated Pareto front. Sorted by the first objective. Signs are corrected with
respect to assuming minimization of objectives.

Methods

Public methods:

• AcqFunctionEHVI$new()

• AcqFunctionEHVI$update()

• AcqFunctionEHVI$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionEHVI$new(surrogate = NULL)

Arguments:

surrogate (NULL | SurrogateLearnerCollection).

Method update(): Update the acquisition function and set ys_front and ref_point.

Usage:
AcqFunctionEHVI$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionEHVI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

mlr_acqfunctions_ehvi 25

References

• Emmerich, Michael, Yang, Kaifeng, Deutz, André, Wang, Hao, Fonseca, M. C (2016). “A
Multicriteria Generalization of Bayesian Global Optimization.” In Pardalos, M. P, Zhigl-
javsky, Anatoly, Žilinskas, Julius (eds.), Advances in Stochastic and Deterministic Global
Optimization, 229–242. Springer International Publishing, Cham.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)

acq_function = acqf("ehvi", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

26 mlr_acqfunctions_ehvigh

mlr_acqfunctions_ehvigh

Acquisition Function Expected Hypervolume Improvement via Gauss-
Hermite Quadrature

Description

Expected Hypervolume Improvement. Computed via Gauss-Hermite quadrature.

In the case of optimizing only two objective functions AcqFunctionEHVI is to be preferred.

Parameters

• "k" (integer(1))
Number of nodes per objective used for the numerical integration via Gauss-Hermite quadra-
ture. Defaults to 15. For example, if two objectives are to be optimized, the total number of
nodes will therefore be 225 per default. Changing this value after construction requires a call
to $update() to update the $gh_data field.

• "r" (numeric(1))
Pruning rate between 0 and 1 that determines the fraction of nodes of the Gauss-Hermite
quadrature rule that are ignored based on their weight value (the nodes with the lowest weights
being ignored). Default is 0.2. Changing this value after construction does not require a call
to $update().

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionEHVIGH

Public fields

ys_front (matrix())
Approximated Pareto front. Signs are corrected with respect to assuming minimization of
objectives.

ref_point (numeric())
Reference point. Signs are corrected with respect to assuming minimization of objectives.

hypervolume (numeric(1)). Current hypervolume of the approximated Pareto front with respect
to the reference point.

gh_data (matrix())
Data required for the Gauss-Hermite quadrature rule in the form of a matrix of dimension (k x
2). Each row corresponds to one Gauss-Hermite node (column "x") and corresponding weight
(column "w"). Computed via fastGHQuad::gaussHermiteData. Nodes are scaled by a factor
of sqrt(2) and weights are normalized under a sum to one constraint.

mlr_acqfunctions_ehvigh 27

Methods

Public methods:
• AcqFunctionEHVIGH$new()

• AcqFunctionEHVIGH$update()

• AcqFunctionEHVIGH$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionEHVIGH$new(surrogate = NULL, k = 15L, r = 0.2)

Arguments:

surrogate (NULL | SurrogateLearnerCollection).
k (integer(1)).
r (numeric(1)).

Method update(): Update the acquisition function and set ys_front, ref_point, hypervolume
and gh_data.

Usage:
AcqFunctionEHVIGH$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionEHVIGH$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Rahat, Alma, Chugh, Tinkle, Fieldsend, Jonathan, Allmendinger, Richard, Miettinen, Kaisa
(2022). “Efficient Approximation of Expected Hypervolume Improvement using Gauss-Hermit
Quadrature.” In Rudolph, Günter, Kononova, V. A, Aguirre, Hernán, Kerschke, Pascal, Ochoa,
Gabriela, Tušar, Tea (eds.), Parallel Problem Solving from Nature – PPSN XVII, 90–103.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ei, mlr_acqfunctions_eips, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)

28 mlr_acqfunctions_ei

library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)

acq_function = acqf("ehvigh", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_ei Acquisition Function Expected Improvement

Description

Expected Improvement.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("ei")
acqf("ei")

Parameters

• "epsilon" (numeric(1))
ϵ value used to determine the amount of exploration. Higher values result in the importance of
improvements predicted by the posterior mean decreasing relative to the importance of poten-
tial improvements in regions of high predictive uncertainty. Defaults to 0 (standard Expected
Improvement).

mlr_acqfunctions_ei 29

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionEI

Public fields

y_best (numeric(1))
Best objective function value observed so far. In the case of maximization, this already in-
cludes the necessary change of sign.

Methods

Public methods:

• AcqFunctionEI$new()

• AcqFunctionEI$update()

• AcqFunctionEI$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionEI$new(surrogate = NULL, epsilon = 0)

Arguments:

surrogate (NULL | SurrogateLearner).
epsilon (numeric(1)).

Method update(): Update the acquisition function and set y_best.

Usage:
AcqFunctionEI$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionEI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Jones, R. D, Schonlau, Matthias, Welch, J. W (1998). “Efficient Global Optimization of
Expensive Black-Box Functions.” Journal of Global optimization, 13(4), 455–492.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_eips, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

30 mlr_acqfunctions_eips

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("ei", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_eips Acquisition Function Expected Improvement Per Second

Description

Expected Improvement per Second.

It is assumed that calculations are performed on an bbotk::OptimInstanceBatchSingleCrit. Addi-
tionally to target values of the codomain that should be minimized or maximized, the bbotk::Objective
of the bbotk::OptimInstanceBatchSingleCrit should return time values. The column names of the
target variable and time variable must be passed as cols_y in the order (target, time) when
constructing the SurrogateLearnerCollection that is being used as a surrogate.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions_eips 31

mlr_acqfunctions$get("eips")
acqf("eips")

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionEIPS

Public fields

y_best (numeric(1))
Best objective function value observed so far. In the case of maximization, this already in-
cludes the necessary change of sign.

Active bindings

col_y (character(1)).

col_time (character(1)).

Methods

Public methods:
• AcqFunctionEIPS$new()

• AcqFunctionEIPS$update()

• AcqFunctionEIPS$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionEIPS$new(surrogate = NULL)

Arguments:

surrogate (NULL | SurrogateLearnerCollection).

Method update(): Update the acquisition function and set y_best.

Usage:
AcqFunctionEIPS$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionEIPS$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),
Advances in Neural Information Processing Systems, volume 25, 2951–2959.

32 mlr_acqfunctions_mean

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_mean,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2, time = abs(xs$x))

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"), time = p_dbl(tags = "time"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)
surrogate$cols_y = c("y", "time")

acq_function = acqf("eips", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_mean Acquisition Function Mean

Description

Posterior Mean.

mlr_acqfunctions_mean 33

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("mean")
acqf("mean")

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionMean

Methods

Public methods:
• AcqFunctionMean$new()

• AcqFunctionMean$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionMean$new(surrogate = NULL)

Arguments:

surrogate (NULL | SurrogateLearner).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionMean$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {

34 mlr_acqfunctions_multi

list(y = xs$x ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("mean", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_multi

Acquisition Function Wrapping Multiple Acquisition Functions

Description

Wrapping multiple AcqFunctions resulting in a multi-objective acquisition function composed of
the individual ones. Note that the optimization direction of each wrapped acquisition function is
corrected for maximization.

For each acquisition function, the same Surrogate must be used. If acquisition functions passed
during construction already have been initialized with a surrogate, it is checked whether the sur-
rogate is the same for all acquisition functions. If acquisition functions have not been initialized
with a surrogate, the surrogate passed during construction or lazy initialization will be used for all
acquisition functions.

For optimization, AcqOptimizer can be used as for any other AcqFunction, however, the bbotk::OptimizerBatch
wrapped within the AcqOptimizer must support multi-objective optimization as indicated via the
multi-crit property.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("multi")
acqf("multi")

mlr_acqfunctions_multi 35

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionMulti

Active bindings

surrogate (Surrogate)
Surrogate.

acq_functions (list of AcqFunction)
Points to the list of the individual acquisition functions.

acq_function_ids (character())
Points to the ids of the individual acquisition functions.

Methods

Public methods:

• AcqFunctionMulti$new()

• AcqFunctionMulti$update()

• AcqFunctionMulti$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionMulti$new(acq_functions, surrogate = NULL)

Arguments:

acq_functions (list of AcqFunctions).
surrogate (NULL | Surrogate).

Method update(): Update each of the wrapped acquisition functions.

Usage:
AcqFunctionMulti$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionMulti$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_pi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

36 mlr_acqfunctions_pi

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("multi",
acq_functions = acqfs(c("ei", "pi", "cb")),
surrogate = surrogate

)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_pi Acquisition Function Probability of Improvement

Description

Probability of Improvement.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("pi")
acqf("pi")

mlr_acqfunctions_pi 37

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionPI

Public fields

y_best (numeric(1))
Best objective function value observed so far. In the case of maximization, this already in-
cludes the necessary change of sign.

Methods

Public methods:

• AcqFunctionPI$new()

• AcqFunctionPI$update()

• AcqFunctionPI$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionPI$new(surrogate = NULL)

Arguments:

surrogate (NULL | SurrogateLearner).

Method update(): Update the acquisition function and set y_best.

Usage:
AcqFunctionPI$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionPI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Kushner, J. H (1964). “A New Method of Locating the Maximum Point of an Arbitrary Mul-
tipeak Curve in the Presence of Noise.” Journal of Basic Engineering, 86(1), 97–106.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_multi, mlr_acqfunctions_sd, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

38 mlr_acqfunctions_sd

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("pi", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_sd Acquisition Function Standard Deviation

Description

Posterior Standard Deviation.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("sd")
acqf("sd")

mlr_acqfunctions_sd 39

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionSD

Methods

Public methods:
• AcqFunctionSD$new()

• AcqFunctionSD$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionSD$new(surrogate = NULL)

Arguments:

surrogate (NULL | SurrogateLearner).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionSD$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_smsego,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

40 mlr_acqfunctions_smsego

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("sd", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_smsego

Acquisition Function SMS-EGO

Description

S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm Acquisition Function.

Parameters

• "lambda" (numeric(1))
λ value used for the confidence bound. Defaults to 1. Based on confidence = (1 - 2 *
dnorm(lambda)) ^ m you can calculate a lambda for a given confidence level, see Ponweiser
et al. (2008).

• "epsilon" (numeric(1))
ϵ used for the additive epsilon dominance. Can either be a single numeric value > 0 or NULL
(default). In the case of being NULL, an epsilon vector is maintained dynamically as described
in Horn et al. (2015).

Note

• This acquisition function always also returns its current epsilon values in a list column (acq_epsilon).
These values will be logged into the bbotk::ArchiveBatch of the bbotk::OptimInstanceBatch of
the AcqOptimizer and therefore also in the bbotk::Archive of the actual bbotk::OptimInstance
that is to be optimized.

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionSmsEgo

mlr_acqfunctions_smsego 41

Public fields

ys_front (matrix())
Approximated Pareto front. Signs are corrected with respect to assuming minimization of
objectives.

ref_point (numeric())
Reference point. Signs are corrected with respect to assuming minimization of objectives.

epsilon (numeric())
Epsilon used for the additive epsilon dominance.

progress (numeric(1))
Optimization progress (typically, the number of function evaluations left). Note that this re-
quires the bbotk::OptimInstanceBatch to be terminated via a bbotk::TerminatorEvals.

Methods

Public methods:

• AcqFunctionSmsEgo$new()

• AcqFunctionSmsEgo$update()

• AcqFunctionSmsEgo$reset()

• AcqFunctionSmsEgo$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionSmsEgo$new(surrogate = NULL, lambda = 1, epsilon = NULL)

Arguments:

surrogate (NULL | SurrogateLearnerCollection).
lambda (numeric(1)).
epsilon (NULL | numeric(1)).

Method update(): Update the acquisition function and set ys_front, ref_point and epsilon.

Usage:
AcqFunctionSmsEgo$update()

Method reset(): Reset the acquisition function. Resets epsilon.

Usage:
AcqFunctionSmsEgo$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionSmsEgo$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

42 mlr_acqfunctions_smsego

References

• Ponweiser, Wolfgang, Wagner, Tobias, Biermann, Dirk, Vincze, Markus (2008). “Multiobjec-
tive Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selec-
tion.” In Proceedings of the 10th International Conference on Parallel Problem Solving from
Nature, 784–794.

• Horn, Daniel, Wagner, Tobias, Biermann, Dirk, Weihs, Claus, Bischl, Bernd (2015). “Model-
Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Bench-
mark.” In International Conference on Evolutionary Multi-Criterion Optimization, 64–78.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd,
mlr_acqfunctions_stochastic_cb, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)

acq_function = acqf("smsego", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$progress = 5 - 4 # n_evals = 5 and 4 points already evaluated
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_acqfunctions_stochastic_cb 43

mlr_acqfunctions_stochastic_cb

Acquisition Function Stochastic Confidence Bound

Description

Lower / Upper Confidence Bound with lambda sampling and decay. The initial λ is drawn from
an uniform distribution between min_lambda and max_lambda or from an exponential distribution
with rate 1 / lambda. λ is updated after each update by the formula lambda * exp(-rate * (t %%
period)), where t is the number of times the acquisition function has been updated.

While this acquisition function usually would be used within an asynchronous optimizer, e.g., Op-
timizerAsyncMbo, it can in principle also be used in synchronous optimizers, e.g., OptimizerMbo.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("stochastic_cb")
acqf("stochastic_cb")

Parameters

• "lambda" (numeric(1))
λ value for sampling from the exponential distribution. Defaults to 1.96.

• "min_lambda" (numeric(1))
Minimum value of λfor sampling from the uniform distribution. Defaults to 0.01.

• "max_lambda" (numeric(1))
Maximum value of λ for sampling from the uniform distribution. Defaults to 10.

• "distribution" (character(1))
Distribution to sample λ from. One of c("uniform", "exponential"). Defaults to uniform.

• "rate" (numeric(1))
Rate of the exponential decay. Defaults to 0 i.e. no decay.

• "period" (integer(1))
Period of the exponential decay. Defaults to NULL, i.e., the decay has no period.

Note

• This acquisition function always also returns its current (acq_lambda) and original (acq_lambda_0)
λ. These values will be logged into the bbotk::ArchiveBatch of the bbotk::OptimInstanceBatch
of the AcqOptimizer and therefore also in the bbotk::Archive of the actual bbotk::OptimInstance
that is to be optimized.

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionStochasticCB

44 mlr_acqfunctions_stochastic_cb

Methods

Public methods:

• AcqFunctionStochasticCB$new()

• AcqFunctionStochasticCB$update()

• AcqFunctionStochasticCB$reset()

• AcqFunctionStochasticCB$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionStochasticCB$new(
surrogate = NULL,
lambda = 1.96,
min_lambda = 0.01,
max_lambda = 10,
distribution = "uniform",
rate = 0,
period = NULL

)

Arguments:

surrogate (NULL | SurrogateLearner).
lambda (numeric(1)).
min_lambda (numeric(1)).
max_lambda (numeric(1)).
distribution (character(1)).
rate (numeric(1)).
period (NULL | integer(1)).

Method update(): Update the acquisition function. Samples and decays lambda.

Usage:
AcqFunctionStochasticCB$update()

Method reset(): Reset the acquisition function. Resets the private update counter .t used
within the epsilon decay.

Usage:
AcqFunctionStochasticCB$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionStochasticCB$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

mlr_acqfunctions_stochastic_cb 45

References

• Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),
Advances in Neural Information Processing Systems, volume 25, 2951–2959.

• Egelé, Romain, Guyon, Isabelle, Vishwanath, Venkatram, Balaprakash, Prasanna (2023).
“Asynchronous Decentralized Bayesian Optimization for Large Scale Hyperparameter Op-
timization.” In 2023 IEEE 19th International Conference on e-Science (e-Science), 1–10.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd,
mlr_acqfunctions_smsego, mlr_acqfunctions_stochastic_ei

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("stochastic_cb", surrogate = surrogate, lambda = 3)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

46 mlr_acqfunctions_stochastic_ei

mlr_acqfunctions_stochastic_ei

Acquisition Function Stochastic Expected Improvement

Description

Expected Improvement with epsilon decay. ϵ is updated after each update by the formula epsilon
* exp(-rate * (t %% period)) where t is the number of times the acquisition function has been
updated.

While this acquisition function usually would be used within an asynchronous optimizer, e.g., Op-
timizerAsyncMbo, it can in principle also be used in synchronous optimizers, e.g., OptimizerMbo.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf():

mlr_acqfunctions$get("stochastic_ei")
acqf("stochastic_ei")

Parameters

• "epsilon" (numeric(1))
ϵ value used to determine the amount of exploration. Higher values result in the importance
of improvements predicted by the posterior mean decreasing relative to the importance of
potential improvements in regions of high predictive uncertainty. Defaults to 0.1.

• "rate" (numeric(1))
Defaults to 0.05.

• "period" (integer(1))
Period of the exponential decay. Defaults to NULL, i.e., the decay has no period.

Note

• This acquisition function always also returns its current (acq_epsilon) and original (acq_epsilon_0)
ϵ. These values will be logged into the bbotk::ArchiveBatch of the bbotk::OptimInstanceBatch
of the AcqOptimizer and therefore also in the bbotk::Archive of the actual bbotk::OptimInstance
that is to be optimized.

Super classes

bbotk::Objective -> mlr3mbo::AcqFunction -> AcqFunctionStochasticEI

Public fields

y_best (numeric(1))
Best objective function value observed so far. In the case of maximization, this already in-
cludes the necessary change of sign.

mlr_acqfunctions_stochastic_ei 47

Methods

Public methods:

• AcqFunctionStochasticEI$new()

• AcqFunctionStochasticEI$update()

• AcqFunctionStochasticEI$reset()

• AcqFunctionStochasticEI$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqFunctionStochasticEI$new(
surrogate = NULL,
epsilon = 0.1,
rate = 0.05,
period = NULL

)

Arguments:

surrogate (NULL | SurrogateLearner).
epsilon (numeric(1)).
rate (numeric(1)).
period (NULL | integer(1)).

Method update(): Update the acquisition function. Sets y_best to the best observed objective
function value. Decays epsilon.

Usage:
AcqFunctionStochasticEI$update()

Method reset(): Reset the acquisition function. Resets the private update counter .t used
within the epsilon decay.

Usage:
AcqFunctionStochasticEI$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionStochasticEI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Jones, R. D, Schonlau, Matthias, Welch, J. W (1998). “Efficient Global Optimization of
Expensive Black-Box Functions.” Journal of Global optimization, 13(4), 455–492.

48 mlr_loop_functions

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions, mlr_acqfunctions_aei, mlr_acqfunctions_cb,
mlr_acqfunctions_ehvi, mlr_acqfunctions_ehvigh, mlr_acqfunctions_ei, mlr_acqfunctions_eips,
mlr_acqfunctions_mean, mlr_acqfunctions_multi, mlr_acqfunctions_pi, mlr_acqfunctions_sd,
mlr_acqfunctions_smsego, mlr_acqfunctions_stochastic_cb

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

acq_function = acqf("stochastic_ei", surrogate = surrogate)

acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

}

mlr_loop_functions Dictionary of Loop Functions

Description

A simple mlr3misc::Dictionary storing objects of class loop_function. Each loop function has an
associated help page, see mlr_loop_functions_[id].

Retrieves object with key key from the dictionary. Additional arguments must be named and are
passed to the constructor of the stored object.

mlr_loop_functions_ego 49

Arguments

key (character(1)).
... (any)

Passed down to constructor.

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Value

Object with corresponding key.

Methods

See mlr3misc::Dictionary.

See Also

Other Dictionary: mlr_acqfunctions, mlr_result_assigners
Other Loop Function: loop_function, mlr_loop_functions_ego, mlr_loop_functions_emo,
mlr_loop_functions_mpcl, mlr_loop_functions_parego, mlr_loop_functions_smsego

Examples

library(data.table)
as.data.table(mlr_loop_functions)

mlr_loop_functions_ego

Sequential Single-Objective Bayesian Optimization

Description

Loop function for sequential single-objective Bayesian Optimization. Normally used inside an
OptimizerMbo.
In each iteration after the initial design, the surrogate and acquisition function are updated and the
next candidate is chosen based on optimizing the acquisition function.

Usage

bayesopt_ego(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size = NULL,
random_interleave_iter = 0L

)

50 mlr_loop_functions_ego

Arguments

instance (bbotk::OptimInstanceBatchSingleCrit)
The bbotk::OptimInstanceBatchSingleCrit to be optimized.

surrogate (Surrogate)
Surrogate to be used as a surrogate. Typically a SurrogateLearner.

acq_function (AcqFunction)
AcqFunction to be used as acquisition function.

acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.

init_design_size

(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::ArchiveBatch contains no eval-
uations, 4 * d is used with d being the dimensionality of the search space. Points
are generated via a Sobol sequence.

random_interleave_iter

(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 0, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note

• The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

• The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.

• The surrogate$archive, even if already populated, will always be overwritten by the bbotk::ArchiveBatch
of the bbotk::OptimInstanceBatchSingleCrit.

References

• Jones, R. D, Schonlau, Matthias, Welch, J. W (1998). “Efficient Global Optimization of
Expensive Black-Box Functions.” Journal of Global optimization, 13(4), 455–492.

• Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),
Advances in Neural Information Processing Systems, volume 25, 2951–2959.

See Also

Other Loop Function: loop_function, mlr_loop_functions, mlr_loop_functions_emo, mlr_loop_functions_mpcl,
mlr_loop_functions_parego, mlr_loop_functions_smsego

mlr_loop_functions_ego 51

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

surrogate = default_surrogate(instance)

acq_function = acqf("ei")

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)

expected improvement per second example
fun = function(xs) {

list(y = xs$x ^ 2, time = abs(xs$x))
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"), time = p_dbl(tags = "time"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

surrogate = default_surrogate(instance, n_learner = 2)
surrogate$cols_y = c("y", "time")

optimizer = opt("mbo",

52 mlr_loop_functions_emo

loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acqf("eips"),
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)
}

mlr_loop_functions_emo

Sequential Multi-Objective Bayesian Optimization

Description

Loop function for sequential multi-objective Bayesian Optimization. Normally used inside an Op-
timizerMbo. The conceptual counterpart to mlr_loop_functions_ego.

In each iteration after the initial design, the surrogate and acquisition function are updated and the
next candidate is chosen based on optimizing the acquisition function.

Usage

bayesopt_emo(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size = NULL,
random_interleave_iter = 0L

)

Arguments

instance (bbotk::OptimInstanceBatchMultiCrit)
The bbotk::OptimInstanceBatchMultiCrit to be optimized.

surrogate (SurrogateLearnerCollection)
SurrogateLearnerCollection to be used as a surrogate.

acq_function (AcqFunction)
AcqFunction to be used as acquisition function.

acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.

init_design_size

(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::ArchiveBatch contains no eval-
uations, 4 * d is used with d being the dimensionality of the search space. Points
are generated via a Sobol sequence.

mlr_loop_functions_emo 53

random_interleave_iter

(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 0, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note

• The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

• The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.

• The surrogate$archive, even if already populated, will always be overwritten by the bbotk::ArchiveBatch
of the bbotk::OptimInstanceBatchMultiCrit.

See Also

Other Loop Function: loop_function, mlr_loop_functions, mlr_loop_functions_ego, mlr_loop_functions_mpcl,
mlr_loop_functions_parego, mlr_loop_functions_smsego

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

surrogate = default_surrogate(instance)

acq_function = acqf("ehvi")

54 mlr_loop_functions_mpcl

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_emo,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)
}

mlr_loop_functions_mpcl

Single-Objective Bayesian Optimization via Multipoint Constant Liar

Description

Loop function for single-objective Bayesian Optimization via multipoint constant liar. Normally
used inside an OptimizerMbo.

In each iteration after the initial design, the surrogate and acquisition function are updated. The
acquisition function is then optimized, to find a candidate but instead of evaluating this candidate,
the objective function value is obtained by applying the liar function to all previously obtained
objective function values. This is repeated q - 1 times to obtain a total of q candidates that are then
evaluated in a single batch.

Usage

bayesopt_mpcl(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size = NULL,
q = 2L,
liar = mean,
random_interleave_iter = 0L

)

Arguments

instance (bbotk::OptimInstanceBatchSingleCrit)
The bbotk::OptimInstanceBatchSingleCrit to be optimized.

surrogate (Surrogate)
Surrogate to be used as a surrogate. Typically a SurrogateLearner.

mlr_loop_functions_mpcl 55

acq_function (AcqFunction)
AcqFunction to be used as acquisition function.

acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.

init_design_size

(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::ArchiveBatch contains no eval-
uations, 4 * d is used with d being the dimensionality of the search space. Points
are generated via a Sobol sequence.

q (integer(1))
Batch size > 1. Default is 2.

liar (function)
Any function accepting a numeric vector as input and returning a single numeric
output. Default is mean. Other sensible functions include min (or max, depending
on the optimization direction).

random_interleave_iter

(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 0, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note

• The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

• The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.

• The surrogate$archive, even if already populated, will always be overwritten by the bbotk::ArchiveBatch
of the bbotk::OptimInstanceBatchSingleCrit.

• To make use of parallel evaluations in the case of ‘q > 1, the objective function of the bbotk::OptimInstanceBatchSingleCrit
must be implemented accordingly.

References

• Ginsbourger, David, Le Riche, Rodolphe, Carraro, Laurent (2008). “A Multi-Points Criterion
for Deterministic Parallel Global Optimization Based on Gaussian Processes.”

• Wang, Jialei, Clark, C. S, Liu, Eric, Frazier, I. P (2020). “Parallel Bayesian Global Optimiza-
tion of Expensive Functions.” Operations Research, 68(6), 1850–1865.

56 mlr_loop_functions_parego

See Also

Other Loop Function: loop_function, mlr_loop_functions, mlr_loop_functions_ego, mlr_loop_functions_emo,
mlr_loop_functions_parego, mlr_loop_functions_smsego

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 7))

surrogate = default_surrogate(instance)

acq_function = acqf("ei")

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_mpcl,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer,
args = list(q = 3))

optimizer$optimize(instance)
}

mlr_loop_functions_parego

Multi-Objective Bayesian Optimization via ParEGO

mlr_loop_functions_parego 57

Description

Loop function for multi-objective Bayesian Optimization via ParEGO. Normally used inside an
OptimizerMbo.

In each iteration after the initial design, the observed objective function values are normalized and
q candidates are obtained by scalarizing these values via the augmented Tchebycheff function, up-
dating the surrogate with respect to these scalarized values and optimizing the acquisition function.

Usage

bayesopt_parego(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size = NULL,
q = 1L,
s = 100L,
rho = 0.05,
random_interleave_iter = 0L

)

Arguments

instance (bbotk::OptimInstanceBatchMultiCrit)
The bbotk::OptimInstanceBatchMultiCrit to be optimized.

surrogate (SurrogateLearner)
SurrogateLearner to be used as a surrogate.

acq_function (AcqFunction)
AcqFunction to be used as acquisition function.

acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.

init_design_size

(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::ArchiveBatch contains no eval-
uations, 4 * d is used with d being the dimensionality of the search space. Points
are generated via a Sobol sequence.

q (integer(1))
Batch size, i.e., the number of candidates to be obtained for a single batch.
Default is 1.

s (integer(1))
s in Equation 1 in Knowles (2006). Determines the total number of possible
random weight vectors. Default is 100.

rho (numeric(1))
ρ in Equation 2 in Knowles (2006) scaling the linear part of the augmented
Tchebycheff function. Default is 0.05

58 mlr_loop_functions_parego

random_interleave_iter

(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 0, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note

• The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

• The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.

• The surrogate$archive, even if already populated, will always be overwritten by the bbotk::ArchiveBatch
of the bbotk::OptimInstanceBatchMultiCrit.

• The scalarizations of the objective function values are stored as the y_scal column in the
bbotk::ArchiveBatch of the bbotk::OptimInstanceBatchMultiCrit.

• To make use of parallel evaluations in the case of ‘q > 1, the objective function of the bbotk::OptimInstanceBatchMultiCrit
must be implemented accordingly.

References

• Knowles, Joshua (2006). “ParEGO: A Hybrid Algorithm With On-Line Landscape Approxi-
mation for Expensive Multiobjective Optimization Problems.” IEEE Transactions on Evolu-
tionary Computation, 10(1), 50–66.

See Also

Other Loop Function: loop_function, mlr_loop_functions, mlr_loop_functions_ego, mlr_loop_functions_emo,
mlr_loop_functions_mpcl, mlr_loop_functions_smsego

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

mlr_loop_functions_smsego 59

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

surrogate = default_surrogate(instance, n_learner = 1)

acq_function = acqf("ei")

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_parego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)
}

mlr_loop_functions_smsego

Sequential Multi-Objective Bayesian Optimization via SMS-EGO

Description

Loop function for sequential multi-objective Bayesian Optimization via SMS-EGO. Normally used
inside an OptimizerMbo.

In each iteration after the initial design, the surrogate and acquisition function (mlr_acqfunctions_smsego)
are updated and the next candidate is chosen based on optimizing the acquisition function.

Usage

bayesopt_smsego(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size = NULL,
random_interleave_iter = 0L

)

60 mlr_loop_functions_smsego

Arguments

instance (bbotk::OptimInstanceBatchMultiCrit)
The bbotk::OptimInstanceBatchMultiCrit to be optimized.

surrogate (SurrogateLearnerCollection)
SurrogateLearnerCollection to be used as a surrogate.

acq_function (mlr_acqfunctions_smsego)
mlr_acqfunctions_smsego to be used as acquisition function.

acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.

init_design_size

(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::ArchiveBatch contains no eval-
uations, 4 * d is used with d being the dimensionality of the search space. Points
are generated via a Sobol sequence.

random_interleave_iter

(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 0, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note

• The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

• The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.

• The surrogate$archive, even if already populated, will always be overwritten by the bbotk::ArchiveBatch
of the bbotk::OptimInstanceBatchMultiCrit.

• Due to the iterative computation of the epsilon within the mlr_acqfunctions_smsego, requires
the bbotk::Terminator of the bbotk::OptimInstanceBatchMultiCrit to be a bbotk::TerminatorEvals.

References

• Beume N, Naujoks B, Emmerich M (2007). “SMS-EMOA: Multiobjective selection based on
dominated hypervolume.” European Journal of Operational Research, 181(3), 1653–1669.

• Ponweiser, Wolfgang, Wagner, Tobias, Biermann, Dirk, Vincze, Markus (2008). “Multiobjec-
tive Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selec-
tion.” In Proceedings of the 10th International Conference on Parallel Problem Solving from
Nature, 784–794.

mlr_optimizers_adbo 61

See Also

Other Loop Function: loop_function, mlr_loop_functions, mlr_loop_functions_ego, mlr_loop_functions_emo,
mlr_loop_functions_mpcl, mlr_loop_functions_parego

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

surrogate = default_surrogate(instance)

acq_function = acqf("smsego")

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_smsego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)
}

mlr_optimizers_adbo Asynchronous Decentralized Bayesian Optimization

Description

OptimizerADBO class that implements Asynchronous Decentralized Bayesian Optimization (ADBO).
ADBO is a variant of Asynchronous Model Based Optimization (AMBO) that uses AcqFunction-
StochasticCB with exponential lambda decay.

62 mlr_optimizers_adbo

Currently, only single-objective optimization is supported and OptimizerADBO is considered an
experimental feature and API might be subject to changes.

Parameters

lambda numeric(1)
Value used for sampling the lambda for each worker from an exponential distribution.

rate numeric(1)
Rate of the exponential decay.

period integer(1)
Period of the exponential decay.

initial_design data.table::data.table()
Initial design of the optimization. If NULL, a design of size design_size is generated with the
specified design_function. Default is NULL.

design_size integer(1)
Size of the initial design if it is to be generated. Default is 100.

design_function character(1)
Sampling function to generate the initial design. Can be random paradox::generate_design_random,
lhs paradox::generate_design_lhs, or sobol paradox::generate_design_sobol. Default is sobol.

n_workers integer(1)
Number of parallel workers. If NULL, all rush workers specified via rush::rush_plan() are
used. Default is NULL.

Super classes

bbotk::Optimizer -> bbotk::OptimizerAsync -> mlr3mbo::OptimizerAsyncMbo -> OptimizerADBO

Methods

Public methods:
• OptimizerADBO$new()

• OptimizerADBO$optimize()

• OptimizerADBO$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerADBO$new()

Method optimize(): Performs the optimization on an bbotk::OptimInstanceAsyncSingleCrit
until termination. The single evaluations will be written into the bbotk::ArchiveAsync. The result
will be written into the instance object.

Usage:
OptimizerADBO$optimize(inst)

Arguments:

inst (bbotk::OptimInstanceAsyncSingleCrit).

mlr_optimizers_adbo 63

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerADBO$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

The lambda parameter of the confidence bound acquisition function controls the trade-off between
exploration and exploitation. A large lambda value leads to more exploration, while a small lambda
value leads to more exploitation. The initial lambda value of the acquisition function used on each
worker is drawn from an exponential distribution with rate 1 / lambda. ADBO can use periodic
exponential decay to reduce lambda periodically for a given time step t with the formula lambda *
exp(-rate * (t %% period)). The SurrogateLearner is configured to use a random forest and the
AcqOptimizer is a random search with a batch size of 1000 and a budget of 10000 evaluations.

References

• Egelé, Romain, Guyon, Isabelle, Vishwanath, Venkatram, Balaprakash, Prasanna (2023).
“Asynchronous Decentralized Bayesian Optimization for Large Scale Hyperparameter Op-
timization.” In 2023 IEEE 19th International Conference on e-Science (e-Science), 1–10.

Examples

if (requireNamespace("rush") &
requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceAsyncSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 10))

rush::rush_plan(n_workers=2)

optimizer = opt("adbo", design_size = 4, n_workers = 2)

64 mlr_optimizers_async_mbo

optimizer$optimize(instance)
}

mlr_optimizers_async_mbo

Asynchronous Model Based Optimization

Description

OptimizerAsyncMbo class that implements Asynchronous Model Based Optimization (AMBO).
AMBO starts multiple sequential MBO runs on different workers. The worker communicate asyn-
chronously through a shared archive relying on the rush package. The optimizer follows a modular
layout in which the surrogate model, acquisition function, and acquisition optimizer can be changed.
The SurrogateLearner will impute missing values due to pending evaluations. A stochastic Ac-
qFunction, e.g., AcqFunctionStochasticEI or AcqFunctionStochasticCB is used to create varying
versions of the acquisition function on each worker, promoting different exploration-exploitation
trade-offs. The AcqOptimizer class remains consistent with the one used in synchronous MBO.

In contrast to OptimizerMbo, no loop_function can be specified that determines the AMBO fla-
vor as OptimizerAsyncMbo simply relies on a surrogate update, acquisition function update and
acquisition function optimization step as an internal loop.

Currently, only single-objective optimization is supported and OptimizerAsyncMbo is considered
an experimental feature and API might be subject to changes.

Note that in general the SurrogateLearner is updated one final time on all available data after the
optimization process has terminated. However, in certain scenarios this is not always possible or
meaningful. It is therefore recommended to manually inspect the SurrogateLearner after optimiza-
tion if it is to be used, e.g., for visualization purposes to make sure that it has been properly updated
on all available data. If this final update of the SurrogateLearner could not be performed success-
fully, a warning will be logged.

By specifying a ResultAssigner, one can alter how the final result is determined after optimization,
e.g., simply based on the evaluations logged in the archive ResultAssignerArchive or based on the
Surrogate via ResultAssignerSurrogate.

Archive

The bbotk::ArchiveAsync holds the following additional columns that are specific to AMBO algo-
rithms:

• acq_function$id (numeric(1))
The value of the acquisition function.

• ".already_evaluated" (logical(1))
Whether this point was already evaluated. Depends on the skip_already_evaluated param-
eter of the AcqOptimizer.

If the bbotk::ArchiveAsync does not contain any evaluations prior to optimization, an initial design
is needed. If the initial_design parameter is specified to be a data.table, this data will be
used. Otherwise, if it is NULL, an initial design of size design_size will be generated based on the
generate_design sampling function. See also the parameters below.

mlr_optimizers_async_mbo 65

Parameters

initial_design data.table::data.table()
Initial design of the optimization. If NULL, a design of size design_size is generated with the
specified design_function. Default is NULL.

design_size integer(1)
Size of the initial design if it is to be generated. Default is 100.

design_function character(1)
Sampling function to generate the initial design. Can be random paradox::generate_design_random,
lhs paradox::generate_design_lhs, or sobol paradox::generate_design_sobol. Default is sobol.

n_workers integer(1)
Number of parallel workers. If NULL, all rush workers specified via rush::rush_plan() are
used. Default is NULL.

Super classes

bbotk::Optimizer -> bbotk::OptimizerAsync -> OptimizerAsyncMbo

Active bindings

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

result_assigner (ResultAssigner | NULL)
The result assigner.

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. This corresponds to the values given by a paradox::ParamSet’s
$class field.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all proper-
ties. When fully initialized, properties are determined based on the loop, e.g., the loop_function,
and surrogate.

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the acq_function, surrogate and the acq_optimizer.

Methods

Public methods:

• OptimizerAsyncMbo$new()

66 mlr_optimizers_async_mbo

• OptimizerAsyncMbo$print()

• OptimizerAsyncMbo$reset()

• OptimizerAsyncMbo$optimize()

• OptimizerAsyncMbo$clone()

Method new(): Creates a new instance of this R6 class.
If surrogate is NULL and the acq_function$surrogate field is populated, this SurrogateLearner
is used. Otherwise, default_surrogate(instance) is used. If acq_function is NULL and the
acq_optimizer$acq_function field is populated, this AcqFunction is used (and therefore its
$surrogate if populated; see above). Otherwise default_acqfunction(instance) is used. If
acq_optimizer is NULL, default_acqoptimizer(instance) is used.
Even if already initialized, the surrogate$archive field will always be overwritten by the bbotk::ArchiveAsync
of the current bbotk::OptimInstanceAsyncSingleCrit to be optimized.
For more information on default values for surrogate, acq_function, acq_optimizer and
result_assigner, see ?mbo_defaults.

Usage:
OptimizerAsyncMbo$new(
id = "async_mbo",
surrogate = NULL,
acq_function = NULL,
acq_optimizer = NULL,
result_assigner = NULL,
param_set = NULL,
label = "Asynchronous Model Based Optimization",
man = "mlr3mbo::OptimizerAsyncMbo"

)

Arguments:
id (character(1))

Identifier for the new instance.
surrogate (Surrogate | NULL)

The surrogate.
acq_function (AcqFunction | NULL)

The acquisition function.
acq_optimizer (AcqOptimizer | NULL)

The acquisition function optimizer.
result_assigner (ResultAssigner | NULL)

The result assigner.
param_set (paradox::ParamSet)

Set of control parameters.
label (character(1))

Label for this object. Can be used in tables, plot and text output instead of the ID.
man (character(1))

String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method print(): Print method.

mlr_optimizers_async_mbo 67

Usage:
OptimizerAsyncMbo$print()

Returns: (character()).

Method reset(): Reset the optimizer. Sets the following fields to NULL: surrogate, acq_function,
acq_optimizer,result_assigner Resets parameter values design_size and design_function
to their defaults.

Usage:
OptimizerAsyncMbo$reset()

Method optimize(): Performs the optimization on an bbotk::OptimInstanceAsyncSingleCrit
until termination. The single evaluations will be written into the bbotk::ArchiveAsync. The result
will be written into the instance object.

Usage:
OptimizerAsyncMbo$optimize(inst)

Arguments:
inst (bbotk::OptimInstanceAsyncSingleCrit).

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerAsyncMbo$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

if (requireNamespace("rush") &
requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceAsyncSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 10))

rush::rush_plan(n_workers=2)

68 mlr_optimizers_mbo

optimizer = opt("async_mbo", design_size = 4, n_workers = 2)

optimizer$optimize(instance)
}

mlr_optimizers_mbo Model Based Optimization

Description

OptimizerMbo class that implements Model Based Optimization (MBO). The implementation fol-
lows a modular layout relying on a loop_function determining the MBO flavor to be used, e.g.,
bayesopt_ego for sequential single-objective Bayesian Optimization, a Surrogate, an AcqFunction,
e.g., mlr_acqfunctions_ei for Expected Improvement and an AcqOptimizer.

MBO algorithms are iterative optimization algorithms that make use of a continuously updated
surrogate model built for the objective function. By optimizing a comparably cheap to evaluate
acquisition function defined on the surrogate prediction, the next candidate is chosen for evaluation.

Detailed descriptions of different MBO flavors are provided in the documentation of the respective
loop_function.

Termination is handled via a bbotk::Terminator part of the bbotk::OptimInstanceBatch to be opti-
mized.

Note that in general the Surrogate is updated one final time on all available data after the optimiza-
tion process has terminated. However, in certain scenarios this is not always possible or meaningful,
e.g., when using bayesopt_parego() for multi-objective optimization which uses a surrogate that
relies on a scalarization of the objectives. It is therefore recommended to manually inspect the
Surrogate after optimization if it is to be used, e.g., for visualization purposes to make sure that it
has been properly updated on all available data. If this final update of the Surrogate could not be
performed successfully, a warning will be logged.

By specifying a ResultAssigner, one can alter how the final result is determined after optimization,
e.g., simply based on the evaluations logged in the archive ResultAssignerArchive or based on the
Surrogate via ResultAssignerSurrogate.

Archive

The bbotk::ArchiveBatch holds the following additional columns that are specific to MBO algo-
rithms:

• acq_function$id (numeric(1))
The value of the acquisition function.

• ".already_evaluated" (logical(1))
Whether this point was already evaluated. Depends on the skip_already_evaluated param-
eter of the AcqOptimizer.

mlr_optimizers_mbo 69

Super classes

bbotk::Optimizer -> bbotk::OptimizerBatch -> OptimizerMbo

Active bindings

loop_function (loop_function | NULL)
Loop function determining the MBO flavor.

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

args (named list())
Further arguments passed to the loop_function. For example, random_interleave_iter.

result_assigner (ResultAssigner | NULL)
The result assigner.

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. This corresponds to the values given by a paradox::ParamSet’s
$class field.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all proper-
ties. When fully initialized, properties are determined based on the loop, e.g., the loop_function,
and surrogate.

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the acq_function, surrogate and the acq_optimizer.

Methods

Public methods:

• OptimizerMbo$new()

• OptimizerMbo$print()

• OptimizerMbo$reset()

• OptimizerMbo$optimize()

• OptimizerMbo$clone()

Method new(): Creates a new instance of this R6 class.
If surrogate is NULL and the acq_function$surrogate field is populated, this Surrogate is
used. Otherwise, default_surrogate(instance) is used. If acq_function is NULL and the
acq_optimizer$acq_function field is populated, this AcqFunction is used (and therefore its

70 mlr_optimizers_mbo

$surrogate if populated; see above). Otherwise default_acqfunction(instance) is used. If
acq_optimizer is NULL, default_acqoptimizer(instance) is used.
Even if already initialized, the surrogate$archive field will always be overwritten by the bbotk::ArchiveBatch
of the current bbotk::OptimInstanceBatch to be optimized.
For more information on default values for loop_function, surrogate, acq_function, acq_optimizer
and result_assigner, see ?mbo_defaults.

Usage:
OptimizerMbo$new(
loop_function = NULL,
surrogate = NULL,
acq_function = NULL,
acq_optimizer = NULL,
args = NULL,
result_assigner = NULL

)

Arguments:
loop_function (loop_function | NULL)

Loop function determining the MBO flavor.
surrogate (Surrogate | NULL)

The surrogate.
acq_function (AcqFunction | NULL)

The acquisition function.
acq_optimizer (AcqOptimizer | NULL)

The acquisition function optimizer.
args (named list())

Further arguments passed to the loop_function. For example, random_interleave_iter.
result_assigner (ResultAssigner | NULL)

The result assigner.

Method print(): Print method.

Usage:
OptimizerMbo$print()

Returns: (character()).

Method reset(): Reset the optimizer. Sets the following fields to NULL: loop_function,
surrogate, acq_function, acq_optimizer, args, result_assigner

Usage:
OptimizerMbo$reset()

Method optimize(): Performs the optimization and writes optimization result into bbotk::OptimInstanceBatch.
The optimization result is returned but the complete optimization path is stored in bbotk::ArchiveBatch
of bbotk::OptimInstanceBatch.

Usage:
OptimizerMbo$optimize(inst)

Arguments:

mlr_optimizers_mbo 71

inst (bbotk::OptimInstanceBatch).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerMbo$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

single-objective EGO
fun = function(xs) {

list(y = xs$x ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

surrogate = default_surrogate(instance)

acq_function = acqf("ei")

acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)

multi-objective ParEGO
fun = function(xs) {

list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)
}

72 mlr_result_assigners

domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

optimizer = opt("mbo",
loop_function = bayesopt_parego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)
}

mlr_result_assigners Dictionary of Result Assigners

Description

A simple mlr3misc::Dictionary storing objects of class ResultAssigner. Each acquisition function
has an associated help page, see mlr_result_assigners_[id].

For a more convenient way to retrieve and construct an acquisition function, see ras().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

See Also

Sugar function: ras()

Other Dictionary: mlr_acqfunctions, mlr_loop_functions

Other Result Assigner: ResultAssigner, mlr_result_assigners_archive, mlr_result_assigners_surrogate

Examples

library(data.table)
as.data.table(mlr_result_assigners)
ras("archive")

mlr_result_assigners_archive 73

mlr_result_assigners_archive

Result Assigner Based on the Archive

Description

Result assigner that chooses the final point(s) based on all evaluations in the bbotk::Archive. This
mimics the default behavior of any bbotk::Optimizer.

Super class

mlr3mbo::ResultAssigner -> ResultAssignerArchive

Active bindings

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

Methods

Public methods:

• ResultAssignerArchive$new()

• ResultAssignerArchive$assign_result()

• ResultAssignerArchive$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ResultAssignerArchive$new()

Method assign_result(): Assigns the result, i.e., the final point(s) to the instance.

Usage:
ResultAssignerArchive$assign_result(instance)

Arguments:

instance (bbotk::OptimInstanceBatchSingleCrit | bbotk::OptimInstanceBatchMultiCrit |bbotk::OptimInstanceAsyncSingleCrit
| bbotk::OptimInstanceAsyncMultiCrit)
The bbotk::OptimInstance the final result should be assigned to.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResultAssignerArchive$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

74 mlr_result_assigners_surrogate

See Also

Other Result Assigner: ResultAssigner, mlr_result_assigners, mlr_result_assigners_surrogate

Examples

result_assigner = ras("archive")

mlr_result_assigners_surrogate

Result Assigner Based on a Surrogate Mean Prediction

Description

Result assigner that chooses the final point(s) based on a surrogate mean prediction of all evaluated
points in the bbotk::Archive. This is especially useful in the case of noisy objective functions.

In the case of operating on an bbotk::OptimInstanceBatchMultiCrit or bbotk::OptimInstanceAsyncMultiCrit
the SurrogateLearnerCollection must use as many learners as there are objective functions.

Super class

mlr3mbo::ResultAssigner -> ResultAssignerSurrogate

Active bindings

surrogate (Surrogate | NULL)
The surrogate.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

Methods

Public methods:
• ResultAssignerSurrogate$new()

• ResultAssignerSurrogate$assign_result()

• ResultAssignerSurrogate$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ResultAssignerSurrogate$new(surrogate = NULL)

Arguments:
surrogate (Surrogate | NULL)

The surrogate that is used to predict the mean of all evaluated points.

Method assign_result(): Assigns the result, i.e., the final point(s) to the instance. If $surrogate
is NULL, default_surrogate(instance) is used and also assigned to $surrogate.

mlr_tuners_adbo 75

Usage:
ResultAssignerSurrogate$assign_result(instance)

Arguments:
instance (bbotk::OptimInstanceBatchSingleCrit | bbotk::OptimInstanceBatchMultiCrit |bbotk::OptimInstanceAsyncSingleCrit

| bbotk::OptimInstanceAsyncMultiCrit)
The bbotk::OptimInstance the final result should be assigned to.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ResultAssignerSurrogate$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Result Assigner: ResultAssigner, mlr_result_assigners, mlr_result_assigners_archive

Examples

result_assigner = ras("surrogate")

mlr_tuners_adbo TunerAsync using Asynchronous Decentralized Bayesian Optimiza-
tion

Description

TunerADBO class that implements Asynchronous Decentralized Bayesian Optimization (ADBO).
ADBO is a variant of Asynchronous Model Based Optimization (AMBO) that uses AcqFunction-
StochasticCB with exponential lambda decay. This is a minimal interface internally passing on to
OptimizerAsyncMbo. For additional information and documentation see OptimizerAsyncMbo.

Currently, only single-objective optimization is supported and TunerADBO is considered an experi-
mental feature and API might be subject to changes.

Parameters

initial_design data.table::data.table()
Initial design of the optimization. If NULL, a design of size design_size is generated with the
specified design_function. Default is NULL.

design_size integer(1)
Size of the initial design if it is to be generated. Default is 100.

design_function character(1)
Sampling function to generate the initial design. Can be random paradox::generate_design_random,
lhs paradox::generate_design_lhs, or sobol paradox::generate_design_sobol. Default is sobol.

n_workers integer(1)
Number of parallel workers. If NULL, all rush workers specified via rush::rush_plan() are
used. Default is NULL.

76 mlr_tuners_adbo

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerAsync -> mlr3tuning::TunerAsyncFromOptimizerAsync
-> TunerADBO

Active bindings

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

result_assigner (ResultAssigner | NULL)
The result assigner.

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. This corresponds to the values given by a paradox::ParamSet’s
$class field.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all proper-
ties. When fully initialized, properties are determined based on the loop, e.g., the loop_function,
and surrogate.

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the acq_function, surrogate and the acq_optimizer.

Methods

Public methods:

• TunerADBO$new()

• TunerADBO$print()

• TunerADBO$reset()

• TunerADBO$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerADBO$new()

Method print(): Print method.

Usage:
TunerADBO$print()

Returns: (character()).

mlr_tuners_adbo 77

Method reset(): Reset the tuner. Sets the following fields to NULL: surrogate, acq_function,
acq_optimizer, result_assigner Resets parameter values design_size and design_function
to their defaults.

Usage:
TunerADBO$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerADBO$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Egelé, Romain, Guyon, Isabelle, Vishwanath, Venkatram, Balaprakash, Prasanna (2023).
“Asynchronous Decentralized Bayesian Optimization for Large Scale Hyperparameter Op-
timization.” In 2023 IEEE 19th International Conference on e-Science (e-Science), 1–10.

Examples

if (requireNamespace("rush") &
requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(mlr3)
library(mlr3tuning)

single-objective
task = tsk("wine")
learner = lrn("classif.rpart", cp = to_tune(lower = 1e-4, upper = 1, logscale = TRUE))
resampling = rsmp("cv", folds = 3)
measure = msr("classif.acc")

instance = TuningInstanceAsyncSingleCrit$new(
task = task,
learner = learner,
resampling = resampling,
measure = measure,
terminator = trm("evals", n_evals = 10))

rush::rush_plan(n_workers=2)

tnr("adbo", design_size = 4, n_workers = 2)$optimize(instance)
}

78 mlr_tuners_async_mbo

mlr_tuners_async_mbo TunerAsync using Asynchronous Model Based Optimization

Description

TunerAsyncMbo class that implements Asynchronous Model Based Optimization (AMBO). This is
a minimal interface internally passing on to OptimizerAsyncMbo. For additional information and
documentation see OptimizerAsyncMbo.

Currently, only single-objective optimization is supported and TunerAsyncMbo is considered an
experimental feature and API might be subject to changes.

Parameters

initial_design data.table::data.table()
Initial design of the optimization. If NULL, a design of size design_size is generated with the
specified design_function. Default is NULL.

design_size integer(1)
Size of the initial design if it is to be generated. Default is 100.

design_function character(1)
Sampling function to generate the initial design. Can be random paradox::generate_design_random,
lhs paradox::generate_design_lhs, or sobol paradox::generate_design_sobol. Default is sobol.

n_workers integer(1)
Number of parallel workers. If NULL, all rush workers specified via rush::rush_plan() are
used. Default is NULL.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerAsync -> mlr3tuning::TunerAsyncFromOptimizerAsync
-> TunerAsyncMbo

Active bindings

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

result_assigner (ResultAssigner | NULL)
The result assigner.

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. This corresponds to the values given by a paradox::ParamSet’s
$class field.

mlr_tuners_async_mbo 79

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all proper-
ties. When fully initialized, properties are determined based on the loop, e.g., the loop_function,
and surrogate.

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the acq_function, surrogate and the acq_optimizer.

Methods

Public methods:
• TunerAsyncMbo$new()

• TunerAsyncMbo$print()

• TunerAsyncMbo$reset()

• TunerAsyncMbo$clone()

Method new(): Creates a new instance of this R6 class. For more information on default values
for surrogate, acq_function, acq_optimizer, and result_assigner, see ?mbo_defaults.
Note that all the parameters below are simply passed to the OptimizerAsyncMbo and the respec-
tive fields are simply (settable) active bindings to the fields of the OptimizerAsyncMbo.

Usage:
TunerAsyncMbo$new(
surrogate = NULL,
acq_function = NULL,
acq_optimizer = NULL,
param_set = NULL

)

Arguments:
surrogate (Surrogate | NULL)

The surrogate.
acq_function (AcqFunction | NULL)

The acquisition function.
acq_optimizer (AcqOptimizer | NULL)

The acquisition function optimizer.
param_set (paradox::ParamSet)

Set of control parameters.

Method print(): Print method.

Usage:
TunerAsyncMbo$print()

Returns: (character()).

Method reset(): Reset the tuner. Sets the following fields to NULL: surrogate, acq_function,
acq_optimizer, result_assigner Resets parameter values design_size and design_function
to their defaults.

80 mlr_tuners_mbo

Usage:
TunerAsyncMbo$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerAsyncMbo$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if (requireNamespace("rush") &
requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(mlr3)
library(mlr3tuning)

single-objective
task = tsk("wine")
learner = lrn("classif.rpart", cp = to_tune(lower = 1e-4, upper = 1, logscale = TRUE))
resampling = rsmp("cv", folds = 3)
measure = msr("classif.acc")

instance = TuningInstanceAsyncSingleCrit$new(
task = task,
learner = learner,
resampling = resampling,
measure = measure,
terminator = trm("evals", n_evals = 10))

rush::rush_plan(n_workers=2)

tnr("async_mbo", design_size = 4, n_workers = 2)$optimize(instance)
}

mlr_tuners_mbo TunerBatch using Model Based Optimization

Description

TunerMbo class that implements Model Based Optimization (MBO). This is a minimal interface
internally passing on to OptimizerMbo. For additional information and documentation see Opti-
mizerMbo.

mlr_tuners_mbo 81

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerMbo

Active bindings

loop_function (loop_function | NULL)
Loop function determining the MBO flavor.

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

args (named list())
Further arguments passed to the loop_function. For example, random_interleave_iter.

result_assigner (ResultAssigner | NULL)
The result assigner.

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. This corresponds to the values given by a paradox::ParamSet’s
$class field.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all proper-
ties. When fully initialized, properties are determined based on the loop, e.g., the loop_function,
and surrogate.

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the acq_function, surrogate and the acq_optimizer.

Methods

Public methods:
• TunerMbo$new()

• TunerMbo$print()

• TunerMbo$reset()

• TunerMbo$clone()

Method new(): Creates a new instance of this R6 class. For more information on default values
for loop_function, surrogate, acq_function, acq_optimizer, and result_assigner, see
?mbo_defaults.
Note that all the parameters below are simply passed to the OptimizerMbo and the respective
fields are simply (settable) active bindings to the fields of the OptimizerMbo.

82 mlr_tuners_mbo

Usage:
TunerMbo$new(
loop_function = NULL,
surrogate = NULL,
acq_function = NULL,
acq_optimizer = NULL,
args = NULL,
result_assigner = NULL

)

Arguments:
loop_function (loop_function | NULL)

Loop function determining the MBO flavor.
surrogate (Surrogate | NULL)

The surrogate.
acq_function (AcqFunction | NULL)

The acquisition function.
acq_optimizer (AcqOptimizer | NULL)

The acquisition function optimizer.
args (named list())

Further arguments passed to the loop_function. For example, random_interleave_iter.
result_assigner (ResultAssigner | NULL)

The result assigner.

Method print(): Print method.

Usage:
TunerMbo$print()

Returns: (character()).

Method reset(): Reset the tuner. Sets the following fields to NULL: loop_function, surrogate,
acq_function, acq_optimizer, args, result_assigner

Usage:
TunerMbo$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerMbo$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(mlr3)

ras 83

library(mlr3tuning)

single-objective
task = tsk("wine")
learner = lrn("classif.rpart", cp = to_tune(lower = 1e-4, upper = 1, logscale = TRUE))
resampling = rsmp("cv", folds = 3)
measure = msr("classif.acc")

instance = TuningInstanceBatchSingleCrit$new(
task = task,
learner = learner,
resampling = resampling,
measure = measure,
terminator = trm("evals", n_evals = 5))

tnr("mbo")$optimize(instance)

multi-objective
task = tsk("wine")
learner = lrn("classif.rpart", cp = to_tune(lower = 1e-4, upper = 1, logscale = TRUE))
resampling = rsmp("cv", folds = 3)
measures = msrs(c("classif.acc", "selected_features"))

instance = TuningInstanceBatchMultiCrit$new(
task = task,
learner = learner,
resampling = resampling,
measures = measures,
terminator = trm("evals", n_evals = 5),
store_models = TRUE) # required due to selected features

tnr("mbo")$optimize(instance)
}

ras Syntactic Sugar Result Assigner Construction

Description

This function complements mlr_result_assigners with functions in the spirit of mlr_sugar from
mlr3.

Usage

ras(.key, ...)

https://CRAN.R-project.org/package=mlr3

84 ResultAssigner

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.

Value

ResultAssigner

Examples

ras("archive")

ResultAssigner Result Assigner Base Class

Description

Abstract result assigner class.

A result assigner is responsible for assigning the final optimization result to the bbotk::OptimInstance.
Normally, it is only used within an OptimizerMbo.

Active bindings

label (character(1))
Label for this object.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

Methods

Public methods:
• ResultAssigner$new()

• ResultAssigner$assign_result()

• ResultAssigner$format()

• ResultAssigner$print()

• ResultAssigner$clone()

Method new(): Creates a new instance of this R6 class.

ResultAssigner 85

Usage:

ResultAssigner$new(label = NA_character_, man = NA_character_)

Arguments:

label (character(1))
Label for this object.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.

Method assign_result(): Assigns the result, i.e., the final point(s) to the instance.

Usage:

ResultAssigner$assign_result(instance)

Arguments:

instance (bbotk::OptimInstanceBatchSingleCrit | bbotk::OptimInstanceBatchMultiCrit |bbotk::OptimInstanceAsyncSingleCrit
| bbotk::OptimInstanceAsyncMultiCrit)
The bbotk::OptimInstance the final result should be assigned to.

Method format(): Helper for print outputs.

Usage:

ResultAssigner$format()

Returns: (character(1)).

Method print(): Print method.

Usage:

ResultAssigner$print()

Returns: (character()).

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResultAssigner$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Result Assigner: mlr_result_assigners, mlr_result_assigners_archive, mlr_result_assigners_surrogate

86 srlrn

srlrn Syntactic Sugar Surrogate Construction

Description

This function allows to construct a SurrogateLearner or SurrogateLearnerCollection in the spirit of
mlr_sugar from mlr3.

If the archive references more than one target variable or cols_y contains more than one target
variable but only a single learner is specified, this learner is replicated as many times as needed to
build the SurrogateLearnerCollection.

Usage

srlrn(learner, archive = NULL, cols_x = NULL, cols_y = NULL, ...)

Arguments

learner (mlr3::LearnerRegr | List of mlr3::LearnerRegr)
mlr3::LearnerRegr that is to be used within the SurrogateLearner or a list of
mlr3::LearnerRegr that are to be used within the SurrogateLearnerCollection.

archive (NULL | bbotk::Archive)
bbotk::Archive of the bbotk::OptimInstance used. Can also be NULL.

cols_x (NULL | character())
Column ids in the bbotk::Archive that should be used as features. Can also be
NULL in which case this is automatically inferred based on the archive.

cols_y (NULL | character())
Column id(s) in the bbotk::Archive that should be used as a target. If a list of
mlr3::LearnerRegr is provided as the learner argument and cols_y is specified
as well, as many column names as learners must be provided. Can also be NULL
in which case this is automatically inferred based on the archive.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet.

Value

SurrogateLearner | SurrogateLearnerCollection

Examples

library(mlr3)
srlrn(lrn("regr.featureless"), catch_errors = FALSE)
srlrn(list(lrn("regr.featureless"), lrn("regr.featureless")))

https://CRAN.R-project.org/package=mlr3

Surrogate 87

Surrogate Surrogate Model

Description

Abstract surrogate model class.

A surrogate model is used to model the unknown objective function(s) based on all points evaluated
so far.

Public fields

learner (learner)
Arbitrary learner object depending on the subclass.

Active bindings

print_id (character)
Id used when printing.

archive (bbotk::Archive | NULL)
bbotk::Archive of the bbotk::OptimInstance.

archive_is_async (‘bool(1)“)
Whether the bbotk::Archive is an asynchronous one.

n_learner (integer(1))
Returns the number of surrogate models.

cols_x (character() | NULL)
Column id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

cols_y (character() | NULL)
Column id’s of variables that should be used as targets. By default, automatically inferred
based on the archive.

insample_perf (numeric())
Surrogate model’s current insample performance.

param_set (paradox::ParamSet)
Set of hyperparameters.

assert_insample_perf (numeric())
Asserts whether the current insample performance meets the performance threshold.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

feature_types (character())
Stores the feature types the surrogate can handle, e.g. "logical", "numeric", or "factor". A
complete list of candidate feature types, grouped by task type, is stored in mlr_reflections$task_feature_types.

88 Surrogate

properties (character())
Stores a set of properties/capabilities the surrogate has. A complete list of candidate proper-
ties, grouped by task type, is stored in mlr_reflections$learner_properties.

predict_type (character(1))
Retrieves the currently active predict type, e.g. "response".

Methods

Public methods:
• Surrogate$new()

• Surrogate$update()

• Surrogate$reset()

• Surrogate$predict()

• Surrogate$format()

• Surrogate$print()

• Surrogate$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Surrogate$new(learner, archive, cols_x, cols_y, param_set)

Arguments:

learner (learner)
Arbitrary learner object depending on the subclass.

archive (bbotk::Archive | NULL)
bbotk::Archive of the bbotk::OptimInstance.

cols_x (character() | NULL)
Column id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

cols_y (character() | NULL)
Column id’s of variables that should be used as targets. By default, automatically inferred
based on the archive.

param_set (paradox::ParamSet)
Parameter space description depending on the subclass.

Method update(): Train learner with new data. Subclasses must implement private.update()
and private.update_async().

Usage:
Surrogate$update()

Returns: NULL.

Method reset(): Reset the surrogate model. Subclasses must implement private$.reset().

Usage:
Surrogate$reset()

Returns: NULL

SurrogateLearner 89

Method predict(): Predict mean response and standard error. Must be implemented by sub-
classes.

Usage:
Surrogate$predict(xdt)

Arguments:

xdt (data.table::data.table())
New data. One row per observation.

Returns: Arbitrary prediction object.

Method format(): Helper for print outputs.

Usage:
Surrogate$format()

Returns: (character(1)).

Method print(): Print method.

Usage:
Surrogate$print()

Returns: (character()).

Method clone(): The objects of this class are cloneable with this method.

Usage:
Surrogate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

SurrogateLearner Surrogate Model Containing a Single Learner

Description

Surrogate model containing a single mlr3::LearnerRegr.

Parameters

assert_insample_perf logical(1)
Should the insample performance of the mlr3::LearnerRegr be asserted after updating the
surrogate? If the assertion fails (i.e., the insample performance based on the perf_measure
does not meet the perf_threshold), an error is thrown. Default is FALSE.

perf_measure mlr3::MeasureRegr
Performance measure which should be use to assert the insample performance of the mlr3::LearnerRegr.
Only relevant if assert_insample_perf = TRUE. Default is mlr3::mlr_measures_regr.rsq.

90 SurrogateLearner

perf_threshold numeric(1)
Threshold the insample performance of the mlr3::LearnerRegr should be asserted against.
Only relevant if assert_insample_perf = TRUE. Default is 0.

catch_errors logical(1)
Should errors during updating the surrogate be caught and propagated to the loop_function
which can then handle the failed acquisition function optimization (as a result of the failed
surrogate) appropriately by, e.g., proposing a randomly sampled point for evaluation? Default
is TRUE.

impute_method character(1)
Method to impute missing values in the case of updating on an asynchronous bbotk::ArchiveAsync
with pending evaluations. Can be "mean" to use mean imputation or "random" to sam-
ple values uniformly at random between the empirical minimum and maximum. Default is
"random".

Super class

mlr3mbo::Surrogate -> SurrogateLearner

Active bindings

print_id (character)
Id used when printing.

n_learner (integer(1))
Returns the number of surrogate models.

assert_insample_perf (numeric())
Asserts whether the current insample performance meets the performance threshold.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

feature_types (character())
Stores the feature types the surrogate can handle, e.g. "logical", "numeric", or "factor". A
complete list of candidate feature types, grouped by task type, is stored in mlr_reflections$task_feature_types.

properties (character())
Stores a set of properties/capabilities the surrogate has. A complete list of candidate proper-
ties, grouped by task type, is stored in mlr_reflections$learner_properties.

predict_type (character(1))
Retrieves the currently active predict type, e.g. "response".

Methods

Public methods:
• SurrogateLearner$new()

• SurrogateLearner$predict()

• SurrogateLearner$clone()

Method new(): Creates a new instance of this R6 class.

SurrogateLearner 91

Usage:
SurrogateLearner$new(learner, archive = NULL, cols_x = NULL, col_y = NULL)

Arguments:
learner (mlr3::LearnerRegr).
archive (bbotk::Archive | NULL)

bbotk::Archive of the bbotk::OptimInstance.
cols_x (character() | NULL)

Column id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

col_y (character(1) | NULL)
Column id of variable that should be used as a target. By default, automatically inferred
based on the archive.

Method predict(): Predict mean response and standard error.

Usage:
SurrogateLearner$predict(xdt)

Arguments:
xdt (data.table::data.table())

New data. One row per observation.

Returns: data.table::data.table() with the columns mean and se.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SurrogateLearner$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

92 SurrogateLearnerCollection

xdt = generate_design_random(instance$search_space, n = 4)$data

instance$eval_batch(xdt)

learner = default_gp()

surrogate = srlrn(learner, archive = instance$archive)

surrogate$update()

surrogate$learner$model
}

SurrogateLearnerCollection

Surrogate Model Containing Multiple Learners

Description

Surrogate model containing multiple mlr3::LearnerRegr. The mlr3::LearnerRegr are fit on the target
variables as indicated via cols_y. Note that redundant mlr3::LearnerRegr must be deep clones.

Parameters

assert_insample_perf logical(1)
Should the insample performance of the mlr3::LearnerRegr be asserted after updating the
surrogate? If the assertion fails (i.e., the insample performance based on the perf_measure
does not meet the perf_threshold), an error is thrown. Default is FALSE.

perf_measure List of mlr3::MeasureRegr
Performance measures which should be use to assert the insample performance of the mlr3::LearnerRegr.
Only relevant if assert_insample_perf = TRUE. Default is mlr3::mlr_measures_regr.rsq for
each learner.

perf_threshold List of numeric(1)
Thresholds the insample performance of the mlr3::LearnerRegr should be asserted against.
Only relevant if assert_insample_perf = TRUE. Default is 0 for each learner.

catch_errors logical(1)
Should errors during updating the surrogate be caught and propagated to the loop_function
which can then handle the failed acquisition function optimization (as a result of the failed
surrogate) appropriately by, e.g., proposing a randomly sampled point for evaluation? Default
is TRUE.

impute_method character(1)
Method to impute missing values in the case of updating on an asynchronous bbotk::ArchiveAsync
with pending evaluations. Can be "mean" to use mean imputation or "random" to sam-
ple values uniformly at random between the empirical minimum and maximum. Default is
"random".

SurrogateLearnerCollection 93

Super class

mlr3mbo::Surrogate -> SurrogateLearnerCollection

Active bindings

print_id (character)
Id used when printing.

n_learner (integer(1))
Returns the number of surrogate models.

assert_insample_perf (numeric())
Asserts whether the current insample performance meets the performance threshold.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

feature_types (character())
Stores the feature types the surrogate can handle, e.g. "logical", "numeric", or "factor". A
complete list of candidate feature types, grouped by task type, is stored in mlr_reflections$task_feature_types.

properties (character())
Stores a set of properties/capabilities the surrogate has. A complete list of candidate proper-
ties, grouped by task type, is stored in mlr_reflections$learner_properties.

predict_type (character(1))
Retrieves the currently active predict type, e.g. "response".

Methods

Public methods:
• SurrogateLearnerCollection$new()

• SurrogateLearnerCollection$predict()

• SurrogateLearnerCollection$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
SurrogateLearnerCollection$new(
learners,
archive = NULL,
cols_x = NULL,
cols_y = NULL

)

Arguments:
learners (list of mlr3::LearnerRegr).
archive (bbotk::Archive | NULL)

bbotk::Archive of the bbotk::OptimInstance.
cols_x (character() | NULL)

Column id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

94 SurrogateLearnerCollection

cols_y (character() | NULL)
Column id’s of variables that should be used as targets. By default, automatically inferred
based on the archive.

Method predict(): Predict mean response and standard error. Returns a named list of data.tables.
Each contains the mean response and standard error for one col_y.

Usage:
SurrogateLearnerCollection$predict(xdt)

Arguments:

xdt (data.table::data.table())
New data. One row per observation.

Returns: list of data.table::data.table()s with the columns mean and se.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SurrogateLearnerCollection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud") &
requireNamespace("ranger")) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))

xdt = generate_design_random(instance$search_space, n = 4)$data

instance$eval_batch(xdt)

learner1 = default_gp()

learner2 = default_rf()

surrogate = srlrn(list(learner1, learner2), archive = instance$archive)

SurrogateLearnerCollection 95

surrogate$update()

surrogate$learner

surrogate$learner[["y1"]]$model

surrogate$learner[["y2"]]$model
}

Index

∗ Acquisition Function
AcqFunction, 6
mlr_acqfunctions, 19
mlr_acqfunctions_aei, 19
mlr_acqfunctions_cb, 22
mlr_acqfunctions_ehvi, 23
mlr_acqfunctions_ehvigh, 26
mlr_acqfunctions_ei, 28
mlr_acqfunctions_eips, 30
mlr_acqfunctions_mean, 32
mlr_acqfunctions_multi, 34
mlr_acqfunctions_pi, 36
mlr_acqfunctions_sd, 38
mlr_acqfunctions_smsego, 40
mlr_acqfunctions_stochastic_cb, 43
mlr_acqfunctions_stochastic_ei, 46

∗ Dictionary
mlr_acqfunctions, 19
mlr_loop_functions, 48
mlr_result_assigners, 72

∗ Loop Function
loop_function, 18
mlr_loop_functions, 48
mlr_loop_functions_ego, 49
mlr_loop_functions_emo, 52
mlr_loop_functions_mpcl, 54
mlr_loop_functions_parego, 56
mlr_loop_functions_smsego, 59

∗ Result Assigner
mlr_result_assigners, 72
mlr_result_assigners_archive, 73
mlr_result_assigners_surrogate, 74
ResultAssigner, 84

∗ datasets
mlr_acqfunctions, 19
mlr_loop_functions, 48
mlr_result_assigners, 72

∗ mbo_defaults
default_acqfunction, 12

default_acqoptimizer, 13
default_gp, 14
default_loop_function, 14
default_result_assigner, 15
default_rf, 16
default_surrogate, 16
mbo_defaults, 18

acqf, 5
acqf(), 19, 20, 22, 28, 30, 33, 34, 36, 38, 43,

46
acqfs, 5
acqfs(), 19
AcqFunction, 5, 6, 6, 9–11, 13, 19–23, 25,

27–30, 32–39, 42, 43, 45, 46, 48, 50,
52, 55, 57, 64–66, 68–70, 76, 78, 79,
81, 82

AcqFunctionAEI (mlr_acqfunctions_aei),
19

AcqFunctionCB (mlr_acqfunctions_cb), 22
AcqFunctionEHVI, 26
AcqFunctionEHVI

(mlr_acqfunctions_ehvi), 23
AcqFunctionEHVIGH, 24
AcqFunctionEHVIGH

(mlr_acqfunctions_ehvigh), 26
AcqFunctionEI (mlr_acqfunctions_ei), 28
AcqFunctionEIPS

(mlr_acqfunctions_eips), 30
AcqFunctionMean

(mlr_acqfunctions_mean), 32
AcqFunctionMulti, 10
AcqFunctionMulti

(mlr_acqfunctions_multi), 34
AcqFunctionPI (mlr_acqfunctions_pi), 36
AcqFunctionSD (mlr_acqfunctions_sd), 38
AcqFunctionSmsEgo

(mlr_acqfunctions_smsego), 40
AcqFunctionStochasticCB, 61, 64, 75

96

INDEX 97

AcqFunctionStochasticCB
(mlr_acqfunctions_stochastic_cb),
43

AcqFunctionStochasticEI, 64
AcqFunctionStochasticEI

(mlr_acqfunctions_stochastic_ei),
46

acqo, 9
AcqOptimizer, 9, 9, 13, 34, 40, 43, 46, 50, 52,

55, 57, 60, 63–66, 68–70, 76, 78, 79,
81, 82

bayesopt_ego, 14, 18, 68
bayesopt_ego (mlr_loop_functions_ego),

49
bayesopt_emo (mlr_loop_functions_emo),

52
bayesopt_mpcl

(mlr_loop_functions_mpcl), 54
bayesopt_parego

(mlr_loop_functions_parego), 56
bayesopt_parego(), 68
bayesopt_smsego, 14
bayesopt_smsego

(mlr_loop_functions_smsego), 59
bbotk::Archive, 6, 10, 40, 43, 46, 73, 74,

86–88, 91, 93
bbotk::ArchiveAsync, 62, 64, 66, 67, 90, 92
bbotk::ArchiveBatch, 10, 40, 43, 46, 50, 52,

53, 55, 57, 58, 60, 68, 70
bbotk::Objective, 6, 20, 22, 24, 26, 29–31,

33, 35, 37, 39, 40, 43, 46
bbotk::OptimInstance, 6, 7, 10, 13, 15–17,

40, 43, 46, 73, 75, 84–88, 91, 93
bbotk::OptimInstanceAsyncMultiCrit,

73–75, 85
bbotk::OptimInstanceAsyncSingleCrit,

62, 66, 67, 73, 75, 85
bbotk::OptimInstanceBatch, 10, 40, 41, 43,

46, 68, 70, 71
bbotk::OptimInstanceBatchMultiCrit, 52,

53, 57, 58, 60, 73–75, 85
bbotk::OptimInstanceBatchSingleCrit,

30, 50, 54, 55, 73, 75, 85
bbotk::Optimizer, 62, 65, 69, 73
bbotk::OptimizerAsync, 62, 65
bbotk::OptimizerBatch, 9–11, 34, 69
bbotk::OptimizerBatchRandomSearch, 13
bbotk::Terminator, 9–11, 60, 68

bbotk::TerminatorEvals, 13, 41, 60
bbotk_reflections$optimizer_properties,

65, 69, 76, 79, 81

data.table::data.table, 71
data.table::data.table(), 8, 11, 63, 67,

89, 91, 94
default_acqfunction, 12, 13–18
default_acqoptimizer, 13, 13, 14–18
default_gp, 13, 14, 15–18
default_gp(), 16
default_loop_function, 13, 14, 14, 15–18
default_result_assigner, 13–15, 15,

16–18
default_rf, 13–15, 16, 17, 18
default_rf(), 16
default_surrogate, 13–16, 16, 18
dictionary, 5, 20, 22, 28, 30, 33, 34, 36, 38,

43, 46, 84

fastGHQuad::gaussHermiteData, 26

loop_function, 14, 15, 18, 49, 50, 53, 56, 58,
61, 64, 68–70, 81, 82

mbo_defaults, 13–17, 18
mlr3::Learner, 17
mlr3::LearnerRegr, 14, 16, 86, 89–93
mlr3::MeasureRegr, 89, 92
mlr3::mlr_measures_regr.rsq, 89, 92
mlr3learners, 20
mlr3mbo (mlr3mbo-package), 4
mlr3mbo-package, 4
mlr3mbo::AcqFunction, 20, 22, 24, 26, 29,

31, 33, 35, 37, 39, 40, 43, 46
mlr3mbo::OptimizerAsyncMbo, 62
mlr3mbo::ResultAssigner, 73, 74
mlr3mbo::Surrogate, 90, 93
mlr3misc::Callback, 9–11
mlr3misc::Dictionary, 19, 48, 49, 72
mlr3misc::dictionary_sugar_get(), 5, 84
mlr3tuning::Tuner, 76, 78, 81
mlr3tuning::TunerAsync, 76, 78
mlr3tuning::TunerAsyncFromOptimizerAsync,

76, 78
mlr3tuning::TunerBatch, 81
mlr3tuning::TunerBatchFromOptimizerBatch,

81

98 INDEX

mlr_acqfunctions, 5, 8, 19, 20–23, 25,
27–30, 32–39, 42, 43, 45, 46, 48, 49,
72

mlr_acqfunctions_aei, 8, 19, 19, 23, 25, 27,
29, 32, 33, 35, 37, 39, 42, 45, 48

mlr_acqfunctions_cb, 8, 19, 21, 22, 25, 27,
29, 32, 33, 35, 37, 39, 42, 45, 48

mlr_acqfunctions_ehvi, 8, 19, 21, 23, 23,
27, 29, 32, 33, 35, 37, 39, 42, 45, 48

mlr_acqfunctions_ehvigh, 8, 19, 21, 23, 25,
26, 29, 32, 33, 35, 37, 39, 42, 45, 48

mlr_acqfunctions_ei, 8, 12, 19, 21, 23, 25,
27, 28, 32, 33, 35, 37, 39, 42, 45, 48,
68

mlr_acqfunctions_eips, 8, 19, 21, 23, 25,
27, 29, 30, 33, 35, 37, 39, 42, 45, 48

mlr_acqfunctions_mean, 8, 19, 21, 23, 25,
27, 29, 32, 32, 35, 37, 39, 42, 45, 48

mlr_acqfunctions_multi, 8, 19, 21, 23, 25,
27, 29, 32, 33, 34, 37, 39, 42, 45, 48

mlr_acqfunctions_pi, 8, 19, 21, 23, 25, 27,
29, 32, 33, 35, 36, 39, 42, 45, 48

mlr_acqfunctions_sd, 8, 19, 21, 23, 25, 27,
29, 32, 33, 35, 37, 38, 42, 45, 48

mlr_acqfunctions_smsego, 8, 12, 19, 21, 23,
25, 27, 29, 32, 33, 35, 37, 39, 40, 45,
48, 59, 60

mlr_acqfunctions_stochastic_cb, 8, 12,
19, 21, 23, 25, 27, 29, 32, 33, 35, 37,
39, 42, 43, 48

mlr_acqfunctions_stochastic_ei, 8, 19,
21, 23, 25, 27, 29, 32, 33, 35, 37, 39,
42, 45, 46

mlr_loop_functions, 18, 19, 48, 50, 53, 56,
58, 61, 72

mlr_loop_functions_ego, 18, 49, 49, 52, 53,
56, 58, 61

mlr_loop_functions_emo, 18, 49, 50, 52, 56,
58, 61

mlr_loop_functions_mpcl, 18, 49, 50, 53,
54, 58, 61

mlr_loop_functions_parego, 18, 49, 50, 53,
56, 56, 61

mlr_loop_functions_smsego, 18, 49, 50, 53,
56, 58, 59

mlr_optimizers_adbo, 61
mlr_optimizers_async_mbo, 64
mlr_optimizers_mbo, 68

mlr_reflections$learner_properties, 88,
90, 93

mlr_reflections$task_feature_types, 87,
90, 93

mlr_result_assigners, 19, 49, 72, 74, 75,
83, 85

mlr_result_assigners_archive, 72, 73, 75,
85

mlr_result_assigners_surrogate, 72, 74,
74, 85

mlr_tuners_adbo, 75
mlr_tuners_async_mbo, 78
mlr_tuners_mbo, 80

OptimizerADBO, 62
OptimizerADBO (mlr_optimizers_adbo), 61
OptimizerAsyncMbo, 43, 46, 75, 78, 79
OptimizerAsyncMbo

(mlr_optimizers_async_mbo), 64
OptimizerMbo, 18, 43, 46, 49, 52, 54, 57, 59,

64, 80, 81, 84
OptimizerMbo (mlr_optimizers_mbo), 68

paradox::generate_design_lhs, 62, 65, 75,
78

paradox::generate_design_random, 62, 65,
75, 78

paradox::generate_design_sobol, 62, 65,
75, 78

paradox::ParamSet, 5, 7, 9, 10, 65, 66, 69,
76, 78, 79, 81, 84, 86–88

R6, 7, 11, 20, 22, 24, 27, 29, 31, 33, 35, 37, 39,
41, 44, 47, 62, 66, 69, 73, 74, 76, 79,
81, 84, 88, 90, 93

R6::R6Class, 19, 49, 72
ras, 83
ras(), 72
requireNamespace(), 7, 65, 69, 73, 74, 76,

79, 81, 84, 87, 90, 93
ResultAssigner, 15, 64–66, 68–70, 72,

74–76, 78, 81, 82, 84, 84
ResultAssignerArchive, 15, 64, 68
ResultAssignerArchive

(mlr_result_assigners_archive),
73

ResultAssignerSurrogate, 64, 68
ResultAssignerSurrogate

(mlr_result_assigners_surrogate),
74

INDEX 99

rush::rush_plan(), 62, 65, 75, 78

srlrn, 86
Surrogate, 6, 7, 16, 17, 34, 35, 50, 54, 64–66,

68–70, 74, 76, 78, 79, 81, 82, 87
SurrogateLearner, 17, 20, 22, 29, 33, 37, 39,

44, 47, 50, 54, 57, 63, 64, 66, 86, 89
SurrogateLearnerCollection, 17, 24, 27,

30, 31, 41, 52, 60, 74, 86, 92

TunerADBO (mlr_tuners_adbo), 75
TunerAsyncMbo (mlr_tuners_async_mbo), 78
TunerMbo (mlr_tuners_mbo), 80

	mlr3mbo-package
	acqf
	acqfs
	AcqFunction
	acqo
	AcqOptimizer
	default_acqfunction
	default_acqoptimizer
	default_gp
	default_loop_function
	default_result_assigner
	default_rf
	default_surrogate
	loop_function
	mbo_defaults
	mlr_acqfunctions
	mlr_acqfunctions_aei
	mlr_acqfunctions_cb
	mlr_acqfunctions_ehvi
	mlr_acqfunctions_ehvigh
	mlr_acqfunctions_ei
	mlr_acqfunctions_eips
	mlr_acqfunctions_mean
	mlr_acqfunctions_multi
	mlr_acqfunctions_pi
	mlr_acqfunctions_sd
	mlr_acqfunctions_smsego
	mlr_acqfunctions_stochastic_cb
	mlr_acqfunctions_stochastic_ei
	mlr_loop_functions
	mlr_loop_functions_ego
	mlr_loop_functions_emo
	mlr_loop_functions_mpcl
	mlr_loop_functions_parego
	mlr_loop_functions_smsego
	mlr_optimizers_adbo
	mlr_optimizers_async_mbo
	mlr_optimizers_mbo
	mlr_result_assigners
	mlr_result_assigners_archive
	mlr_result_assigners_surrogate
	mlr_tuners_adbo
	mlr_tuners_async_mbo
	mlr_tuners_mbo
	ras
	ResultAssigner
	srlrn
	Surrogate
	SurrogateLearner
	SurrogateLearnerCollection
	Index

