
Package ‘landsepi’
September 23, 2024

Type Package

Encoding UTF-8

Title Landscape Epidemiology and Evolution

Version 1.5.1

Date 2024-09-23

Maintainer Jean-François Rey <jean-francois.rey@inrae.fr>

Description A stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution
of a plant pathogen in a heterogeneous landscape to assess resistance deployment strategies.
It is based on a spatial geometry for describing the landscape and allocation of different cultivars,
a dispersal kernel for the dissemination of the pathogen, and a SEIR
('Susceptible-Exposed-Infectious-Removed’) structure with a discrete time step.
It provides a useful tool to assess the performance of a wide range of deployment options with
respect to their epidemiological, evolutionary and economic outcomes.
Loup Rimbaud, Julien Papaïx, Jean-François Rey, Luke G Barrett,
Peter H Thrall (2018) <doi:10.1371/journal.pcbi.1006067>.

URL https://csiro-inra.pages.biosp.inrae.fr/landsepi/,

https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi

BugReports https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi/-/issues

License GPL (>= 2) | file LICENSE

LazyData true

BuildVignettes true

NeedsCompilation yes

Biarch true

SystemRequirements C++, gsl

Depends R (>= 4.2.0), sp (>= 1.0-17)

Imports methods, utils, stats (>= 3.0.2), grDevices (>= 3.0.0),
graphics (>= 3.0.0), parallel, Rcpp (>= 0.9.0), Matrix (>=
1.3-0), mvtnorm, fields, splancs, sf, DBI, RSQLite, foreach,
doParallel, deSolve

1

https://doi.org/10.1371/journal.pcbi.1006067
https://csiro-inra.pages.biosp.inrae.fr/landsepi/
https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi
https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi/-/issues

2 Contents

Collate 'Math-Functions.R' 'RcppExports.R' 'graphics.R' 'AgriLand.R'
'Class-LandsepiParams.R' 'Cultivars_List.R' 'GPKGTools.R'
'tools.R' 'Methods-LandsepiParams.R' 'demo_landsepi.R'
'landsepi-package.R' 'output.R' 'runShiny.R' 'simul_landsepi.R'

LinkingTo Rcpp, testthat

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), shiny, shinyjs, DT, knitr, rmarkdown

VignetteBuilder knitr

Author Loup Rimbaud [aut] (<https://orcid.org/0000-0002-8098-9984>),
Marta Zaffaroni [aut] (<https://orcid.org/0000-0002-2951-8626>),
Jean-François Rey [aut, cre] (<https://orcid.org/0000-0003-3281-6701>),
Julien Papaix [aut],
Jean-Loup Gaussen [ctb],
Manon Couty [ctb]

Repository CRAN

Date/Publication 2024-09-23 12:30:06 UTC

Contents
landsepi-package . 4
AgriLand . 9
allocateCroptypeCultivars . 12
allocateCultivarGenes . 13
allocateLandscapeCroptypes . 14
antideriv_verhulst . 17
checkCroptypes . 17
checkCultivars . 18
checkCultivarsGenes . 18
checkDispersalHost . 19
checkDispersalPathogen . 19
checkGenes . 20
checkInoculum . 20
checkLandscape . 21
checkOutputs . 21
checkPathogen . 22
checkPI0_mat . 22
checkSimulParams . 23
checkTime . 23
checkTreatment . 24
compute_audpc100S . 24
createSimulParams . 25
Cultivars_list . 26
demo_landsepi . 27
dispP . 28
epid_output . 29
evol_output . 33

https://orcid.org/0000-0002-8098-9984
https://orcid.org/0000-0002-2951-8626
https://orcid.org/0000-0003-3281-6701

Contents 3

getMatrixCroptypePatho . 35
getMatrixCultivarPatho . 36
getMatrixGenePatho . 37
getMatrixPolyPatho . 38
initialize,LandsepiParams-method . 39
inoculumToMatrix . 41
invlogit . 42
is.in.01 . 43
is.positive . 44
is.strict.positive . 44
is.wholenumber . 45
landscapeTEST . 45
LandsepiParams . 46
loadCroptypes . 47
loadCultivar . 48
loadDispersalHost . 49
loadDispersalPathogen . 50
loadGene . 51
loadInoculum . 52
loadLandscape . 54
loadOutputs . 55
loadPathogen . 56
loadSimulParams . 57
loadTreatment . 58
logit . 59
model_landsepi . 60
multiN . 65
periodic_cov . 67
plotland . 67
plot_allocation . 69
plot_freqPatho . 70
price_reduction . 71
print . 72
resetCultivarsGenes . 72
runShinyApp . 73
runSimul . 73
saveDeploymentStrategy . 76
setCroptypes . 78
setCultivars . 79
setDispersalHost . 81
setDispersalPathogen . 82
setGenes . 83
setInoculum . 85
setLansdcape . 86
setOutputs . 87
setPathogen . 88
setSeed . 90
setSeedValue . 91

4 landsepi-package

setTime . 91
setTreatment . 92
show . 93
simul_landsepi . 94
summary . 101
survivalProbToMatrix . 101
switch_patho_to_aggr . 103
updateReproSexProb . 103
updateSurvivalProb . 104
video . 106

Index 108

landsepi-package Landscape Epidemiology and Evolution

Description

A stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a plant
pathogen in a heterogeneous landscape to assess resistance deployment strategies.

Details

Package: landsepi
Type: Package
Version: 1.5.1
Date: 2024-09-23
License: GPL (>=2)

The landsepi package implements a spatially explicit stochastic model able to assess the epidemio-
logical, evolutionary and economic outcomes of strategies to deploy plant resistance to pathogens.
It also helps investigate the effect of landscape organisation, the considered pathosystem and the
epidemio-evolutionary context on the performance of a given strategy.

It is based on a spatial geometry for describing the landscape and allocation of different cultivars, a
dispersal kernel for the dissemination of the pathogen, and a SEIR (‘susceptible-exposed-infectious-
removed’, renamed HLIR for ’healthy-latent-infectious-removed’ to avoid confusions with ’suscep-
tible host’) structure with a discrete time step. It simulates the spread and evolution (via mutation,
recombination through sexual reproduction, selection and drift) of a pathogen in a heterogeneous
cropping landscape, across cropping seasons split by host harvests which impose potential bottle-
necks to the pathogen.

The lansdcape is represented by a set of polygons where the pathogen can disperse (the basic spa-
tial unit is an individual polygon; an agricultural field may be composed of a single or several
polygons). landsepi includes built-in simulated landscapes (and associated dispersal matrices for
rust pathogens, see below), but is it possible to use your own landscape (in shapefile format) and
dispersal matrix.

landsepi-package 5

A wide array of resistance deployment strategies can be simulated in landsepi: fields of the land-
scape are cultivated with different croptypes that can rotate through time; each croptype is com-
posed of either a pure cultivar or a mixture; and each cultivar may carry one or several resistance
genes. Thus, all combinations of rotations, mosaics, mixtures and pyramiding strategies are possi-
ble. Resistance genes affect several possible pathogen aggressiveness components: infection rate,
durations of the latent period and the infectious period, and propagule production rate. Resistance
may be complete (i.e. complete inhibition of the targeted aggressiveness component) or partial
(i.e. the targeted aggressiveness component is only softened), and expressed from the beginning
of the season, or later (to simulate Adult Plant Resistance (APR), also called Mature Plant Resis-
tance). Cultivar allocation can be realised via an algorithm (allocateCroptypeCultivars()) but
it is possible to use your own cultivar allocation if it is included in the shapefile containing the land-
sape. Additionally, any cultivar may be treated with contact pesticides, which reduce the pathogen
infection rate with an efficiency gradually decreasing with time and host growth.

To each resistance gene in the host (whether it may be a major gene or a QTL for quantitative
resistance) is associated a pathogenicity gene in the pathogen. Through mutation of pathogenicity
genes, the pathogen can restore its aggressiveness on resistance hosts and thus adapt to resistance
(leading to sudden breakdown or gradual erosion of resistance genes). Pathogenicity genes may
also be reassorted via sexual reproduction or gene recombination. Increased aggressiveness on a
resistant host (i.e. adaptation to the corresponding resistance genes) can be penalised by a fitness
cost, either on all hosts, or only on susceptible hosts (in the latter case, pathogen genotypes adapted
to a resistance gene have a reduced aggressiveness on hosts that do not carry this gene, and a
’relative advantage’ on host that do carry such gene). The relation between pathogen aggressiveness
on susceptible and resistant hosts is defined by a trade-off relationship whose shape depends on the
strength of the trade-off. Strong trade-off means that the gain in fitness on resistant hosts is smaller
than the cost on susceptible hosts.

The package includes five examples of landscape structures and a default parameterisation to rep-
resent plant pathogens as typified by rusts of cereal crops (genus Puccinia, e.g. stripe rust, stem
rust and leaf rust of wheat and barley). A parameterisation to downy mildew of grapevine (Plas-
mopara viticola) and black sigatoka of banana (Pseudocercospora fijiensis) are also available. The
main function of the package is runSimul(). It can be parameterised to simulate various resistance
deployment strategies using either the provided landscapes and parameters for cereal rusts, or land-
scapes and parameters set by the user. See demo_landsepi() for a demonstration, and our tutorials
(browseVignettes("landsepi")) for details on how to use landsepi.

Assumptions (in bold those that can be relaxed with appropriate parameterization): 1. The
spatial unit is a polygon, i.e. a piece of land delimited by boundaries and possibly cul-
tivated with a crop. Such crop may be host or non-host, and the polygon is considered
a homogeneous mixture of host individuals (i.e. there is no intra-polygon structuration).
An agricultural field may be composed of a single or several polygons.

2. A host ‘individual’ is an infection unit (i.e. it can be infected by one and only one
pathogen propagule, there is no co-infection) and may correspond to a given amount of
plant tissue (where a local infection may develop, e.g. fungal lesion) or a whole plant
(e.g. systemic viral infection). In the first case, plant growth increases the amount of
available plant tissue (hence the number of individuals) during the cropping season.
Plant growth is deterministic (logistic growth) and only healthy individuals (state H)
contribute to plant growth (castrating pathogen).

3. Host individuals are in one of these four categories: H (healthy), E (exposed and latent,
i.e. infected but not infectious nor symptomatic), I (infectious and symptomatic), or R

6 landsepi-package

(removed, i.e. epidemiologically inactive).
4. The decreasing availability of healthy host tissues (as epidemics spread) makes pathogen

infection less likely (i.e. density-dependence due to plant architecture).
5. Hosts are cultivated (i.e. sown/planted and harvested), thus there is no host repro-

duction, dispersal and natural death.
6. Environmental and climate conditions are constant, and host individuals of a given geno-

type are equally susceptible to disease from the first to the last day of every cropping
season.

7. Crop yield depends on the average amount of producing host individuals during the crop-
ping season and does not depend on the time of epidemic peak. Only healthy individuals
(state H) contribute to crop yield.

8. Cultivars may be treated with chemicals which reduce the pathogen infection rate (contact
treatment). Treatment efficiency decreases with host growth (i.e. new biomass is not
protected by treatments) and time (i.e. pesticide degradation). Cultivars to be treated
and dates of chemical applications are fixed prior to simulations but only polygons where
disease severity exceeds a given threshold (possibly 0) are treated.

9. Components of a mixture are independent each other (i.e. there is neither plant-plant
interaction nor competition for space, and harvests are segregated). If one component is
treated with a chemical, it does not affect other components.

10. The pathogen is haploid.
11. Initially, the pathogen is not adapted to any source of resistance, and is only present

on susceptible hosts (at state I).
12. Pathogen dispersal is isotropic (i.e. equally probable in every direction).
13. Boundaries of the landscape are reflective: propagules stay in the system as if it was

closed.
14. Pathogen reproduction can be purely clonal, purely sexual, or mixed (alternation of clonal

and sexual reproduction).
15. If there is sexual reproduction (or gene recombination), it occurs only between parental

infections located in the same polygon and the same host genotype (i.e. cultivar). At
that scale, the pathogen population is panmictic (i.e. all pairs of parents have the same
probability to occur). The propagule production rate of a parental pair is the sum of the
propagule production rates of the parents. For a given parental pair, the genotype of each
propagule is issued from random loci segregation of parental qualitative resistance genes.
For each quantitative resistance gene, the value of each propagule trait is issued from a
normal distribution around the average of the parental traits, following the infinitesimal
model (Fisher 1919).

16. All types of propagules (i.e. clonal and sexual) share the same pathogenicity parameters
(e.g. infection rate, latent period duration, etc.) but each of them has their own dispersal
and survival abilities (see after).

17. At the end of each cropping season, pathogens experience a bottleneck representing the
off-season and then propagules are produced (either via clonal or sexual reproduction).
The probability of survival is the same every year and in every polygon. Clonal
propagules are released during the following season only, either altogether at the first
day of the season, or progressively (in that case the day of release of each propagule is
sampled from a uniform distribution). Sexual propagules are gradually released during
several of the following seasons (between-season release). The season of release of each
propagule is sampled from an exponential distribution, truncated by a maximum viability

landsepi-package 7

limit. Then, the day of release in a given season is sampled from a uniform distribution
(within-season release).

18. Pathogenicity genes mutate independently from each other.
19. Pathogen adaptation to a given resistance gene consists in restoring the same aggres-

siveness component as the one targeted by the resistance gene.
20. If a fitness cost penalises pathogen adaptation to a given resistance gene, this cost is paid

on all hosts with possibly a relative advantage on hosts carrying the resistance gene. It
consists in a reduction in the same aggressiveness component as the one targeted by the
resistance gene.

21. When there is a delay for activation of a given resistance gene (APR), the age of activation
is the same for all hosts carrying this gene and located in the same polygon.

22. Variances of the durations of the latent and the infectious periods of the pathogen are not
affected by plant resistance.

Epidemiological outputs The epidemiological outcome of a deployment strategy is evaluated us-
ing:

1. the area under the disease progress curve (AUDPC) to measure disease severity (i.e. the
average number of diseased plant tissue -status I and R- per time step and square meter),

2. the relative area under the disease progress curve (AUDPCr) to measure the average pro-
portion of diseased tissue (status I and R) relative to the total number of existing host
individuals (H+L+I+R).

3. the Green Leaf Area (GLA) to measure the average amount of healthy plant tissue (status
H) per time step and square meter,

4. the relative Green Leaf Area (GLAr) to measure the average proportion of healthy tissue
(status H) relative to the total number of existing host individuals (H+L+I+R).

5. the yearly contribution of pathogen genotypes to LIR dynamics on every host as well as
the whole landscape.

A set of graphics and a video showing epidemic dynamics can also be generated.

Evolutionary outputs The evolutionary outcome is assessed by measuring:

1. the dynamics of pathogen genotype frequencies,
2. the evolution of pathogen aggressiveness,
3. the durability of resistance genes. Durability can be estimated using the time until the

pathogen reaches the three steps to adapt to plant resistance: (1) first appearance of
adapted mutants, (2) initial migration to resistant hosts and infection, and (3) broader
establishment in the resistant host population (i.e. the point at which extinction becomes
unlikely).

Economic outputs The economic outcome of a simulation can be evaluated using:

1. the crop yield: yearly crop production (e.g. grains, fruits, wine) in weight (or volume)
units per hectare (depends on the number of productive hosts and associated theoretical
yield),

2. the crop products: yearly products generated from sales, in monetary units per hectare
(depends on crop yield and market value),

3. the crop operational costs: yearly costs associated with crop planting (depends on ini-
tial host density and planting cost) and pesticide treatments (depends on the number of
applications and the cost of a single application) in monetary units per hectare.

8 landsepi-package

4. the margin, i.e. products - operational costs, in monetary units per hectare.

Future versions:
Future versions of the package will include in particular:

• Sets of pathogen parameters to simulate other pathosystems (e.g. Cucumber mosaic virus on
pepper, potato virus Y on pepper).

• An updated version of the shiny interface.

Dependencies:
The package for compiling needs:

• g++

• libgsl2

• libgsl-dev

and the following R packages:

• Rcpp

• sp

• stats

• Matrix

• mvtnorm

• fields

• splancs

• sf

• DBI

• RSQLite

• foreach

• parallel

• doParallel

• deSolve

In addition, to generate videos the package will need ffmpeg.

Author(s)

Loup Rimbaud <loup.rimbaud@inrae.fr>

Marta Zaffaroni <marta.zaffaroni@inrae.fr>

Jean-Francois Rey <jean-francois.rey@inrae.fr>

Julien Papaix <julien.papaix@inrae.fr>

Jean-Loup Gaussen <jean-loup-thomas.gaussen@inrae.fr>

Manon Couty <manon.couty@insa-lyon.fr>

Maintainer: Jean-Francois Rey <jean-francois.rey@inrae.fr>

AgriLand 9

References

When referencing the simulation model, please cite the following article::
Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durabil-
ity and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS
Computational Biology 14(4):e1006067.

When referencing the R package, please cite the following package::
Rimbaud L., Papaïx J. and Rey J.-F. (2018). landsepi: Landscape Epidemiology and Evolution. R
package, url: https://cran.r-project.org/package=landsepi.

See Also

Useful links:

• https://csiro-inra.pages.biosp.inrae.fr/landsepi/

• https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi

• Report bugs at https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi/-/issues

Examples

Not run:
library("landsepi")

Run demonstrations (in 10-year simulations) for different deployment strategies:
demo_landsepi(strat = "MO") ## for a mosaic of cultivars
demo_landsepi(strat = "MI") ## for a mixture of cultivars
demo_landsepi(strat = "RO") ## for a rotation of cultivars
demo_landsepi(strat = "PY") ## for a pyramid of resistance genes

End(Not run)

AgriLand Landscape allocation

Description

Generates a landscape composed of fields where croptypes are allocated with controlled proportions
and spatio-temporal aggregation.

Usage

AgriLand(
landscape,
Nyears,
rotation_period = 0,
rotation_sequence = list(c(0, 1, 2)),
rotation_realloc = FALSE,

https://csiro-inra.pages.biosp.inrae.fr/landsepi/
https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi
https://gitlab.paca.inrae.fr/CSIRO-INRA/landsepi/-/issues

10 AgriLand

prop = list(c(1/3, 1/3, 1/3)),
aggreg = list(1),
algo = "periodic",
croptype_names = c(),
graphic = FALSE,
outputDir = "./"

)

Arguments

landscape a spatialpolygon object containing field coordinates.
Nyears an integer giving the number of simulated cropping seasons.
rotation_period

number of years before rotation of the landscape. There is no rotation if rota-
tion_period=0 or rotation_period=Nyears.

rotation_sequence

a list, each element of the list contains indices of croptypes that are cultivated
during a period given by "rotation_period". There is no change in cultivated
croptypes if the list contains only one element (e.g. only one vector c(0,1,2),
indicating cultivation of croptypes 0, 1 and 2).

rotation_realloc

a logical indicating if a new random allocation of croptypes is performed when
the landscape is rotated (FALSE=static allocation, TRUE=dynamic allocation).
Note that if rotation_realloc=FALSE, all elements of the list "rotation_sequence"
must have the same length, and only the first element of the lists "prop" and "ag-
greg" will be used.

prop a list of the same size as "rotation_sequence", each element of the list contains
a vector of the proportions (in surface) associated with the croptypes in "rota-
tion_sequence". A single vector can be given instead of a list if all elements of
"rotation_sequence" are associated with the same proportions.

aggreg a list of the same size as "rotation_sequence", each element of the list is a single
double indicating the degree of aggregation of the landscape. This double must
greater or equal 0; the greater its value, the higher the degree of spatial aggrega-
tion (roughly, aggreg between 0 and 0.1 for fragmented landscapes, between 0.1
and 0.5 for balanced landscapes, between 0.5 and 3 for aggregated landscapes,
and above 3 for highly aggregated landscapes). A single double can be given
instead of a list if all elements of "rotation_sequence" are associated with the
same level of aggregation.

algo the algorithm used for the computation of the variance-covariance matrix of the
multivariate normal distribution: "exp" for exponential function, "periodic" for
periodic function, "random" for random draw (see details of function multiN). If
algo="random", the parameter aggreg is not used. Algorithm "exp" is preferable
for big landscapes.

croptype_names a vector of croptype names (for legend in graphic).
graphic a logical indicating if a graphic of the landscape must be generated (TRUE) or

not (FALSE).
outputDir a directory to save graphic

AgriLand 11

Details

An algorithm based on latent Gaussian fields is used to allocate two different croptypes across the
simulated landscapes (e.g. a susceptible and a resistant cultivar, denoted as SC and RC, respec-
tively). This algorithm allows the control of the proportions of each croptype in terms of surface
coverage, and their level of spatial aggregation. A random vector of values is drawn from a mul-
tivariate normal distribution with expectation 0 and a variance-covariance matrix which depends
on the pairwise distances between the centroids of the fields. Next, the croptypes are allocated to
different fields depending on whether each value drawn from the multivariate normal distribution
is above or below a threshold. The proportion of each cultivar in the landscape is controlled by
the value of this threshold. To allocate more than two croptypes, AgriLand uses sequentially this
algorithm. For instance, the allocation of three croptypes (e.g. SC, RC1 and RC2) is performed as
follows:

1. the allocation algorithm is run once to segregate the fields where the susceptible cultivar is
grown, and

2. the two resistant cultivars (RC1 and RC2) are assigned to the remaining candidate fields by
re-running the allocation algorithm.

Value

a gpkg (shapefile) containing the landscape structure (i.e. coordinates of field boundaries), the area
and composition (i.e. croptypes) in time (i.e. each year) for each field. A png graphic can be
generated if graphic=TRUE.

References

Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durability
and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Compu-
tational Biology 14(4):e1006067.

See Also

multiN, periodic_cov, allocateLandscapeCroptypes

Examples

Not run:
data(landscapeTEST)
landscape <- get("landscapeTEST1")
set.seed(12345)
Generate a mosaic of three croptypes in balanced proportions
and high level of spatial aggregation
AgriLand(landscape,

Nyears = 10,
rotation_sequence = c(0, 1, 2), prop = rep(1 / 3, 3),
aggreg = rep(10, 3), algo = "periodic",
graphic = TRUE, outputDir = getwd()

)

Generate a dynamic mosaic of two croptypes in unbalanced proportions

12 allocateCroptypeCultivars

and low level of spatial aggregation,
the second croptype being replaced every 5 years without changing field allocation
AgriLand(landscape,

Nyears = 20, rotation_period = 5, rotation_sequence = list(c(0, 1), c(0, 2)),
prop = c(1 / 3, 2 / 3), aggreg = c(0.07, 0.07), algo = "periodic", graphic = TRUE,
outputDir = getwd()

)

Generate a dynamic mosaic of four croptypes in balanced proportions
and medium level of spatial aggregation,
with field allocation changing every year
AgriLand(landscape,

Nyears = 5, rotation_period = 1, rotation_realloc = TRUE,
rotation_sequence = c(0, 1, 2, 3),
prop = rep(1 / 4, 4), aggreg = 0.25, algo = "exp", graphic = TRUE, outputDir = getwd()

)

End(Not run)

allocateCroptypeCultivars

Allocate cultivars to one croptype

Description

Updates a given croptype by allocating cultivars composing it.

Usage

allocateCroptypeCultivars(
croptypes,
croptypeName,
cultivarsInCroptype,
prop = NULL

)

Arguments

croptypes a dataframe containing all croptypes, initialised via loadCroptypes

croptypeName the name of the croptype to be allocated
cultivarsInCroptype

name of cultivars composing the croptype

prop vector of proportions of each cultivar in the croptype. Default to balanced pro-
portions.

Value

a croptype data.frame updated for the concerned croptype.

allocateCultivarGenes 13

See Also

setCroptypes, setCultivars

Examples

Not run:
simul_params <- createSimulParams()
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop", "Mixture"))
croptypes
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture", c("Resistant1", "Resistant2"))
croptypes

End(Not run)

allocateCultivarGenes Allocate genes to a cultivar

Description

Updates a LandsepiParams object with, for a given cultivar, the list of genes it carries

Usage

allocateCultivarGenes(
params,
cultivarName,
listGenesNames = c(""),
force.clean = FALSE

)

Arguments

params a LandsepiParams object.

cultivarName the name of the cultivar to be allocated.

listGenesNames the names of the genes the cultivar carries

force.clean force to clean previous allocated genes to all cultivars

Value

a LandsepiParams object

14 allocateLandscapeCroptypes

See Also

setGenes, setCultivars

Examples

Not run:
simul_params <- createSimulParams()
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params <- allocateCultivarGenes(simul_params, "Resistant", c("MG 1", "MG 2"))
simul_params@CultivarsGenes

End(Not run)

allocateLandscapeCroptypes

Allocate croptypes to the landscape

Description

Updates the landscape of a LandsepiParams object with croptype allocation in every polygon of
the landscape and every year of simulation. Allocation is based on an algorithm which controls
croptype proportions (in surface) and spatio-temporal aggregation. Note that time, landscape and
croptype parameters must be set before allocating landscape croptypes.

Usage

allocateLandscapeCroptypes(
params,
rotation_period,
rotation_sequence,
rotation_realloc = FALSE,
prop,
aggreg,
algo = "periodic",
graphic = TRUE

)

allocateLandscapeCroptypes 15

Arguments

params a LandsepiParams Object.
rotation_period

number of years before rotation of the landscape. There is no rotation if rota-
tion_period=0 or rotation_period=Nyears.

rotation_sequence

a list, each element of the list contains indices of croptypes that are cultivated
during a period given by "rotation_period". There is no change in cultivated
croptypes if the list contains only one element (e.g. only one vector c(0,1,2),
indicating cultivation of croptypes 0, 1 and 2).

rotation_realloc

a logical indicating if a new random allocation of croptypes is performed when
the landscape is rotated (FALSE=static allocation, TRUE=dynamic allocation).
Note that if rotation_realloc=FALSE, all elements of the list "rotation_sequence"
must have the same length, and only the first element of the lists "prop" and "ag-
greg" will be used.

prop a list of the same size as "rotation_sequence", each element of the list contains
a vector of the proportions (in surface) associated with the croptypes in "rota-
tion_sequence". A single vector can be given instead of a list if all elements of
"rotation_sequence" are associated with the same proportions.

aggreg a list of the same size as "rotation_sequence", each element of the list is a single
double indicating the degree of aggregation of the landscape. This double must
greater or equal 0; the greater its value, the higher the degree of spatial aggrega-
tion (roughly, aggreg between 0 and 0.1 for fragmented landscapes, between 0.1
and 0.5 for balanced landscapes, between 0.5 and 3 for aggregated landscapes,
and above 3 for highly aggregated landscapes). A single double can be given
instead of a list if all elements of "rotation_sequence" are associated with the
same level of aggregation.

algo the algorithm used for the computation of the variance-covariance matrix of the
multivariate normal distribution: "exp" for exponential function, "periodic" for
periodic function, "random" for random draw (see details of function multiN). If
algo="random", the parameter aggreg is not used. Algorithm "exp" is preferable
for big landscapes.

graphic a logical indicating if graphics must be generated (TRUE) or not (FALSE).

Details

An algorithm based on latent Gaussian fields is used to allocate two different croptypes across the
simulated landscapes (e.g. a susceptible and a resistant cultivar, denoted as SC and RC, respec-
tively). This algorithm allows the control of the proportions of each croptype in terms of surface
coverage, and their level of spatial aggregation. A random vector of values is drawn from a multi-
variate normal distribution with expectation 0 and a variance-covariance matrix which depends on
the pairwise distances between the centroids of the polygons. Next, the croptypes are allocated to
different polygons depending on whether each value drawn from the multivariate normal distribu-
tion is above or below a threshold. The proportion of each cultivar in the landscape is controlled by
the value of this threshold. To allocate more than two croptypes, AgriLand uses sequentially this

16 allocateLandscapeCroptypes

algorithm. For instance, the allocation of three croptypes (e.g. SC, RC1 and RC2) is performed as
follows:

1. the allocation algorithm is run once to segregate the polygons where the susceptible cultivar
is grown, and

2. the two resistant cultivars (RC1 and RC2) are assigned to the remaining candidate polygons
by re-running the allocation algorithm.

Value

a LandsepiParams object with Landscape updated with the layer "croptypeID". It contains croptype
allocation in every polygon of the landscape for all years of simulation.

Examples

Not run:
Initialisation
simul_params <- createSimulParams(outputDir = getwd())
Time parameters
simul_params <- setTime(simul_params, Nyears = 10, nTSpY = 120)
Landscape
simul_params <- setLandscape(simul_params, loadLandscape(1))
Cultivars
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
Allocate cultivars to croptypes
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop"
, "Resistant crop 1"
, "Resistant crop 2"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 1", "Resistant1")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 2", "Resistant2")
simul_params <- setCroptypes(simul_params, croptypes)
Allocate croptypes to landscape
rotation_sequence <- croptypes$croptypeID ## No rotation -> 1 rotation_sequence element
rotation_period <- 0 ## same croptypes every years
prop <- c(1 / 3, 1 / 3, 1 / 3) ## croptypes proportions
aggreg <- 10 ## aggregated landscape
simul_params <- allocateLandscapeCroptypes(simul_params, rotation_period = rotation_period,
rotation_sequence = rotation_sequence,
rotation_realloc = FALSE, prop = prop, aggreg = aggreg)
simul_params@Landscape

End(Not run)

antideriv_verhulst 17

antideriv_verhulst Antiderivative of the Verhulst logistic function

Description

Give the antiderivative of the logistic function from the Verhulst model.

Usage

antideriv_verhulst(x, initial_density, max_density, growth_rate)

Arguments

x timestep up to which antiderivative must be computed
initial_density

initial density

max_density maximal density

growth_rate growth rate

Details

The Verhulst model (used to simulate host growth) is defined by f(x) = max_density/(1 +
(max_density/initial_density)∗exp(−growth_rate∗x)). See https://en.wikipedia.org/wiki/Logistic_function
for details.

Value

An object of the same type as x containing the antiderivative of the input values.

Examples

antideriv_verhulst(119, 0.1, 2, 0.1) / 120

checkCroptypes Check croptypes

Description

checks croptypes validity

Usage

checkCroptypes(params)

18 checkCultivarsGenes

Arguments

params a LandsepiParams object.

Value

a boolean, TRUE if OK, FALSE otherwise

checkCultivars Check cultivars

Description

check cultivars validity

Usage

checkCultivars(params)

Arguments

params a LandsepiParams object.

Value

a boolean, TRUE if OK, FALSE otherwise

checkCultivarsGenes Check cultivars genes

Description

Checks CultivarsGene data.frame validity

Usage

checkCultivarsGenes(params)

Arguments

params a LandsepiParams object.

Value

a boolean, TRUE if OK, FALSE otherwise

checkDispersalHost 19

checkDispersalHost Check host dispersal

Description

Checks host dispersal matrix validity.

Usage

checkDispersalHost(params)

Arguments

params a LandsepiParams Object.

Value

a boolean TRUE if OK, FALSE otherwise

checkDispersalPathogen

Check pathogen dispersal

Description

Checks pathogen dispersal validity

Usage

checkDispersalPathogen(params)

Arguments

params a LandsepiParams Object.

Value

a boolean TRUE if OK, FALSE otherwise

20 checkInoculum

checkGenes Check genes

Description

checks Genes data.frame validity

Usage

checkGenes(params)

Arguments

params a LandsepiParams object.

Value

a boolean, TRUE if OK, FALSE otherwise

checkInoculum Check inoculum

Description

Checks inoculum validity.

Usage

checkInoculum(params)

Arguments

params a LandsepiParams object.

Value

a boolean, TRUE if OK, FALSE otherwise

checkLandscape 21

checkLandscape Check the landscape

Description

Checks landscape validity

Usage

checkLandscape(params)

Arguments

params a LandsepiParams Object.

Value

TRUE if Ok, FALSE otherwise

checkOutputs Check outputs

Description

Checks outputs validity.

Usage

checkOutputs(params)

Arguments

params a LandsepiParams object.

Value

a boolean, TRUE if OK, FALSE otherwise

22 checkPI0_mat

checkPathogen Check pathogen

Description

Checks pathogen validity

Usage

checkPathogen(params)

Arguments

params a LandsepiParams Object.

Value

a boolean, TRUE if OK, FALSE otherwise

checkPI0_mat Check the array PI0_mat when entered manually in loadInoculum().

Description

Checks validity of the array.

Usage

checkPI0_mat(mat, params)

Arguments

mat a 3D array of dimensions (1:Nhost,1:Npatho,1:Npoly)

params a LandsepiParams object.

Value

the same array at mat, possibly corrected if incompatibility has been detected

checkSimulParams 23

checkSimulParams Check simulation parameters

Description

Checks validity of a LandsepiParams object.

Usage

checkSimulParams(params)

Arguments

params a LandsepiParams Object.

Value

TRUE if OK for simulation, FALSE otherwise

checkTime Check time

Description

Checks time parameters validity

Usage

checkTime(params)

Arguments

params a LandsepiParams Object.

Value

a boolean TRUE if times are setted.

24 compute_audpc100S

checkTreatment Check treatment

Description

Checks treatment validity

Usage

checkTreatment(params)

Arguments

params a LandsepiParams Object.

Value

a boolean, TRUE if OK, FALSE otherwise

compute_audpc100S Compute AUDPC in a single 100% susceptible field

Description

Compute AUDPC in a single field cultivated with a susceptible cultivar.

Usage

compute_audpc100S(
disease = "rust",
hostType = "wheat",
nTSpY = 120,
area = 1e+06,
seed = 12345

)

Arguments

disease a disease name, among "rust" (default), "mildew" and "sigatoka"

hostType cultivar type, among: "wheat" (default), "grapevine", "banana", "pepper".

nTSpY number to time steps per cropping season

area area of the field (must be in square meters).

seed an integer used as seed value (for random number generator).

createSimulParams 25

Details

audpc100S is the average AUDPC computed in a non-spatial simulation.

Value

The AUDPC value (numeric)

See Also

loadOutputs

Examples

Not run:
compute_audpc100S("rust", "wheat", area=1E6)
compute_audpc100S("mildew", "grapevine", area=1E6)
compute_audpc100S("sigatoka", "banana", area=1E6, nTSpY=182)

End(Not run)

createSimulParams Create a LandsepiParams object.

Description

Creates a default object of class LandsepiParams.

Usage

createSimulParams(outputDir = "./")

Arguments

outputDir ouput directory for simulation (default: current directory)

Details

Create a default object of class LandsepiParams used to store all simulation parameters. It also
creates a subdirectory in outputDir using the date; this directory will contain all simulation outputs.

Value

a LandsepiParams object initialised with the following context:

• random seed

• all pathogen parameters fixed at 0

• no between-polygon dispersal (neither pathogen nor host)

• no pathogen introduction

26 Cultivars_list

• no resistance gene

• no chemical treatment

• no output to generate.

Examples

Not run:
createSimulParams()

End(Not run)

Cultivars_list Cultivars Type list

Description

A set of configurated cultivars types

Usage

Cultivars_list

Format

A list of list indexed by type name

• cultivarName: cultivar names (cannot accept space),

• initial_density: host densities (per square meter) at the beginning of the cropping season as if
cultivated in pure crop,

• max_density: maximum host densities (per square meter) at the end of the cropping season as
if cultivated in pure crop,

• growth rate: host growth rates,

• reproduction rate: host reproduction rates,

• yield_H: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status H as if cultivated in pure crop,

• yield_L: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status L as if cultivated in pure crop,

• yield_I: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status I as if cultivated in pure crop,

• yield_R: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status R as if cultivated in pure crop,

• planting_cost = planting costs (in monetary units / ha / cropping season) as if cultivated in
pure crop,

• market_value = market values of the production (in monetary units / weight or volume unit).

demo_landsepi 27

demo_landsepi Package demonstration

Description

run a simulation demonstration with landsepi

Usage

demo_landsepi(
seed = 5,
strat = "MO",
Nyears = 10,
nTSpY = 120,
videoMP4 = FALSE

)

Arguments

seed an interger used as seed for Random Number Generator.

strat a string specifying the deployment strategy: "MO" for mosaic of resistant cul-
tivars, "MI" for intra-fied mixtures, "RO" for cultivar rotations, and "PY" for
resistance gene pyramiding in a cultivar.

Nyears number of cropping seasons (years) to simulate.

nTSpY number of time-steps (days) per cropping season.

videoMP4 a logical indicating if a video must be generated (TRUE, default) or not (FALSE).

Details

In these examples on rust fungi of cereal crops, 2 completely efficient resistance sources (typical of
major resistance genes) are deployed in the landscape according to one of the following strategies:

• Mosaic: 3 pure crops (S + R1 + R2) with very high spatial aggregation.

• Mixture: 1 pure susceptible crop + 1 mixture of two resistant cultivars, with high aggregation.

• Rotation: 1 susceptible pure crop + 2 resistant crops in alternation every 2 years , with mod-
erate aggregation.

• Pyramiding: 1 susceptible crop + 1 pyramided cultivar in a fragmented landscape (low aggre-
gation).

Value

A set of text files, graphics and a video showing epidemic dynamics.

See Also

runSimul, runShinyApp

28 dispP

Examples

Not run:
Run demonstrations (in 10-year simulations) for different deployment strategies:
demo_landsepi(strat = "MO") ## for a mosaic of cultivars
demo_landsepi(strat = "MI") ## for a mixture of cultivars
demo_landsepi(strat = "RO") ## for a rotation of cultivars
demo_landsepi(strat = "PY") ## for a pyramid of resistance genes

End(Not run)

dispP Dispersal matrices for rust fungi of cereal crops.

Description

Five vectorised dispersal matrices of pathogens as typified by rust fungi of cereal crops (genus
Puccinia), and associated with landscapes 1 to 5 (composed of 155, 154, 152, 153 and 156 fields,
respectively).

Usage

dispP_1
dispP_2
dispP_3
dispP_4
dispP_5

Format

The format is: num [1:24025] 8.81e-01 9.53e-04 7.08e-10 1.59e-10 3.29e-06 ...

Details

The pathogen dispersal matrix gives the probability for a pathogen in a field i (row) to migrate to
field i’ (column) through dispersal. It is computed based on a dispersal kernel and the euclidian
distance between each point in fields i and i’, using the CaliFloPP algorithm (Bouvier et al. 2009).
The dispersal kernel is an isotropic power-law function of equation: f(x) = ((b− 2) ∗ (b− 1)/(2 ∗
pi ∗ a2)) ∗ (1 + x/a)−b with a=40 a scale parameter and b=7 related to the weight of the dispersal
tail. The expected mean dispersal distance is given by 2*a/(b-3)=20 m.

References

Bouvier A, Kiêu K, Adamczyk K, Monod H. Computation of the integrated flow of particles be-
tween polygons. Environ. Model Softw. 2009;24(7):843-9. doi: http://dx.doi.org/10.1016/j.envsoft.2008.11.006.

epid_output 29

Examples

dispP_1
summary(dispP_1)
maybe str(dispP_1) ; plot(dispP_1) ...

epid_output Generation of epidemiological and economic model outputs

Description

Generates epidemiological and economic outputs from model simulations.

Usage

epid_output(
types = "all",
time_param,
Npatho,
area,
rotation,
croptypes,
cultivars_param,
eco_param,
treatment_param,
pathogen_param,
audpc100S = 0.76,
writeTXT = TRUE,
graphic = TRUE,
path = getwd()

)

Arguments

types a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of outputs to generate (see details):

• "audpc": Area Under Disease Progress Curve
• "audpc_rel": Relative Area Under Disease Progress Curve
• "gla": Green Leaf Area
• "gla_rel": Relative Green Leaf Area
• "eco_yield": Total crop yield
• "eco_cost": Operational crop costs
• "eco_product": Crop products
• "eco_margin": Margin (products - operational costs)
• "contrib": contribution of pathogen genotypes to LIR dynamics

30 epid_output

• "HLIR_dynamics", "H_dynamics", "L_dynamics", "IR_dynamics", "HLI_dynamics",
etc.: Epidemic dynamics related to the specified sanitary status (H, L, I or
R and all their combinations). Graphics only, works only if graphic=TRUE.

• "all": compute all these outputs (default).

time_param list of simulation parameters:

• Nyears = number cropping seasons,
• nTSpY = number of time-steps per cropping season.

Npatho number of pathogen genotypes.

area a vector containing polygon areas (must be in square meters).

rotation a dataframe containing for each field (rows) and year (columns, named "year_1",
"year_2", etc.), the index of the cultivated croptype. Importantly, the matrix
must contain 1 more column than the real number of simulated years.

croptypes a dataframe with three columns named ’croptypeID’ for croptype index, ’cul-
tivarID’ for cultivar index and ’proportion’ for the proportion of the cultivar
within the croptype.

cultivars_param

list of parameters associated with each host genotype (i.e. cultivars):

• name = vector of cultivar names,
• initial_density = vector of host densities (per square meter) at the beginning

of the cropping season as if cultivated in pure crop,
• max_density = vector of maximum host densities (per square meter) at the

end of the cropping season as if cultivated in pure crop,
• cultivars_genes_list = a list containing, for each host genotype, the indices

of carried resistance genes.

eco_param a list of economic parameters for each host genotype as if cultivated in pure
crop:

• yield_perHa = a dataframe of 4 columns for the theoretical yield associated
with hosts in sanitary status H, L, I and R, as if cultivated in pure crops, and
one row per host genotype (yields are expressed in weight or volume units
/ ha / cropping season),

• planting_cost_perHa = a vector of planting costs (in monetary units / ha /
cropping season),

• market_value = a vector of market values of the production (in monetary
units / weight or volume unit).

treatment_param

list of parameters related to pesticide treatments:

• treatment_degradation_rate = degradation rate (per time step) of chemical
concentration,

• treatment_efficiency = maximal efficiency of chemical treatments (i.e. frac-
tional reduction of pathogen infection rate at the time of application),

• treatment_timesteps = vector of time-steps corresponding to treatment ap-
plication dates,

• treatment_cultivars = vector of indices of the cultivars that receive treat-
ments,

epid_output 31

• treatment_cost = cost of a single treatment application (monetary units/ha)
• treatment_application_threshold = vector of thresholds (i.e. disease sever-

ity, one for each treated cultivar) above which the treatment is applied in a
polygon

pathogen_param a list of i. pathogen aggressiveness parameters on a susceptible host for a
pathogen genotype not adapted to resistance and ii. sexual reproduction pa-
rameters:

• infection_rate = maximal expected infection rate of a propagule on a healthy
host,

• propagule_prod_rate = maximal expected effective propagule production
rate of an infectious host per time step,

• latent_period_mean = minimal expected duration of the latent period,
• latent_period_var = variance of the latent period duration,
• infectious_period_mean = maximal expected duration of the infectious pe-

riod,
• infectious_period_var = variance of the infectious period duration,
• survival_prob = probability for a propagule to survive the off-season,
• repro_sex_prob = probability for an infectious host to reproduce via sex

rather than via cloning,
• sigmoid_kappa = kappa parameter of the sigmoid contamination function,
• sigmoid_sigma = sigma parameter of the sigmoid contamination function,
• sigmoid_plateau = plateau parameter of the sigmoid contamination func-

tion,
• sex_propagule_viability_limit = maximum number of cropping seasons up

to which a sexual propagule is viable
• sex_propagule_release_mean = average number of seasons after which a

sexual propagule is released,
• clonal_propagule_gradual_release = whether or not clonal propagules sur-

viving the bottleneck are gradually released along the following cropping
season.

audpc100S the audpc in a fully susceptible landscape (used as reference value for graphics).

writeTXT a logical indicating if the output is written in a text file (TRUE) or not (FALSE).

graphic a logical indicating if a tiff graphic of the output is generated (only if more than
one year is simulated).

path path of text file (if writeTXT = TRUE) and tiff graphic (if graphic = TRUE) to
be generated.

Details

Outputs are computed every year for every cultivar as well as for the whole landscape.

Epidemiological outputs. The epidemiological impact of pathogen spread can be evaluated by
different measures:

1. Area Under Disease Progress Curve (AUDPC): average number of diseased host individ-
uals (status I + R) per time step and square meter.

32 epid_output

2. Relative Area Under Disease Progress Curve (AUDPCr): average proportion of diseased
host individuals (status I + R) relative to the total number of existing hosts (H+L+I+R).

3. Green Leaf Area (GLA): average number of healthy host individuals (status H) per time
step and per square meter.

4. Relative Green Leaf Area (GLAr): average proportion of healthy host individuals (status
H) relative to the total number of existing hosts (H+L+I+R).

5. Contribution of pathogen genotypes: for every year and every host (as well as for the
whole landscape and the whole simulation duration), fraction of cumulative LIR infec-
tions attributed to each pathogen genotype.

Economic outputs. The economic outcome of a simulation can be evaluated using:

1. Crop yield: yearly crop yield (e.g. grains, fruits, wine) in weight (or volume) units per
hectare (depends on the number of productive hosts and associated theoretical yield).

2. Crop products: yearly product generated from sales, in monetary units per hectare (de-
pends on crop yield and market value). Note that when disease = "mildew" a price reduc-
tion between 0% and 5% is applied to the market value depending on disease severity.

3. Operational crop costs: yearly costs associated with crop planting (depends on initial host
density and planting cost) and pesticide treatments (depends on the number of applica-
tions and the cost of a single application) in monetary units per hectare.

4. Crop margin, i.e. products - operational costs, in monetary units per hectare.

Value

A list containing, for each required type of output, a matrix summarising the output for each
year and cultivar (as well as the whole landscape). Each matrix can be written in a txt file (if
writeTXT=TRUE), and illustrated in a graphic (if graphic=TRUE).

References

Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durability
and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Compu-
tational Biology 14(4):e1006067.

See Also

evol_output

Examples

Not run:
demo_landsepi()

End(Not run)

evol_output 33

evol_output Generation of evolutionary model outputs

Description

Generates evolutionary outputs from model simulations.

Usage

evol_output(
types = "all",
time_param,
Npoly,
cultivars_param,
genes_param,
thres_breakdown = 50000,
writeTXT = TRUE,
graphic = TRUE,
path = getwd()

)

Arguments

types a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of outputs to generate (see details):

• "evol_patho": Evolution of pathogen genotypes
• "evol_aggr": Evolution of pathogen aggressiveness (i.e. phenotype)
• "durability": Durability of resistance genes
• "all": compute all these outputs (default)

time_param list of simulation parameters:

• Nyears = number cropping seasons,
• nTSpY = number of time-steps per cropping season.

Npoly number of fields in the landscape.
cultivars_param

list of parameters associated with each host genotype (i.e. cultivars) when culti-
vated in pure crops:

• name = vector of cultivar names,
• cultivars_genes_list = a list containing, for each host genotype, the indices

of carried resistance genes.

genes_param list of parameters associated with each resistance gene and with the evolution of
each corresponding pathogenicity gene:

• name = vector of names of resistance genes,

34 evol_output

• Nlevels_aggressiveness = vector containing the number of adaptation levels
related to each resistance gene (i.e. 1 + number of required mutations for a
pathogenicity gene to fully adapt to the corresponding resistance gene),

thres_breakdown

an integer (or vector of integers) giving the threshold (i.e. number of infections)
above which a pathogen genotype is unlikely to go extinct and resistance is
considered broken down, used to characterise the time to invasion of resistant
hosts (several values are computed if several thresholds are given in a vector).

writeTXT a logical indicating if the output is written in a text file (TRUE) or not (FALSE).

graphic a logical indicating if graphics must be generated (TRUE) or not (FALSE).

path a character string indicating the path of the repository where simulation output
files are located and where .txt files and graphics will be generated.

Details

For each pathogen genotype (evol_patho) or phenotype (evol_aggr, note that different pathogen
genotypes may lead to the same phenotype on a resistant host), several computations are performed
based on pathogen genotype frequencies:

• appearance: time to first appearance (as propagule);

• R_infection: time to first true infection of a resistant host;

• R_invasion: time to invasion, when the number of infections of resistant hosts reaches a thresh-
old above which the genotype or phenotype is unlikely to go extinct.

The value Nyears + 1 time step is used if the genotype or phenotype never appeared/infected/invaded.
Durability is defined as the time to invasion of completely adapted pathogen individuals.

Value

A list containing, for each required type of output, a matrix summarising the output. Each matrix
can be written in a txt file (if writeTXT=TRUE), and illustrated in a graphic (if graphic=TRUE).

References

Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durability
and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Compu-
tational Biology 14(4):e1006067.

See Also

epid_output

Examples

Not run:
demo_landsepi()

End(Not run)

getMatrixCroptypePatho 35

getMatrixCroptypePatho

Get the "croptype/pathogen genotype" compatibility matrix.

Description

Build the matrix indicating if infection is possible at the beginning of the season for every combi-
nation of croptype (rows) and pathogen genotype (columns).

Usage

getMatrixCroptypePatho(params)

Arguments

params a LandsepiParams object.

Details

For each croptype, there is either possibility of infection by the pathogen genotype (value of 1),
either complete protection (value of 0)

Value

an interaction matrix composed of 0 and 1 values.

See Also

getMatrixGenePatho, getMatrixCultivarPatho, getMatrixPolyPatho

Examples

Not run:
simul_params <- createSimulParams()
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivar4 <- loadCultivar(name = "Pyramid", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3, cultivar4)
, stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params <- allocateCultivarGenes(simul_params, "Resistant1", c("MG 1"))
simul_params <- allocateCultivarGenes(simul_params, "Resistant2", c("MG 2"))
simul_params <- allocateCultivarGenes(simul_params, "Pyramid", c("MG 1", "MG 2"))
croptypes <- loadCroptypes(simul_params,

36 getMatrixCultivarPatho

names = c("Susceptible crop",
"Resistant crop 1",
"Mixture S+R",
"Mixture R1+R2",
"Pyramid crop"))

croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 1", "Resistant1")
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture S+R", c("Susceptible", "Resistant1"))
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture R1+R2", c("Resistant1", "Resistant2"))
croptypes <- allocateCroptypeCultivars(croptypes, "Pyramid crop", c("Pyramid"))
simul_params <- setCroptypes(simul_params, croptypes)
getMatrixCroptypePatho(simul_params)

End(Not run)

getMatrixCultivarPatho

Get the "cultivar/pathogen genotype" compatibility matrix.

Description

Build the matrix indicating if infection is possible at the beginning of the season for every combi-
nation of cultivar (rows) and pathogen genotype (columns).

Usage

getMatrixCultivarPatho(params)

Arguments

params a LandsepiParams object.

Details

For each cultivar, there is either possibility of infection by the pathogen genotype (value of 1), or
complete protection (value of 0).

Value

an interaction matrix composed of 0 and 1 values.

See Also

getMatrixGenePatho, getMatrixCroptypePatho, getMatrixPolyPatho

getMatrixGenePatho 37

Examples

Not run:
simul_params <- createSimulParams()
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "monoResistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "monoResistant2", type = "wheat")
cultivar4 <- loadCultivar(name = "Pyramid", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3, cultivar4)
, stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params <- allocateCultivarGenes(simul_params, "monoResistant1", c("MG 1"))
simul_params <- allocateCultivarGenes(simul_params, "monoResistant2", c("MG 2"))
simul_params <- allocateCultivarGenes(simul_params, "Pyramid", c("MG 1", "MG 2"))
getMatrixCultivarPatho(simul_params)

End(Not run)

getMatrixGenePatho Get the "resistance gene/pathogen genotype" compatibility matrix.

Description

Build the matrix indicating if infection is possible at the beginning of the season for every combi-
nation of plant resistance gene (rows) and pathogen genotype (columns).

Usage

getMatrixGenePatho(params)

Arguments

params a LandsepiParams object.

Details

For hosts carrying each resistance gene, there is either possibility of infection by the pathogen
genotype (value of 1), either complete protection (value of 0). Complete protection only occurs if
the resistance gene targets the infection rate, has a complete efficiency, and is expressed from the
beginning of the cropping season (i.e. this is not an APR).

Value

an interaction matrix composed of 0 and 1 values.

38 getMatrixPolyPatho

See Also

getMatrixCultivarPatho, getMatrixCroptypePatho, getMatrixPolyPatho

Examples

Not run:
simul_params <- createSimulParams()
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
getMatrixGenePatho(simul_params)

End(Not run)

getMatrixPolyPatho Get the "polygon/pathogen genotype" compatibility matrix.

Description

Build the matrix indicating if infection is possible at the beginning of the season for every combi-
nation of polygon (rows) and pathogen genotype (columns).

Usage

getMatrixPolyPatho(params)

Arguments

params a LandsepiParams object.

Details

For each polygon, there is either possibility of infection by the pathogen genotype (value of 1),
either complete protection (value of 0)

Value

an interaction matrix composed of 0 and 1 values.

See Also

getMatrixGenePatho, getMatrixCultivarPatho, getMatrixCroptypePatho

initialize,LandsepiParams-method 39

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears = 1, nTSpY = 80)
simul_params <- setLandscape(simul_params, loadLandscape(id = 1))
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivar4 <- loadCultivar(name = "Pyramid", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3, cultivar4)
, stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params <- allocateCultivarGenes(simul_params, "Resistant1", c("MG 1"))
simul_params <- allocateCultivarGenes(simul_params, "Resistant2", c("MG 2"))
simul_params <- allocateCultivarGenes(simul_params, "Pyramid", c("MG 1", "MG 2"))
croptypes <- loadCroptypes(simul_params,

names = c("Susceptible crop",
"Resistant crop 1",
"Mixture S+R",
"Mixture R1+R2",
"Pyramid crop"))

croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 1", "Resistant1")
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture S+R", c("Susceptible", "Resistant1"))
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture R1+R2", c("Resistant1", "Resistant2"))
croptypes <- allocateCroptypeCultivars(croptypes, "Pyramid crop", c("Pyramid"))
simul_params <- setCroptypes(simul_params, croptypes)
simul_params <- allocateLandscapeCroptypes(simul_params, rotation_period = 0,
prop=rep(1/5,5), aggreg=3 , rotation_sequence = croptypes$croptypeID)
getMatrixPolyPatho(simul_params)

End(Not run)

initialize,LandsepiParams-method

LandsepiParams

Description

Creates and initialises a LandsepiParams object with default parameters.

Usage

S4 method for signature 'LandsepiParams'
initialize(

40 initialize,LandsepiParams-method

.Object,
Landscape = st_sf(st_sfc()),
Croptypes = data.frame(),
Cultivars = data.frame(matrix(ncol = length(.cultivarsColNames), nrow = 0, dimnames =

list(NULL, .cultivarsColNames))),
CultivarsGenes = data.frame(),
Genes = data.frame(matrix(ncol = length(.geneColNames), nrow = 0, dimnames = list(NULL,

.geneColNames))),
Pathogen = list(name = "no pathogen", survival_prob = 0, repro_sex_prob = 0,
infection_rate = 0, propagule_prod_rate = 0, latent_period_mean = 0,
latent_period_var = 0, infectious_period_mean = 0, infectious_period_var = 0,
sigmoid_kappa = 0, sigmoid_sigma = 0, sigmoid_plateau = 1,
sex_propagule_viability_limit = 0, sex_propagule_release_mean = 0,
clonal_propagule_gradual_release = 0),

PI0 = 0,
DispHost = vector(),
DispPathoClonal = vector(),
DispPathoSex = vector(),
Treatment = list(treatment_degradation_rate = 0.1, treatment_efficiency = 0,
treatment_timesteps = vector(), treatment_cultivars = vector(), treatment_cost = 0,
treatment_application_threshold = vector()),

OutputDir = normalizePath(character(getwd())),
OutputGPKG = "landsepi_landscape.gpkg",
Outputs = list(epid_outputs = "", evol_outputs = "", thres_breakdown = NA, audpc100S =

NA),
TimeParam = list(Nyears = 0, nTSpY = 0),
Seed = NULL,
...

)

Arguments

.Object a LandsepiParam object.

Landscape a landscape as sf object.

Croptypes a dataframe with three columns named ’croptypeID’ for croptype index, ’cul-
tivarID’ for cultivar index and ’proportion’ for the proportion of the cultivar
within the croptype.

Cultivars a dataframe of parameters associated with each host genotype (i.e. cultivars,
lines) when cultivated in pure crops.

CultivarsGenes a list containing, for each host genotype, the indices of carried resistance genes.

Genes a data.frame of parameters associated with each resistance gene and with the
evolution of each corresponding pathogenicity gene.

Pathogen a list of pathogen aggressiveness parameters on a susceptible host for a pathogen
genotype not adapted to resistance.

PI0 vector of length Npoly.Nhost.Npatho filled with the initial probabilities for hosts
to be infectious (i.e. state I), for each pathogen genotype, at the beginning of the
simulation.

inoculumToMatrix 41

DispHost a vectorized matrix giving the probability of host dispersal from any polygon of
the landscape to any other polygon

DispPathoClonal

a vectorized matrix giving the probability of pathogen dispersal from any poly-
gon of the landscape to any other polygon.

DispPathoSex a vectorized matrix giving the probability of pathogen dispersal from any poly-
gon of the landscape to any other polygon (sexual propagule).

Treatment a list of chemical treatment parameters (indices of treated cultivars, times of
application, efficiency and degradation rate)

OutputDir the directory for simulation outputs

OutputGPKG the name of the output GPKG file containing parameters of the deployment strat-
egy

Outputs a list of outputs parameters.

TimeParam a list of time parameters.

Seed an integer used as seed value (for random number generator).

... more options

inoculumToMatrix Inoculum To Matrix

Description

Transform the inoculum pI0 (1D vector of length NhostNpathoNpoly) into a 3D array (for visual-
ization purpose)

Usage

inoculumToMatrix(params)

Arguments

params a LandsepiParams object.

Details

After defining the inoculum with setInoculum(), this function returns the inoculum as a 3D array.

Value

a 3D array of structure (1:Nhost,1:Npatho,1:Npoly)

See Also

setInoculum

42 invlogit

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears = 1, nTSpY = 80)
simul_params <- setPathogen(simul_params, loadPathogen(disease = "rust"))
simul_params <- setLandscape(simul_params, loadLandscape(id = 1))
simul_params <- setDispersalPathogen(simul_params, loadDispersalPathogen(id = 1)[[1]])
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params <- allocateCultivarGenes(simul_params, "Resistant", c("MG 1", "MG 2"))
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop", "Resistant crop"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop", c("Resistant"))
simul_params <- setCroptypes(simul_params, croptypes)
simul_params@Croptypes
simul_params <- allocateLandscapeCroptypes(simul_params, rotation_period = 0
, rotation_sequence = croptypes$croptypeID
, prop = c(1/2,1/2), aggreg = 1, graphic = FALSE)
pI0 <- loadInoculum(simul_params, pI0_patho=c(1E-3,1E-4,1E-4,1E-5), pI0_host=c(1,1))
simul_params <- setInoculum(simul_params, pI0)
inoculumToMatrix(simul_params)[,,1:5]

End(Not run)

invlogit Inverse logit function

Description

Given a numeric object, return the invlogit of the values. Missing values (NAs) are allowed.

Usage

invlogit(x)

Arguments

x a numeric object

Details

The invlogit is defined by exp(x)/(1 + exp(x)). Values in x of -Inf or Inf return invlogits of 0 or 1
respectively. Any NAs in the input will also be NAs in the output.

is.in.01 43

Value

An object of the same type as x containing the invlogits of the input values.

Examples

invlogit(10)

is.in.01 is.in.01

Description

Tests if a number or vector is in the interval [0,1]

Usage

is.in.01(x, exclude0 = FALSE)

Arguments

x a number or vector or matrix

exclude0 TRUE is 0 is excluded, FALSE otherwise (default)

Value

a logical of the same size as x

Examples

is.in.01(-5)
is.in.01(0)
is.in.01(1)
is.in.01(0, exclude0 = TRUE)
is.in.01(2.5)
is.in.01(matrix(5:13/10, nrow=3))

44 is.strict.positive

is.positive is.positive

Description

Tests if a number or vector is positive (including 0)

Usage

is.positive(x)

Arguments

x a number or vector or matrix

Value

a logical of the same size as x

Examples

is.positive(-5)
is.positive(10)
is.positive(2.5)
is.positive(matrix(1:9, nrow=3))

is.strict.positive is.strict.positive

Description

Tests if a number or vector is strictly positive (i.e. excluding 0)

Usage

is.strict.positive(x)

Arguments

x a number or vector or matrix

Value

a logical of the same size as x

is.wholenumber 45

Examples

is.strict.positive(-5)
is.strict.positive(10)
is.strict.positive(2.5)
is.strict.positive(matrix(1:9, nrow=3))

is.wholenumber is.wholenumber

Description

Tests if a number or vector is a whole number

Usage

is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x a number or vector or matrix

tol double tolerance

Value

a logical of the same format as x

Examples

is.wholenumber(-5)
is.wholenumber(10)
is.wholenumber(2.5)
is.wholenumber(matrix(1:9, nrow=3))

landscapeTEST Landscapes

Description

Five simulated landscapes, composed of 155, 154, 152, 153 and 156 fields, respectively.

Usage

landscapeTEST1
landscapeTEST2
landscapeTEST3
landscapeTEST4
landscapeTEST5

46 LandsepiParams

Format

Landscapes have been generated using a T-tesselation algorithm. The format is a formal class
’SpatialPolygons’ [package "sp"].

Details

The landscape structure is simulated using a T-tessellation algorithm (Kiêu et al. 2013) in order to
control specific features such as number, area and shape of the fields.

References

Kiêu K, Adamczyk-Chauvat K, Monod H, Stoica RS. A completely random T-tessellation model
and Gibbsian extensions. Spat. Stat. 2013;6:118-38. doi: http://dx.doi.org/10.1016/j.spasta.2013.09.003.

Examples

library(sp)
library(landsepi)
landscapeTEST1
plot(landscapeTEST1)

LandsepiParams Class LandsepiParams

Description

Landsepi simulation parameters

Details

An object of class LandsepiParams that can be created by calling createSimulParams

Slots

Landscape a landscape as sf object. See loadLandscape

Croptypes a dataframe with three columns named ’croptypeID’ for croptype index, ’cultivarID’
for cultivar index and ’proportion’ for the proportion of the cultivar within the croptype. See
loadCroptypes, setCroptypes and allocateCroptypeCultivars

Cultivars a dataframe of parameters associated with each host genotype (i.e. cultivars, lines)
when cultivated in pure crops.See loadCultivar and setCultivars

CultivarsGenes a list containing, for each host genotype, the indices of carried resistance genes.
See allocateCultivarGenes

Genes a data.frame of parameters associated with each resistance gene and with the evolution of
each corresponding pathogenicity gene. See loadGene and setGenes

Pathogen a list of i. pathogen aggressiveness parameters on a susceptible host for a pathogen
genotype not adapted to resistance and ii. sexual reproduction parameters. See loadPathogen
and setPathogen

loadCroptypes 47

ReproSexProb a vector of size TimeParam$nTSpY + 1 (end of season) of the probabilities for an
infectious host to reproduce via sex rather than via cloning at each step.

PI0 initial probability for the first host (whose index is 0) to be infectious (i.e. state I) at the
beginning of the simulation. Must be between 0 and 1. See setInoculum

DispHost a vectorized matrix giving the probability of host dispersal from any field of the land-
scape to any other field. See loadDispersalHost and setDispersalHost

DispPathoClonal a vectorized matrix giving the probability of pathogen dispersal (clonal propag-
ules) from any field of the landscape to any other field. See loadDispersalPathogen and
setDispersalPathogen

DispPathoSex a vectorized matrix giving the probability of pathogen dispersal (sexual propag-
ules) from any field of the landscape to any other field. See loadDispersalPathogen and
setDispersalPathogen

Treatment a list of parameters to simulate the effect of chemical treatments on the pathogen, see
loadTreatment and setTreatment

OutputDir the directory for simulation outputs

OutputGPKG the name of the output GPKG file containing parameters of the deployment strategy

Outputs a list of outputs parameters. See loadOutputs and setOutputs

TimeParam a list of time parameters. See setTime

Seed an integer used as seed value (for random number generator). See setTime

loadCroptypes Load Croptypes

Description

Creates a data.frame containing croptype parameters and filled with 0

Usage

loadCroptypes(params, croptypeIDs = NULL, names = NULL)

Arguments

params a LandsepiParams Object.

croptypeIDs a vector of indices of croptypes (must start at 0 and match with croptype IDs in
the landscape)

names a vector containing the names of all croptypes

Details

Croptypes need to be later updated with allocateCroptypeCultivars. If neither croptypeIDs nor
names are given, it will automatically generate 1 croptype per cultivar.

48 loadCultivar

Value

a data.frame with croptype parameters

See Also

setCroptypes

Examples

Not run:
simul_params <- createSimulParams()
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop", "Mixture"))
croptypes

End(Not run)

loadCultivar Load a cultivar

Description

create a data.frame containing cultivar parameters depending of his type

Usage

loadCultivar(name, type = "wheat")

Arguments

name a character string (without space) specifying the cultivar name.
type the cultivar type, among: "wheat" (default), "grapevine", "banana", "pepper" or

"nonCrop".

Details

• "wheat" is adapted to situations where the infection unit is a piece of leaf (e.g. where a fungal
lesion can develop); the number of available infection units increasing during the season due
to plant growth (as typified by cereal crops).

• "grapevine" corresponds to parameters for grapevine (including host growth).
• "banana" corresponds to parameters for banana (including host growth).
• "pepper" corresponds to situations where the infection unit is the whole plant (e.g. for viral

systemic infection); thus the number of infection units is constant.
• "nonCrop" is not planted, does not cost anything and does not yield anything (e.g. forest,

fallow).

loadDispersalHost 49

Value

a dataframe of parameters associated with each host genotype (i.e. cultivars, lines) when cultivated
in pure crops.

See Also

setCultivars

Examples

c1 <- loadCultivar("winterWheat", type = "wheat")
c1
c2 <- loadCultivar("forest", type = "nonCrop")
c2

loadDispersalHost Load a host dispersal matrix

Description

It loads a vectorised diagonal matrix to simulate no host dispersal.

Usage

loadDispersalHost(params, type = "no")

Arguments

params a LandsepiParams Object.

type a character string specifying the type of dispersal ("no" for no dispersal)

Details

as the size of the matrix depends on the number of polygons in the landscape, the landscape must
be defined before calling loadDispersalHost.

Value

a vectorised dispersal matrix.

See Also

setDispersalHost

50 loadDispersalPathogen

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setLandscape(simul_params, loadLandscape(1))
d <- loadDispersalHost(simul_params)
d

End(Not run)

loadDispersalPathogen Load pathogen dispersal matrices

Description

It loads one of the five built-in vectorised dispersal matrices of rust fungi associated with the five
built-in landscapes. Landscape and DispersalPathogen ID must be the same. And set a vectorized
identity matrix for sexual reproduction dispersal.

Usage

loadDispersalPathogen(id = 1)

Arguments

id a matrix ID between 1 to 5 (must match the ID of the landscape loaded with
loadLandscape).

Details

landsepi includes built-in dispersal matrices to represent rust dispersal in the five built-in land-
scapes. These have been computed from a power-law dispersal kernel: g(d) = ((b − 2) ∗ (b −
1)/(2 ∗ pi ∗ a2)) ∗ (1 + d/a)−b with a=40 the scale parameter and b=7 a parameter related to the
width of the dispersal kernel. The expected mean dispersal distance is given by 2∗a/(b−3) = 20m.

Value

a vectorised dispersal matrix representing the dispersal of clonal propagules, and a vectorised dis-
persal identity matrix for sexual propagules. All by columns.

See Also

dispP, setDispersalPathogen

Examples

d <- loadDispersalPathogen(1)
d

loadGene 51

loadGene Load a gene

Description

Creates a data.frame containing parameters of a gene depending of his type

Usage

loadGene(name, type = "majorGene")

Arguments

name name of the gene

type type of the gene: "majorGene", "APR", "QTL" or "immunity" (default = "ma-
jorGene")

Details

• "majorGene" means a completely efficient gene that can be broken down via a single pathogen
mutation

• "APR" means a major gene that is active only after a delay of 30 days after planting

• "QTL" means a partial resistance (50% efficiency) that requires several pathogen mutations to
be completely eroded

• "immunity" means a completely efficient resistance that the pathogen has no way to adapt (i.e.
the cultivar is non-host).

For different scenarios, the data.frame can be manually updated later.

Value

a data.frame with gene parameters

See Also

setGenes

Examples

gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene1
gene2 <- loadGene(name = "Lr34", type = "APR")
gene2

52 loadInoculum

loadInoculum Load Inoculum

Description

Loads an inoculum for the beginning of the simulation (t=0), with controlled localisation (poly-
gons), infected cultivars and pathogen genotypes. Note that landscape, gene, cultivar and croptype
parameters must be set before loading the inoculum.

Usage

loadInoculum(
params,
pI0_all = NULL,
pI0_host = NULL,
pI0_patho = NULL,
pI0_poly = NULL,
pI0_mat = NULL

)

Arguments

params a LandsepiParams object.

pI0_all a numeric indicating the (same) probability to infect a host for all pathogen
genotypes, all cultivars and in all polygons

pI0_host a vector of length Nhost indicating the probabilities to infect an host, for each
cultivar (for all pathogen genotypes and all polygons).

pI0_patho a vector of length Npatho indicating the probabilities to infect an host, for each
pathogen genotype (for all cultivars and all polygons).

pI0_poly a vector of length Npoly indicating the probabilities to infect an host, for each
polygon (for all pathogen genotypes and all cultivars).

pI0_mat a 3D array of dimensions (1:Nhost,1:Npatho,1:Npoly) indicating the probability
to infect an host, for each cultivar, pathogen genotype and polygon. Note that
pI0_all, pI0_host, pI0_patho and pI0_poly are not accounted if pI0_mat is
filled.

Details

The different options enable different types of inoculum (localisation, infected cultivars and pathogen
genetic diversity, see different options in Examples).
Unless the array pI0_mat is filled, the probability for a host to be infected at the beginning of the
simulation is computed in every polygon (poly), cultivar (host) and pathogen genotype (patho) with
pI0[host, patho, poly] = pI0_all * pI0_patho[patho] * pI0_host[host] * pI0_poly[poly].
Before loading the inoculum, one can use getMatrixGenePatho(), getMatrixCultivarPatho()
and getMatrixCroptypePatho() to acknowledge which pathogen genotypes are adapted to which
genes, cultivars and croptypes.

loadInoculum 53

Once setInoculum() is used, one can call inoculumToMatrix() to get the inoculum as a 3D array
(1:Nhost,1:Npatho,1:Npoly)

Value

a 3D array of dimensions (1:Nhost,1:Npatho,1:Npoly)

See Also

inoculumToMatrix, getMatrixGenePatho, getMatrixCultivarPatho, getMatrixCroptypePatho, setInocu-
lum

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears = 1, nTSpY = 80)
basic_patho_param <- loadPathogen(disease = "rust")
simul_params <- setPathogen(simul_params, patho_params = basic_patho_param)
simul_params <- setLandscape(simul_params, loadLandscape(id = 1))
simul_params <- setDispersalPathogen(simul_params, loadDispersalPathogen(id = 1)[[1]])
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params <- allocateCultivarGenes(simul_params, "Resistant", c("MG 1", "MG 2"))
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop", "Resistant crop"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop", c("Resistant"))
simul_params <- setCroptypes(simul_params, croptypes)
simul_params <- allocateLandscapeCroptypes(simul_params, rotation_period = 0
, rotation_sequence = croptypes$croptypeID
, prop = c(1/2,1/2), aggreg = 1, graphic = FALSE)

Definition of the inoculum

Scenario 1. Only the avirulent pathogen on the susceptible cultivar
In this situation, the susceptible cultivar must be entered
at the first line of the table cultivars

Global inoculum (i.e. in the whole landscape)
Option 1: simply use the default parameterisation
simul_params <- setInoculum(simul_params, 5E-4)

Option 2: use loadInoculum()
Npatho <- prod(simul_params@Genes$Nlevels_aggressiveness)
Nhost <- nrow(simul_params@Cultivars)

54 loadLandscape

pI0 <- loadInoculum(simul_params,
pI0_all=5E-4,
pI0_host=c(1,rep(0, Nhost-1)),
pI0_patho=c(1,rep(0, Npatho-1)))

simul_params <- setInoculum(simul_params, pI0)
inoculumToMatrix(simul_params)

Local inoculum (i.e. in some random polygons only)
Npatho <- prod(simul_params@Genes$Nlevels_aggressiveness)
Nhost <- nrow(simul_params@Cultivars)
Npoly <- nrow(simul_params@Landscape)
Npoly_inoc <- 5 ## number of inoculated polygons
whether the avr pathogen can infect the polygons
compatible_poly <- getMatrixPolyPatho(simul_params)[,1]
random polygon picked among compatible ones
id_poly <- sample(grep(1, compatible_poly), Npoly_inoc)
pI0_poly <- as.numeric(1:Npoly %in% id_poly)
pI0 <- loadInoculum(simul_params,

pI0_all=5E-4,
pI0_host=c(1,rep(0, Nhost-1)),
pI0_patho=c(1,rep(0, Npatho-1)),

pI0_poly=pI0_poly)
simul_params <- setInoculum(simul_params, pI0)
inoculumToMatrix(simul_params)

Scenario 2. Diversity of pathogen genotypes in the inoculum
in this example, Nhost=2 cultivars, Npatho=4

Global inoculum (i.e. in all polygons of the landscape)
pI0 <- loadInoculum(simul_params, pI0_patho=c(1E-3,1E-4,1E-4,1E-5), pI0_host=c(1,1))
simul_params <- setInoculum(simul_params, pI0)
inoculumToMatrix(simul_params)[,,1:5]

Local inoculum (i.e. in some polygons only)
Npoly <- nrow(simul_params@Landscape)
Npoly_inoc <- 5 ## number of inoculated polygons
id_poly <- sample(1:Npoly, Npoly_inoc) ## random polygon
pI0_poly <- as.numeric(1:Npoly %in% id_poly)
pI0 <- loadInoculum(simul_params, pI0_patho=c(1E-3,1E-4,1E-4,1E-5),
pI0_host=c(1,1), pI0_poly=pI0_poly)
simul_params <- setInoculum(simul_params, pI0)
inoculumToMatrix(simul_params)

End(Not run)

loadLandscape Load a landscape

loadOutputs 55

Description

Loads one of the five built-in landscapes simulated using a T-tesselation algorithm and composed
of 155, 154, 152, 153 and 156 polygons, respectively. Each landscape is identified by a numeric
from 1 to 5.

Usage

loadLandscape(id = 1)

Arguments

id a landscape ID between 1 to 5 (default = 1)

Value

a landscape in sp format

See Also

landscapeTEST, setLandscape

Examples

land <- loadLandscape(1)
length(land)

loadOutputs Load outputs

Description

Creates an output list

Usage

loadOutputs(epid_outputs = "all", evol_outputs = "all", disease = "rust")

Arguments

epid_outputs a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of epidemiological and economic outputs to gen-
erate (see details):

• "audpc" : Area Under Disease Progress Curve (average number of diseased
host individuals per time step and square meter)

• "audpc_rel" : Relative Area Under Disease Progress Curve (average pro-
portion of diseased host individuals relative to the total number of existing
hosts)

56 loadPathogen

• "gla" : Green Leaf Area (average number of healthy host individuals per
time step and square meter)

• "gla_rel" : Relative Green Leaf Area (average proportion of healthy host
individuals relative to the total number of existing hosts)

• "eco_yield" : total crop yield (in weight or volume units per ha)
• "eco_cost" : operational crop costs (in monetary units per ha)
• "eco_product" : total crop products (in monetary units per ha)
• "eco_margin" : Margin (products - operational costs, in monetary units per

ha)
• "contrib": contribution of pathogen genotypes to LIR dynamics
• "HLIR_dynamics", "H_dynamics", "L_dynamics", "IR_dynamics", "HLI_dynamics",

etc.: Epidemic dynamics related to the specified sanitary status (H, L, I or
R and all their combinations). Graphics only, works only if graphic=TRUE.

• "all" : compute all these outputs (default)
• "" : none of these outputs will be generated.

evol_outputs a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of evolutionary outputs to generate :

• "evol_patho": Dynamics of pathogen genotype frequencies
• "evol_aggr": Evolution of pathogen aggressiveness
• "durability": Durability of resistance genes
• "all": compute all these outputs (default)
• "": none of these outputs will be generated.

disease a disease name, among "rust" (default), "mildew", "sigatoka" and "no pathogen"

Value

a list of outputs and parameters for output generation

See Also

setOutputs, compute_audpc100S

Examples

outputList <- loadOutputs(epid_outputs = "audpc", evol_outputs = "durability")
outputList

loadPathogen Load pathogen parameters

Description

Loads default pathogen parameters for a specific disease

loadSimulParams 57

Usage

loadPathogen(disease = "rust")

Arguments

disease a disease name, among "rust" (default), "mildew", "sigatoka" and "no pathogen"

Details

Available diseases:

• "no pathogen"

• "rust" (genus Puccinia, e.g. stripe rust, stem rust and leaf rust of wheat and barley)

• "mildew" (Plasmopara viticola, downy mildew of grapevine)

• "sigatoka" (Pseudocercospora fijiensis, black sigatoka of banana) Note that when disease =
"mildew" a price reduction between 0% and 5% is applied to the market value according to
disease severity.

Value

a list of pathogen parameters on a susceptible host for a pathogen genotype not adapted to resistance

See Also

setPathogen

Examples

basic_patho_params <- loadPathogen()
basic_patho_params

loadSimulParams Load simulation parameters

Description

Loads a GPKG file from the output of a landsepi simulation.

Usage

loadSimulParams(inputGPKG = "")

Arguments

inputGPKG name of the GPKG file.

58 loadTreatment

Details

See saveDeploymentStrategy.

Value

a LandsepiParams object.

loadTreatment Load treatment parameters

Description

Loads a list of treatment parameters for a specific disease (initialised at 0 , i.e. absence of treatments)

Usage

loadTreatment(disease = "no pathogen")

Arguments

disease a disease name, among "mildew", "sigatoka" and "no pathogen"

Details

Chemical treatment is applied in a polygon only if disease severity (i.e. I/N) in this polygon exceeds
the threshold given by treatment_application_threshold. Treatment efficiency is maximum
(i.e. equal to the parameter treatment_efficiency) at the time of treatment application (noted t∗);
then it decreases with time (i.e. natural pesticide degradation) and host growth (i.e. new biomass is
not protected by treatments): protected by treatments):Efficiency of the treatment at time t after the
application date is given by: efficiency(t) = treatment_efficiency/(1 + exp(a − b ∗ C(t)))
with C(t) = C1 ∗ C2:

• C1 = exp(−treatment_degradation_rate∗∆t) is the reduction of fungicide concentration
due to time (e.g. natural degradation, volatilization, weathering), with ∆t = t− t∗ the timelag
passed since the time of treatment application.

• C2 = min(1, N(t∗)/N(t)) is the reduction of fungicide concentration due to plant growth,
since new plant tissue is not covered by fungicide. N(t∗) and N(t) being the number of host
individuals a the time of treatment t∗ and at time t, respectively.

• a ∈ [3.5; 4.5] and b ∈ [8; 9] are shape parameters.

Value

a list of treatment parameters:

• treatment_degradation_rate = degradation rate (per time step) of chemical concentration,

• treatment_efficiency = maximal efficiency of chemical treatments (i.e. fractional reduction of
pathogen infection rate at the time of application),

logit 59

• treatment_timesteps = vector of time steps corresponding to treatment application dates,

• treatment_cultivars = vector of indices of the cultivars that receive treatments,

• treatment_cost = cost of a single treatment application (monetary units/ha)

• treatment_application_threshold = vector of thresholds (i.e. disease severity, one for each
treated cultivar) above which the treatment is applied in a polygon.

See Also

setTreatment

Examples

treat <- loadTreatment("sigatoka")
treat

logit Logit function

Description

Given a numeric object, return the logit of the values. Missing values (NAs) are allowed.

Usage

logit(x)

Arguments

x a numeric object containing values between 0 and 1

Details

The logit is defined by log(x/(1− x)). Values in x of 0 or 1 return logits of -Inf or Inf respectively.
Any NAs in the input will also be NAs in the output.

Value

An object of the same type as x containing the logits of the input values.

Examples

logit(0.5)

60 model_landsepi

model_landsepi Model for Landscape Epidemiology & Evolution

Description

Stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a plant
pathogen in a heterogeneous landscape.

Usage

model_landsepi(
time_param,
area_vector,
rotation_matrix,
croptypes_cultivars_prop,
dispersal,
inits,
seed,
cultivars_param,
basic_patho_param,
genes_param,
treatment_param

)

Arguments

time_param list of simulation parameters:

• Nyears = number cropping seasons,
• nTSpY = number of time-steps per cropping season.

area_vector a vector containing areas of polygons (i.e. fields), in surface units.
rotation_matrix

a matrix containing for each field (rows) and year (columns, named "year_1",
"year_2", etc.), the index of the cultivated croptype. Importantly, the matrix
must contain 1 more column than the real number of simulated years.

croptypes_cultivars_prop

a matrix with three columns named ’croptypeID’ for croptype index, ’culti-
varID’ for cultivar index and ’proportion’ for the proportion of the cultivar
within the croptype.

dispersal list of dispersal parameters:

• disp_patho_clonal = vectorised dispersal matrix of the pathogen (clonal
propagules),

• disp_patho_sex = vectorised dispersal matrix of the pathogen (sexual propag-
ules),

• disp_host = vectorised dispersal matrix of the host.

inits list of initial conditions:

model_landsepi 61

• pI0 = vector of length NpolyNpathoNhost giving the probability to be in-
fectious (i.e. state I) at t=0 pr each polygon, pathogen genotype and host.

seed seed (for random number generation).
cultivars_param

list of parameters associated with each host genotype (i.e. cultivars) when culti-
vated in pure crops:

• initial_density = vector of host densities (per surface unit) at the beginning
of the cropping season,

• max_density = vector of maximum host densities (per surface unit) at the
end of the cropping season,

• growth rate = vector of host growth rates,
• reproduction rate = vector of host reproduction rates,
• relative_yield_H = Yield of H individuals relative to H individuals (100%)
• relative_yield_L = Yield of L individuals relative to H individuals
• relative_yield_I = Yield of I individuals relative to H individuals
• relative_yield_R = Yield of R individuals relative to H individuals
• sigmoid_kappa_host = kappa parameter for the sigmoid invasion function

(for host dispersal),
• sigmoid_sigma_host = sigma parameter for the sigmoid invasion function

(for host dispersal),
• sigmoid_plateau_host = plateau parameter for the sigmoid invasion func-

tion (for host dispersal),
• cultivars_genes_list = a list containing, for each host genotype, the indices

of carried resistance genes,
basic_patho_param

list of i. pathogen aggressiveness parameters on a susceptible host for a pathogen
genotype not adapted to resistance and ii. sexual reproduction parameters:

• infection_rate = maximal expected infection rate of a propagule on a healthy
host,

• propagule_prod_rate = maximal expected reproduction_rate of an infec-
tious host per timestep,

• latent_period_mean = minimal expected duration of the latent period,
• latent_period_var = variance of the latent period duration,
• infectious_period_mean = maximal expected duration of the infectious pe-

riod,
• infectious_period_var = variance of the infectious period duration,
• survival_prob = matrix giving the probability for a propagule to survive the

off-season, for each croptype (rows) and each year (columns)
• repro_sex_prob = vector of probabilities for an infectious host to reproduce

via sex rather than via cloning for each timestep,
• sigmoid_kappa = kappa parameter of the sigmoid contamination function,
• sigmoid_sigma = sigma parameter of the sigmoid contamination function,
• sigmoid_plateau = plateau parameter of the sigmoid contamination func-

tion,

62 model_landsepi

• sex_propagule_viability_limit = maximum number of cropping seasons up
to which a sexual propagule is viable

• sex_propagule_release_mean = average number of cropping seasons after
which a sexual propagule is released.

• clonal_propagule_gradual_release = whether or not clonal propagules sur-
viving the bottleneck are gradually released along the following cropping
season.

genes_param list of parameters associated with each resistance gene and with the evolution of
each corresponding pathogenicity gene:

• target_trait = vector of aggressiveness components (IR, LAT, IP, or PR)
targeted by resistance genes,

• efficiency = vector of resistance gene efficiencies (percentage of reduction
of the targeted aggressiveness component: IR, 1/LAT, IP and PR),

• age_of_activ_mean = vector of expected delays to resistance activation (for
APRs),

• age_of_activ_var = vector of variances of the delay to resistance activation
(for APRs),

• mutation_prob = vector of mutation probabilities for pathogenicity genes
(each of them corresponding to a resistance gene),

• Nlevels_aggressiveness = vector of number of adaptation levels related to
each resistance gene (i.e. 1 + number of required mutations for a pathogenic-
ity gene to fully adapt to the corresponding resistance gene),

• adaptation_cost = vector of adaptation penalties paid by pathogen geno-
types fully adapted to the considered resistance genes on all hosts,

• relative_advantage = vector of fitness advantages of a pathogen genotype
fully adapted to the resistance genes on hosts carrying these genes, relative
to those that do not carry these genes,

• tradeoff_strength = vector of strengths of the trade-off relationships be-
tween the level of aggressiveness on hosts that do and do not carry the
resistance genes.

treatment_param

list of parameters related to pesticide treatments:

• treatment_degradation_rate = degradation rate (per time step) of chemical
concentration,

• treatment_efficiency = maximal efficiency of chemical treatments (i.e. frac-
tional reduction of pathogen infection rate at the time of application),

• treatment_timesteps = vector of time-steps corresponding to treatment ap-
plication dates,

• treatment_cultivars = vector of indices of the cultivars that receive treat-
ments,

• treatment_cost = cost of a single treatment application (monetary units/ha),

• treatment_application_threshold = vector of thresholds (i.e. disease sever-
ity, one for each treated cultivar) above which the treatment is applied

model_landsepi 63

Details

See ?landsepi for details on the model and assumptions. Briefly, the model is stochastic, spa-
tially explicit (the basic spatial unit is an individual field), based on a SEIR (‘susceptible-exposed-
infectious-removed’, renamed HLIR for ’healthy-latent-infectious-removed’ to avoid confusions
with ’susceptible host’) structure with a discrete time step. It simulates the spread and evolution
(via mutation, recombination through sexual reproduction, selection and drift) of a pathogen in a
heterogeneous cropping landscape, across cropping seasons split by host harvests which impose
potential bottlenecks to the pathogen. A wide array of resistance deployment strategies (possibly
including chemical treatments) can be simulated.

Value

A set of binary files is generated for every year of simulation and every compartment:

• H: healthy hosts,

• Hjuv: juvenile healthy hosts (for host reproduction),

• L: latently infected hosts,

• I: infectious hosts,

• R: removed hosts,

• P: propagules.

Each file indicates for every time-step the number of individuals in each field, and when appropriate
for each host and pathogen genotypes). Additionally, a binary file called TFI is generated and gives
the Treatment Frequency Indicator (expressed as the number of treatment applications per polygon).

References

Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durability
andefficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Compu-
tational Biology 14(4):e1006067.

Examples

Not run:
Spatially-implicit simulation with 2 patches (S + R) during 3 years

Simulation parameters
time_param <- list(Nyears=3, nTSpY=120)
Npoly=2
Npatho=2
area <- c(100000, 100000)
basic_patho_param <- loadPathogen(disease = "rust")
basic_patho_param$repro_sex_prob <- rep(0, time_param$nTSpY+1)

cultivars <- as.list(rbind(loadCultivar(name="Susceptible", type="growingHost")
, loadCultivar(name="Resistant", type="growingHost")))
names(cultivars)[names(cultivars)=="cultivarName"] <- "name"
yield0 <- cultivars$yield_H + as.numeric(cultivars$yield_H==0)
cultivars <- c(cultivars, list(relative_yield_H = as.numeric(cultivars$yield_H / yield0)
, relative_yield_L = as.numeric(cultivars$yield_L / yield0)

64 model_landsepi

, relative_yield_I = as.numeric(cultivars$yield_I / yield0)
, relative_yield_R = as.numeric(cultivars$yield_R / yield0)
, sigmoid_kappa_host=0.002, sigmoid_sigma_host=1.001, sigmoid_plateau_host=1
, cultivars_genes_list=list(numeric(0),0)))
rotation <- data.frame(year_1=c(0,1), year_2=c(0,1), year_3=c(0,1), year_4=c(0,1))
croptypes_cultivars_prop <- data.frame(croptypeID=c(0,1), cultivarID=c(0,1), proportion=c(1,1))
genes <- as.list(loadGene(name="MG", type="majorGene"))
treatment=list(treatment_degradation_rate=0.1,
treatment_efficiency=0,
treatment_timesteps=logical(0),
treatment_cultivars=logical(0),
treatment_cost=0,
treatment_application_threshold = logical(0))

run simulation
model_landsepi(seed=1,
time_param = time_param,
basic_patho_param = basic_patho_param,
inits = list(pI0=c(0.1, rep(0, 7))),
area_vector = area,
dispersal = list(disp_patho_clonal=c(0.99,0.01,0.01,0.99),
disp_patho_sex=c(1,0,0,1),
disp_host=c(1,0,0,1)),
rotation_matrix = as.matrix(rotation),
croptypes_cultivars_prop = as.matrix(croptypes_cultivars_prop),
cultivars_param = cultivars,
genes_param = genes,
treatment_param = treatment)

Compute outputs
eco_param <- list(yield_perHa = cbind(H = as.numeric(cultivars$relative_yield_H),
L = as.numeric(cultivars$relative_yield_L),
I = as.numeric(cultivars$relative_yield_I),
R = as.numeric(cultivars$relative_yield_R)),
planting_cost_perHa = as.numeric(cultivars$planting_cost),
market_value = as.numeric(cultivars$market_value))

evol_res <- evol_output(, time_param, Npoly, cultivars, genes)
epid_res <- epid_output(, time_param, Npatho, area, rotation
, croptypes_cultivars_prop, cultivars, eco_param, treatment, basic_patho_param)

1-year simulation of a rust epidemic in pure susceptible crop in a single 1-km2 patch
Simulation and pathogen parameters
time_param <- list(Nyears=1, nTSpY=120)
area <- c(1E6)
basic_patho_param = loadPathogen(disease = "rust")
basic_patho_param$repro_sex_prob <- rep(0, time_param$nTSpY+1)
croptypes, cultivars and genes
rotation <- data.frame(year_1=c(0), year_2=c(0))
croptypes_cultivars_prop <- data.frame(croptypeID=c(0), cultivarID=c(0), proportion=c(1))

cultivars <- as.list(rbind(loadCultivar(name="Susceptible", type="growingHost")))

multiN 65

names(cultivars)[names(cultivars)=="cultivarName"] <- "name"
yield0 <- cultivars$yield_H + as.numeric(cultivars$yield_H==0)
cultivars <- c(cultivars, list(relative_yield_H = as.numeric(cultivars$yield_H / yield0)
, relative_yield_L = as.numeric(cultivars$yield_L / yield0)

, relative_yield_I = as.numeric(cultivars$yield_I / yield0)
, relative_yield_R = as.numeric(cultivars$yield_R / yield0)
, sigmoid_kappa_host=0.002, sigmoid_sigma_host=1.001, sigmoid_plateau_host=1
, cultivars_genes_list=list(numeric(0))))
genes <- list(geneName = character(0) , adaptation_cost = numeric(0)
, relative_advantage = numeric(0)
, mutation_prob = numeric(0)
, efficiency = numeric(0) , tradeoff_strength = numeric(0)
, Nlevels_aggressiveness = numeric(0)
, age_of_activ_mean = numeric(0) , age_of_activ_var = numeric(0)
, target_trait = character(0)
, recombination_sd = numeric(0))
treatment=list(treatment_degradation_rate=0.1

, treatment_efficiency=0
, treatment_timesteps=logical(0)
, treatment_cultivars=logical(0)
, treatment_cost=0
, treatment_application_threshold = logical(0))

run simulation
model_landsepi(seed=1, time_param = time_param
, basic_patho_param = basic_patho_param
, inits = list(pI0=5E-4), area_vector = area
, dispersal = list(disp_patho_clonal=c(1), disp_patho_sex=c(1), disp_host=c(1))
, rotation_matrix = as.matrix(rotation)
, treatment_param = treatment

, croptypes_cultivars_prop = as.matrix(croptypes_cultivars_prop)
, cultivars_param = cultivars, genes_param = genes)

End(Not run)

multiN Allocation of cultivars

Description

Algorithm based on latent Gaussian fields to allocate two different types of crops across a landscape.

Usage

multiN(d, area, prop, range = 0, algo = "random")

Arguments

d a symmetric matrix of the pairwise distances between the centroids of the fields
of the landscape.

66 multiN

area vector containing field areas.

prop proportion of landscape surface covered by the second type of crop.

range range of spatial autocorrelation between fields (must be greater or equal 0). The
greater the value of range, the higher the degree of spatial aggregation (roughly,
range between 0 and 0.1 for fragmented landscapes, between 0.1 and 0.5 for
balanced landscapes, between 0.5 and 3 for aggregated landscapes, and above 3
for highly aggregated landscapes).

algo the algorithm used for the computation of the variance-covariance matrix of the
multivariate normal distribution: "exp" for exponential function, "periodic" for
periodic function, "random" for random draw (see details). If algo="random",
the parameter range is ignored.

Details

This algorithm allows the control of the proportions of each type of crop in terms of surface cover-
age, and their level of spatial aggregation. A random vector of values is drawn from a multivariate
normal distribution with expectation 0 and a variance-covariance matrix which depends on the pair-
wise distances between the centroids of the fields. Two different functions allow the computation of
the variance-covariance matrix to allocate crops with more or less spatial aggregation (depending
on the value of the range parameter). The exponential function codes for an exponential decay of
the spatial autocorrelation as distance between fields increases. The periodic function codes for
a periodic fluctuation of the spatial autocorrelation as distance between fields increases. Alterna-
tively, a normal distribution can be used for a random allocation of the types of crops. Next, the
two types of crops are allocated to different fields depending on whether the value drawn from the
multivariate normal distribution is above or below a threshold. The proportion of each type of crop
in the landscape is controlled by the value of this threshold (parameter prop).

Value

A dataframe containing the index of each field (column 1) and the index (0 or 1) of the type of crop
grown on these fields (column 2).

See Also

AgriLand, allocateLandscapeCroptypes

Examples

Not run:
d <- matrix(rpois(100, 100), nrow = 10)
d <- d + t(d) ## ensures that d is symmetric
area <- data.frame(id = 1:10, area = 10)
multiN(d, area, prop = 0.5, range = 0.5, algo = "periodic")

End(Not run)

periodic_cov 67

periodic_cov Periodic covariance function

Description

Periodic function used to compute the variance-covariance matrix of the fields of the landscape.

Usage

periodic_cov(d, range, phi = 1)

Arguments

d a numeric object containing pairwise distances between the centroids of the
fields

range range (half-period of oscillations)

phi amplitude of the oscillations

Details

The periodic covariance is defined by exp(−2 ∗ sin(d ∗ pi/(2 ∗ range))2/phi2). It is used to
generate highly fragmented or highly aggregated landscapes.

Value

An object of the same type as d.

See Also

multiN

Examples

periodic_cov(10, range = 5)

plotland Plotting the landscape

Description

Plots a landscape with colors or hatched lines to represent different types of fields

68 plotland

Usage

plotland(
landscape,
COL = rep(0, length(landscape)),
DENS = rep(0, length(landscape)),
ANGLE = rep(30, length(landscape)),
COL.LEG = unique(COL),
DENS.LEG = unique(DENS),
ANGLE.LEG = unique(ANGLE),
TITLE = "",
SUBTITLE = "",
LEGEND1 = rep("", length(COL.LEG)),
LEGEND2 = rep("", length(COL.LEG)),
TITLE.LEG2 = ""

)

Arguments

landscape a spatialpolygon object containing field coordinates

COL vector containing the color of each field

DENS vector containing the density of hatched lines for each field

ANGLE vector containing the angle of hatched lines for each field

COL.LEG vector containing the colors in the first legend

DENS.LEG vector containing the density of hatched lines in the second legend

ANGLE.LEG vector containing the angle of hatched lines in the second legend

TITLE title of the graphic

SUBTITLE subtitle of the graphic

LEGEND1 labels in the first legend (colors)

LEGEND2 labels in the second legend (hatched lines)

TITLE.LEG2 title for the second legend

Examples

Not run:
Draw a landscape with various colours
landscapeTEST1
plotland(landscapeTEST1,

COL = 1:length(landscapeTEST1),
DENS = rep(0, length(landscapeTEST1)), ANGLE = rep(30, length(landscapeTEST1))

)

End(Not run)

plot_allocation 69

plot_allocation Plotting allocation of croptypes in a landscape

Description

Plots croptype allocation in the landscape at a given year of the simulation

Usage

plot_allocation(
landscape,
year,
croptype_names = c(),
title = "",
subtitle = "",
filename = "landscape.png"

)

Arguments

landscape a SpatialPolygonsDataFrame

year year to be plotted

croptype_names croptype names (for legend)

title title of the graphic

subtitle subtitle of the graphic

filename name of the .png file to be generated

Value

a png file.

See Also

plotland

Examples

Not run:
landscape <- landscapeTEST1
croptypes <- data.frame(sample.int(3, length(landscape), replace = TRUE))
allocation <- SpatialPolygonsDataFrame(landscape, croptypes, match.ID = TRUE)
plot_allocation(allocation, 1,

title = "Simulated landscape", subtitle = "Year 1",
filename = paste(getwd(), "/landscape.png", sep = "")

)

End(Not run)

70 plot_freqPatho

plot_freqPatho Plotting pathotype frequencies

Description

Plots in a .tiff file the dynamics of pathotype frequencies with respect to pathogen adaptation to a
specific resistance gene.

Usage

plot_freqPatho(
name_gene,
Nlevels_aggressiveness,
I_aggrProp,
nTS,
Nyears,
nTSpY

)

Arguments

name_gene a string specifying the name of the gene under investigation
Nlevels_aggressiveness

number of pathotypes with respect to the gene under investigation

I_aggrProp a matrix giving the frequency of every pathotype (rows) for every time-step
(columns)

nTS number of simulated time-steps

Nyears number of simulated cropping seasons

nTSpY number of time-steps per cropping season

Examples

Not run:
freqMatrix <- matrix(0, nrow = 2, ncol = 100)
freqMatrix[2, 26:100] <- (26:100) / 100
freqMatrix[1,] <- 1 - freqMatrix[2,]
plot_freqPatho(

index_gene = 1,
Nlevels_aggressiveness = 2,
freqMatrix,
nTS = 100,
Nyears = 10,
nTSpY = 10

)

End(Not run)

price_reduction 71

price_reduction Price reduction function

Description

Give the price reduction rate associated with the infection on the (grapevine) fruits

Usage

price_reduction(
I_host,
N_host,
Nhost,
Nyears,
nTSpY,
severity_thresh = 0.075,
price_penalty = 0.3

)

Arguments

I_host number of infected individuals for each cultivar and timestep

N_host total number of individuals for each cultivar and timestep

Nhost total number of cultivars considered in the simulation

Nyears number of simulated cropping seasons

nTSpY number of timesteps (e.g. days) per cropping season

severity_thresh

disease severity threshold above which the price reduction is applied

price_penalty percentage of price reduction

Value

A matrix with the price reduction rate per cultivar and per year of simulation

References

Savary, S., Delbac, L., Rochas, A., Taisant, G., & Willocquet, L. (2009). Analysis of nonlinear
relationships in dual epidemics, and its application to the management of grapevine downy and
powdery mildews. Phytopathology, 99(8), 930-942.

72 resetCultivarsGenes

print print

Description

Prints a LandsepiParams object.

Usage

S4 method for signature 'LandsepiParams'
print(x, ...)

Arguments

x a LandsepiParams object

... print options

resetCultivarsGenes Reset cultivars genes

Description

Resets the lists of genes carried by all cultivars

Usage

resetCultivarsGenes(params)

Arguments

params a LandsepiParams object.

Value

a LandsepiParams object

runShinyApp 73

runShinyApp runShinyApp

Description

Launches landsepi shiny application into browser

Usage

runShinyApp()

Details

R packages needed to run the shiny app : install.packages(c("shiny","DT", "shinyjs", "gridExtra",
"png", "grid", "future", "promises", "tools"))

runSimul Run a simulation

Description

Runs a simulation with landsepi, a stochastic, spatially-explicit, demo-genetic model simulating the
spread and evolution of a pathogen in a heterogeneous landscape and generating a wide range of
epidemiological, evolutionary and economic outputs.

Usage

runSimul(
params,
graphic = TRUE,
writeTXT = TRUE,
videoMP4 = FALSE,
keepRawResults = FALSE

)

Arguments

params a LandsepiParams Object containing all simulation parameters. Must be ini-
tialised with createSimulParams and updated using set*() methods (see vi-
gnettes for details).

graphic a logical indicating if graphics must be generated (TRUE, default) or not (FALSE).

writeTXT a logical indicating if outputs must be written in text files (TRUE, default) or not
(FALSE).

videoMP4 a logical indicating if a video must be generated (TRUE) or not (FALSE, de-
fault). Works only if graphic=TRUE and audpc_rel is computed.

74 runSimul

keepRawResults a logical indicating if binary files must be kept after the end of the simula-
tion (default=FALSE). Careful, many files may be generated if keepRawRe-
sults=TRUE.

Details

See ?landsepi for details on the model, assumptions and outputs, and our vignettes for tutorials
(browseVignettes("landsepi")). The function runs the model simulation using a Landsepi-
Params object. Briefly, the model is stochastic, spatially explicit (the basic spatial unit is an individ-
ual field or polygon), based on a SEIR (‘susceptible-exposed-infectious-removed’, renamed HLIR
for ’healthy-latent-infectious-removed’ to avoid confusions with ’susceptible host’) structure with a
discrete time step. It simulates the spread and evolution (via mutation, recombination through sex-
ual reproduction, selection and drift) of a pathogen in a heterogeneous cropping landscape, across
cropping seasons split by host harvests which impose potential bottlenecks to the pathogen. A wide
array of resistance deployment strategies (possibly including chemical treatments) can be simu-
lated and evaluated using several possible outputs to assess the epidemiological, evolutionary and
economic performance of deployment strategies.

Value

A list containing all required outputs. A set of text files, graphics and a video showing epidemic
dynamics can be generated. If keepRawResults=TRUE, a set of binary files is generated for every
year of simulation and every compartment:

• H: healthy hosts,

• Hjuv: juvenile healthy hosts (for host reproduction),

• L: latently infected hosts,

• I: infectious hosts,

• R: removed hosts,

• P: propagules.

Each file indicates for every time step the number of individuals in each polygon, and when ap-
propriate for each host and pathogen genotype. Additionally, a binary file called TFI is generated
and gives the Treatment Frequency Indicator (expressed as the number of treatment applications per
polygon).

References

Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durability
and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Compu-
tational Biology 14(4):e1006067.

See Also

demo_landsepi

runSimul 75

Examples

Not run:
Here is an example of simulation of a mosaic of three cultivars (S + R1 + R2).
See our tutorials for more examples.

Initialisation
simul_params <- createSimulParams(outputDir = getwd())
Seed & Time parameters
simul_params <- setSeed(simul_params, seed = 1)
simul_params <- setTime(simul_params, Nyears = 10, nTSpY = 120)
Pathogen parameters
simul_params <- setPathogen(simul_params, loadPathogen("rust"))
Landscape & dispersal
simul_params <- setLandscape(simul_params, loadLandscape(1))
simul_params <- setDispersalPathogen(simul_params, loadDispersalPathogen[[1]])
Genes
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
Cultivars
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
Allocate genes to cultivars
simul_params <- allocateCultivarGenes(simul_params, "Resistant1", c("MG 1"))
simul_params <- allocateCultivarGenes(simul_params, "Resistant2", c("MG 2"))
Allocate cultivars to croptypes
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop",
"Resistant crop 1", "Resistant crop 2"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 1", "Resistant1")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 2", "Resistant2")
simul_params <- setCroptypes(simul_params, croptypes)
Allocate croptypes to landscape
rotation_sequence <- croptypes$croptypeID ## No rotation => 1 rotation_sequence element
rotation_period <- 0 ## same croptypes every years
prop <- c(1 / 3, 1 / 3, 1 / 3) ## croptypes proportions
aggreg <- 10 ## aggregated landscape
simul_params <- allocateLandscapeCroptypes(simul_params,
rotation_period = rotation_period,
rotation_sequence = rotation_sequence,
rotation_realloc = FALSE, prop = prop, aggreg = aggreg)
Set the inoculum
simul_params <- setInoculum(simul_params, 5e-4)
list of outputs to be generated
simul_params <- setOutputs(simul_params, loadOutputs())
Check simulation parameters
checkSimulParams(simul_params)
Save deployment strategy into GPKG file

76 saveDeploymentStrategy

simul_params <- saveDeploymentStrategy(simul_params)
Run simulation
runSimul(simul_params)

Simulation of rust epidemics in a 1-km^2 patch cultivated
with a susceptible wheat cultivar
seed=10
Nyears=5
disease="rust"
hostType="wheat"
simul_params <- createSimulParams(outputDir = getwd())

Seed and time parameters
simul_params <- setSeed(simul_params, seed)
simul_params <- setTime(simul_params, Nyears, nTSpY=120)

Pathogen parameters
simul_params <- setPathogen(simul_params, loadPathogen(disease))
myLand <- Polygons(list(Polygon(matrix(c(0,0,1,1,0,1,1,0)*1000, nrow=4))), "ID1")
myLand <- SpatialPolygons(list(myLand))
simul_params <- setLandscape(simul_params, myLand)

Simulation, pathogen, landscape and dispersal parameters
simul_params <- setDispersalPathogen(simul_params, c(1))

Cultivars
simul_params <- setCultivars(simul_params, loadCultivar(name = "Susceptible",
type = hostType))

Croptypes
croptype <- data.frame(croptypeID = 0, croptypeName = c("Fully susceptible crop"),
Susceptible = 1)
simul_params <- setCroptypes(simul_params, croptype)
simul_params <- allocateLandscapeCroptypes(simul_params,
rotation_period = 0, rotation_sequence = list(c(0)),
rotation_realloc = FALSE, prop = 1, aggreg = 1)

Inoculum
simul_params <- setInoculum(simul_params, 5e-4)

list of outputs to be generated
outputlist <- loadOutputs(epid_outputs = "all", evol_outputs = "")
simul_params <- setOutputs(simul_params, outputlist)

Check, save and run simulation
checkSimulParams(simul_params)
runSimul(simul_params, graphic = TRUE)

End(Not run)

saveDeploymentStrategy 77

saveDeploymentStrategy

Save landscape and deployment strategy

Description

Generates a GPKG file containing the landscape and all parameters of the deployment strategy

Usage

saveDeploymentStrategy(
params,
outputGPKG = "landsepi_landscape.gpkg",
overwrite = FALSE

)

Arguments

params a LandsepiParams Object.

outputGPKG name of the GPKG output (default: "landsepi_landscape.gpkg") to be generated.

overwrite a boolean specifying if existing files can be overwritten (TRUE) or not (FALSE,
default).

Details

The function generates a GPKG file in the simulation path. The GPKG file contains all input
parameters needed to restore the landscape (sf object) and deployment strategy (croptypes, cultivars
and genes).

Value

an updated LandsepiParams object.

Examples

Not run:
Initialisation
simul_params <- createSimulParams(outputDir = getwd())
Time parameters
simul_params <- setTime(simul_params, Nyears = 10, nTSpY = 120)
Landscape
simul_params <- setLandscape(simul_params, loadLandscape(1))
Genes
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
Cultivars
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")

78 setCroptypes

cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
Allocate genes to cultivars
simul_params <- allocateCultivarGenes(simul_params, "Resistant1", c("MG 1"))
simul_params <- allocateCultivarGenes(simul_params, "Resistant2", c("MG 2"))
Allocate cultivars to croptypes
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop"
, "Resistant crop 1"
, "Resistant crop 2"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 1", "Resistant1")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 2", "Resistant2")
simul_params <- setCroptypes(simul_params, croptypes)
Allocate croptypes to landscape
rotation_sequence <- croptypes$croptypeID ## No rotation -> 1 rotation_sequence element
rotation_period <- 0 ## same croptypes every years
prop <- c(1 / 3, 1 / 3, 1 / 3) ## croptypes proportions
aggreg <- 10 ## aggregated landscape
simul_params <- allocateLandscapeCroptypes(simul_params, rotation_period = rotation_period,
rotation_sequence = rotation_sequence,
rotation_realloc = FALSE, prop = prop, aggreg = aggreg)
Save into a GPKG file
simul_params <- saveDeploymentStrategy(simul_params)

End(Not run)

setCroptypes Set croptypes

Description

Updates a LandsepiParams object with croptypes and their composition with regard to cultivar
proportions. Note that landscape and cultivar parameters may be required if not all information is
present to set croptypes.

Usage

setCroptypes(params, dfCroptypes)

Arguments

params a LandsepiParams Object.

dfCroptypes a data.frame containing cultivar proportions in each croptype (see details). It
can be generated manually, or initialised with loadCroptypes and later updated
with allocateCroptypeCultivars.

setCultivars 79

Details

The data.frame for cultivar allocations into croptypes must take this format (example):

croptypeID croptypeName cultivarName1 cultivarName2 ...
0 "cropt1" 1 0 ...
1 "cropt2" 0.5 0.5 ...

croptypeIDs must start at 0 and match with values from landscape "croptypeID" layer with feature
year_X. Cultivars names have to match cultivar names in the cultivars data.frame.

Value

a LandsepiParams object

See Also

loadCroptypes

Examples

Not run:
simul_params <- createSimulParams()
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant1", type = "wheat")
cultivar3 <- loadCultivar(name = "Resistant2", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2, cultivar3), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
croptypes <- loadCroptypes(simul_params, names = c("Susceptible crop", "Mixture"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture", c("Resistant1", "Resistant2"))
simul_params <- setCroptypes(simul_params, croptypes)
simul_params@Croptypes

End(Not run)

setCultivars Set cultivars

Description

Updates a LandsepiParams object with cultivars parameters

Usage

setCultivars(params, dfCultivars)

80 setCultivars

Arguments

params a landsepiParams object.

dfCultivars a data.frame defining the cultivars (see details). It can be generated manually or,
alternatively, via loadCultivar.

Details

dfCultivars is a dataframe of parameters associated with each host genotype (i.e. cultivars, lines)
when cultivated in pure crops. Columns of the dataframe are:

• cultivarName: cultivar names (cannot accept space),

• initial_density: host densities (per square meter) at the beginning of the cropping season as if
cultivated in pure crop,

• max_density: maximum host densities (per square meter) at the end of the cropping season as
if cultivated in pure crop,

• growth rate: host growth rates,

• reproduction rate: host reproduction rates,

• yield_H: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status H as if cultivated in pure crop,

• yield_L: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status L as if cultivated in pure crop,

• yield_I: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status I as if cultivated in pure crop,

• yield_R: theoretical yield (in weight or volume units / ha / cropping season) associated with
hosts in sanitary status R as if cultivated in pure crop,

• planting_cost = planting costs (in monetary units / ha / cropping season) as if cultivated in
pure crop,

• market_value = market values of the production (in monetary units / weight or volume unit).

The data.frame must be defined as follow (example):

cultivarName initial_density max_density growth_rate reproduction_rate yield_H yield_L yield_I yield_R planting_cost market_value
Susceptible 0.1 2.0 0.1 0.0 2.5 0.0 0.0 0.0 225 200
Resistant1 0.1 2.0 0.1 0.0 2.5 0.0 0.0 0.0 225 200
Resistant2 0.1 2.0 0.1 0.0 2.5 0.0 0.0 0.0 225 200

Value

a LandsepiParams object

See Also

loadCultivar

setDispersalHost 81

Examples

Not run:
simul_params <- createSimulParams()
cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)
simul_params@Cultivars

End(Not run)

setDispersalHost Set host dispersal

Description

Updates a LandsepiParams object with a host dispersal matrix. Note that landscape parameters must
be set before updating setting dispersal.

Usage

setDispersalHost(params, mat)

Arguments

params a LandsepiParams Object.

mat a square matrix giving the probability of host dispersal from any polygon of the
landscape to any other polygon. It can be generated manually, or, alternatively,
via loadDispersalHost. The size of the matrix must match the number of
polygons in the landscape.

Details

the dispersal matrix gives the probability for a host individual in a polygon i (row) to migrate to
polygon j (column) through dispersal. If the host is a cultivated plant: seeds are harvested and do
not disperse. Thus the dispersal matrix is the identity matrix.

Value

a LandsepiParam object.

See Also

loadDispersalHost

82 setDispersalPathogen

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setLandscape(simul_params, loadLandscape(1))
d <- loadDispersalHost(simul_params)
simul_params <- setDispersalHost(simul_params, d)
simul_params@DispHost

End(Not run)

setDispersalPathogen Set pathogen dispersal

Description

Updates a LandsepiParams object with a pathogen dispersal matrix. Note that landscape parameters
must be set before updating setting dispersal.

Usage

setDispersalPathogen(params, mat_clonal, mat_sex = NULL)

Arguments

params a LandsepiParams Object.

mat_clonal a square matrix giving the probability of pathogen dispersal (clonal propagules)
from any polygon of the landscape to any other polygon. It can be generated
manually, or, alternatively, via loadDispersalPathogen. The size of the matrix
must match the number of polygons in the landscape, and lines of the matrix may
sum to 1 (reflecting boundaries) or be <1 (absorbing boundaries).

mat_sex a square matrix giving the probability of pathogen dispersal (sexual propagules)
from any polygon of the landscape to any other polygon (default identity matrix)
. It can be generated manually, or, alternatively, via loadDispersalPathogen.
The size of the matrix must match the number of polygons in the landscape, and
lines of the matrix may sum to 1 (reflecting boundaries) or be <1 (absorbing
boundaries).

Details

See tutorial (vignettes) on how to use your own landscape and compute your own pathogen dis-
persal kernel. The dispersal matrix a square matrix whose size is the number of polygons in the
landscape and whose elements are, for each line i and each column i’ the probability that propag-
ules migrate from polygon i to polygon i’. Lines of the matrix can be normalised to sum to 1
(reflective boundaries); otherwise propagules dispersing outside the landscape are lost (absorbing
boundaries).

setGenes 83

Value

a LandsepiParam object.

See Also

loadDispersalPathogen

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setLandscape(simul_params, loadLandscape(1))
d <- loadDispersalPathogen(1)
simul_params <- setDispersalPathogen(simul_params, d[[1]], d[[2]])
simul_params@DispPathoClonal

End(Not run)

setGenes Set genes

Description

Updates a LandsepiParams object with parameters associated with resistance genes and pathogen
adaptation.

Usage

setGenes(params, dfGenes)

Arguments

params a LandsepiParams object

dfGenes a data.frame containing gene parameters. It can be defined manually, or, alter-
natively, with loadGene.

Details

dfGenes is a data.frame of parameters associated with each resistance gene and with the evolution
of each corresponding pathogenicity gene. Columns of the dataframe are:

• geneName: names of resistance genes,

• target_trait: aggressiveness components ("IR", "LAT", "IP", or "PR") targeted by resistance
genes,

• efficiency: resistance gene efficiencies, i.e. the percentage of reduction of the targeted aggres-
siveness component (IR, 1/LAT, IP and PR),

• age_of_activ_mean: expected delays to resistance activation (for APRs),

84 setGenes

• age_of_activ_var: variances of the delay to resistance activation (for APRs),

• mutation_prob: mutation probabilities for pathogenicity genes (each of them corresponding
to a resistance gene),

• Nlevels_aggressiveness: number of adaptation levels related to each resistance gene (i.e. 1
+ number of required mutations for a pathogenicity gene to fully adapt to the corresponding
resistance gene),

• adaptation_cost: fitness penalties paid by pathogen genotypes fully adapted to the considered
resistance genes on all hosts,

• relative_advantage: fitness advantages of pathogen genotypes fully adapted to the resistance
genes on hosts carrying these genes, relative to those that do not carry these genes,

• tradeoff_strength: strengths of the trade-off relationships between the level of aggressiveness
on hosts that do and do not carry the resistance genes.

• recombination_sd: standard deviation of the normal distribution used for recombination of
quantitative traits during sexual reproduction (infinitesimal model)

The data.frame must be defined as follow (example):

geneName efficiency age_of_activ_mean age_of_activ_var mutation_prob Nlevels_agressiveness adaptation_cost relative advantage tradeoff_strength target_trait recombination_sd
MG1 1 0 0 1e-07 2 0.5 0.5 1 IR 0.27
QTL1 0.5 0 0 0.0001 10 0.74 0.74 1 LAT 0.27

Value

a LandsepiParams object.

See Also

loadGene

Examples

Not run:
simul_params <- createSimulParams()
gene1 <- loadGene(name = "MG 1", type = "majorGene")
gene2 <- loadGene(name = "MG 2", type = "majorGene")
genes <- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
simul_params <- setGenes(simul_params, genes)
simul_params@Genes

End(Not run)

setInoculum 85

setInoculum Set inoculum

Description

Updates a LandsepiParams object with the initial probability for an individual host to be infectious
(i.e. state I) at the beginning of the simulation (i.e. t=0).

Usage

setInoculum(params, val = 5e-04)

Arguments

params a LandsepiParams object.

val a numeric value (default = 5e-4) indicating the probability for the first cultivar
to be infected by the first pathogen genotype in all polygons of the landscape
(must be between 0 and 1). The parameter can also be entered as a 3D array
of dimensions (1:Nhost,1:Npatho,1:Npoly) indicating the initial probability to
be infectious, for each cultivar, pathogen genotype and polygon (independently
from the possible presence of cultivars carrying resistance genes). It can be
generated manually or, alternatively, via loadInoculum.

Details

Before setting the inoculum, one can use getMatrixGenePatho(), getMatrixCultivarPatho(),
getMatrixCroptypePatho() and getMatrixPolyPatho() to acknowledge which pathogen geno-
types are compatible to which genes, cultivars, croptypes and polygons.
Once setInoculum() is used, one can call inoculumToMatrix() to get the inoculum as a 3D array
(1:Nhost,1:Npatho,1:Npoly)

Value

a LandsepiParams object

See Also

inoculumToMatrix, loadInoculum

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setInoculum(simul_params, 1E-3)
simul_params@PI0

End(Not run)

86 setLansdcape

setLansdcape Set the landscape

Description

Updates a LandsepiParams object with a sp or sf object as landscape.

Usage

setLandscape(params, land)

Arguments

params a LandsepiParams Object.

land a landscape as sp or sf object

Details

The landscape should be a sp or sf object. Built-in landscape are available using loadLandscape.
See our tutorial (vignettes) for details on how to use your own landscape. If the landscape contains
only polygons, croptypes can be allocated later using allocateLandscapeCroptypes. Otherwise
the landscape has to contain a data.frame specifying for every year, the index of the croptype culti-
vated in each polygon. Each features has a field identified by "year_XX" (XX <- seq(1:Nyears+1))
and containing the croptype ID.

Features/fields year_1 year_2 ... year_Nyears+1
polygons1 13 10 13
polygonsX 2 1 2

Value

a LandsepiParams object.

See Also

loadLandscape

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setLandscape(simul_params, loadLandscape(1))
simul_params@Landscape

End(Not run)

setOutputs 87

setOutputs Set outputs

Description

Updates a LandsepiParams object with a list of output parameters.

Usage

setOutputs(params, output_list)

Arguments

params a LandsepiParams object.

output_list a list of outputs to be generated and parameters for output generation. It can be
generated manually or, alternatively, via loadOutputs. This list is composed
of:

• epid_outputs = epidemiological outputs to compute (see details)
• evol_outputs = evolutionary outputs to compute (see details)
• thres_breakdown = an integer (or vector of integers) giving the threshold

(i.e. number of infections) above which a pathogen genotype is unlikely
to go extinct, used to characterise the time to invasion of resistant hosts
(several values are computed if several thresholds are given in a vector).

• audpc100S = the audpc in a fully susceptible landscape (used as reference
value for graphics).

Details

"epid_outputs" is a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of epidemiological and economic outputs to generate:

• "audpc" : Area Under Disease Progress Curve (average number of diseased host individuals
per time step and square meter)

• "audpc_rel" : Relative Area Under Disease Progress Curve (average proportion of diseased
host individuals relative to the total number of existing hosts)

• "gla" : Green Leaf Area (average number of healthy host individuals per square meter)

• "gla_rel" : Relative Green Leaf Area (average proportion of healthy host individuals relative
to the total number of existing hosts)

• "eco_yield" : total crop yield (in weight or volume units per ha)

• "eco_cost" : operational crop costs (in monetary units per ha)

• "eco_product" : total crop products (in monetary units per ha)

• "eco_margin" : Margin (products - costs, in monetary units per ha)

• "contrib": contribution of pathogen genotypes to LIR dynamics

88 setPathogen

• "HLIR_dynamics", "H_dynamics", "L_dynamics", "IR_dynamics", "HLI_dynamics", etc.:
Epidemic dynamics related to the specified sanitary status (H, L, I or R and all their com-
binations). Graphics only, works only if graphic=TRUE.

• "all" : compute all these outputs (default)

• "" : none of these outputs will be generated.

"evol_outputs" is a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of evolutionary outputs to generate :

• "evol_patho": Dynamics of pathogen genotype frequencies

• "evol_aggr": Evolution of pathogen aggressiveness

• "durability": Durability of resistance genes

• "all": compute all these outputs (default)

• "": none of these outputs will be generated.

Value

a LandsepiParams object.

See Also

loadOutputs

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setOutputs(simul_params, loadOutputs())
simul_params@Outputs

End(Not run)

setPathogen Set the pathogen

Description

Updates a LandsepiParams object with pathogen parameters

Usage

setPathogen(params, patho_params)

setPathogen 89

Arguments

params a LandsepiParams Object.

patho_params a list of pathogen aggressiveness parameters on a susceptible host for a pathogen
genotype not adapted to resistance:

• infection_rate = maximal expected infection rate of a propagule on a healthy
host,

• propagule_prod_rate = maximal expected effective propagule production
rate of an infectious host per time step,

• latent_period_mean = minimal expected duration of the latent period,

• latent_period_var = variance of the latent period duration,

• infectious_period_mean = maximal expected duration of the infectious pe-
riod,

• infectious_period_var = variance of the infectious period duration,

• survival_prob = probability for a propagule to survive the off-season,

• repro_sex_prob = probability for an infectious host to reproduce via sex
rather than via cloning,

• sigmoid_kappa = kappa parameter of the sigmoid contamination function,

• sigmoid_sigma = sigma parameter of the sigmoid contamination function,

• sigmoid_plateau = plateau parameter of the sigmoid contamination func-
tion,

• sex_propagule_viability_limit = maximum number of cropping seasons up
to which a sexual propagule is viable

• sex_propagule_release_mean = average number of seasons after which a
sexual propagule is released.

• clonal_propagule_gradual_release = whether or not clonal propagules sur-
viving the bottleneck are gradually released along the following cropping
season.

It can be generated manually, or, alternatively, via loadPathogen.

Details

a set of parameters representative of rust fungi, downy mildew or black sigatoka can be loaded via
loadPathogen.

Value

a LandsepiParams object

See Also

loadPathogen

90 setSeed

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setPathogen(simul_params, loadPathogen())
simul_params@Pathogen

End(Not run)

setSeed Set the seed

Description

Updates a LandsepiParams object with a seed value for random number generator

Usage

setSeed(params, seed)

Arguments

params a LandsepiParams Object.

seed an integer used as seed value (for random number generator).

Value

a LandsepiParams object.

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setSeed(simul_params, 100)
simul_params@Seed

End(Not run)

setSeedValue 91

setSeedValue setSeedValue

Description

Set RNG seed to seed value if not NULL, otherwise set it to timestamps value

Usage

setSeedValue(seed = NULL)

Arguments

seed an interger as seed value or NULL

Details

Sets seed for "Mersenne-Twister" algorithm using Inversion generation

Value

the new seed value for RNG

Examples

setSeedValue(seed = 10)

setTime Set time parameters

Description

Updates a LandsepiParams object with time parameters : Nyears and nTSpY

Usage

setTime(params, Nyears, nTSpY)

Arguments

params a LandsepiParams Object.

Nyears an integer giving the number of cropping seasons (e.g. years) to simulate.

nTSpY an integer giving the number of time steps per cropping season (e.g. days).

Value

a LandsepiParams object.

92 setTreatment

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears=10, nTSpY=120)
simul_params@TimeParam

End(Not run)

setTreatment Set chemical treatments

Description

Updates a LandsepiParams object with treatment parameters

Usage

setTreatment(params, treatment_params)

Arguments

params a LandsepiParams Object.
treatment_params

list of parameters related to pesticide treatments:

• treatment_degradation_rate = degradation rate (per time step) of chemical
concentration,

• treatment_efficiency = maximal efficiency of chemical treatments (i.e. frac-
tional reduction of pathogen infection rate at the time of application),

• treatment_timesteps = vector of time steps corresponding to treatment ap-
plication dates,

• treatment_cultivars = vector of indices of the cultivars that receive treat-
ments,

• treatment_cost = cost of a single treatment application (monetary units/ha)
• treatment_application_threshold = vector of thresholds (i.e. disease sever-

ity, one for each treated cultivar) above which the treatment is applied in a
polygon.

Details

Chemical treatment is applied in a polygon only if disease severity (i.e. I/N) in this polygon exceeds
the threshold given by treatment_application_threshold. Treatment efficiency is maximum
(i.e. equal to the parameter treatment_efficiency) at the time of treatment application (noted t∗);
then it decreases with time (i.e. natural pesticide degradation) and host growth (i.e. new biomass is
not protected by treatments): protected by treatments):Efficiency of the treatment at time t after the
application date is given by: efficiency(t) = treatment_efficiency/(1 + exp(a − b ∗ C(t)))
with C(t) = C1 ∗ C2:

show 93

• C1 = exp(−treatment_degradation_rate∗∆t) is the reduction of fungicide concentration
due to time (e.g. natural degradation, volatilization, weathering), with ∆t = t− t∗ the timelag
passed since the time of treatment application.

• C2 = min(1, N(t∗)/N(t)) is the reduction of fungicide concentration due to plant growth,
since new plant tissue is not covered by fungicide. N(t∗) and N(t) being the number of host
individuals a the time of treatment t∗ and at time t, respectively.

• a ∈ [3.5; 4.5] and b ∈ [8; 9] are shape parameters.

An empty list of treatments (i.e. absence of application) can be loaded using loadPathogen.

Value

a LandsepiParams object

See Also

loadTreatment

Examples

Not run:
t <- loadTreatment()
simul_params <- setTreatment(simul_params, t)
simul_params@Treatment

End(Not run)

show show

Description

Shows a LandsepiParams object.

Usage

S4 method for signature 'LandsepiParams'
show(object)

Arguments

object a LandsepiParams object

94 simul_landsepi

simul_landsepi Simulation with input parameters as data.frames.

Description

Stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a pathogen
in a heterogeneous landscape and generating a wide range of epidemiological, evolutionary and
economic outputs.

Usage

simul_landsepi(
seed = 12345,
time_param = list(Nyears = 5, nTSpY = 120),
croptype_names = c("Susceptible crop"),
croptypes_cultivars_prop = data.frame(croptypeID = 0, cultivarID = 0, proportion = 1),
cultivars = data.frame(cultivarName = "Susceptible", initial_density = 0.1, max_density
= 2, growth_rate = 0.1, reproduction_rate = 0, yield_H = 2.5, yield_L = 0, yield_I =
0, yield_R = 0, planting_cost = 225, market_value = 200),

cultivars_genes_list = list(numeric(0)),
genes = data.frame(geneName = character(0), mutation_prob = numeric(0), efficiency =
numeric(0), tradeoff_strength = numeric(0), Nlevels_aggressiveness = numeric(0),
adaptation_cost = numeric(0), relative_advantage = numeric(0), age_of_activ_mean =
numeric(0), age_of_activ_var = numeric(0), target_trait = character(0),
recombination_sd = numeric(0)),

landscape = NULL,
area = 1e+06,
rotation = data.frame(year_1 = c(0), year_2 = c(0), year_3 = c(0), year_4 = c(0),

year_5 = c(0), year_6 = c(0)),
basic_patho_param = list(name = "rust", survival_prob = 1e-04, repro_sex_prob = 0,

infection_rate = 0.4, propagule_prod_rate = 3.125, latent_period_mean = 10,
latent_period_var = 9, infectious_period_mean = 24, infectious_period_var = 105,
sigmoid_kappa = 5.333, sigmoid_sigma = 3, sigmoid_plateau = 1,
sex_propagule_viability_limit = 1, sex_propagule_release_mean = 1,
clonal_propagule_gradual_release = 0),

disp_patho_clonal = c(1),
disp_patho_sex = c(1),
disp_host = c(1),
treatment = list(treatment_degradation_rate = 0.1, treatment_efficiency = 0,
treatment_timesteps = logical(0), treatment_cultivars = logical(0), treatment_cost =
0, treatment_application_threshold = logical(0)),

pI0 = c(5e-04),
epid_outputs = "all",
evol_outputs = "all",
thres_breakdown = 50000,
audpc100S = 0.76,
writeTXT = TRUE,

simul_landsepi 95

graphic = TRUE,
videoMP4 = FALSE,
keepRawResults = FALSE

)

Arguments

seed an integer used as seed value (for random number generator).

time_param a list of simulation parameters:

• Nyears = number cropping seasons,
• nTSpY = number of time-steps per cropping season.

croptype_names a vector of croptypes names.
croptypes_cultivars_prop

a dataframe with three columns named ’croptypeID’ for croptype index, ’cul-
tivarID’ for cultivar index and ’proportion’ for the proportion of the cultivar
within the croptype.

cultivars a dataframe of parameters associated with each host genotype (i.e. cultivars)
when cultivated in pure crops. Columns of the dataframe are:

• cultivarName: cultivar names,
• initial_density: host densities (per square meter) at the beginning of the

cropping season as if cultivated in pure crop,
• max_density: maximum host densities (per square meter) at the end of the

cropping season as if cultivated in pure crop,
• growth_rate: host growth rates,
• reproduction rate: host reproduction rates,
• yield_H: theoretical yield (in weight or volume units / ha / cropping season)

associated with hosts in sanitary status H as if cultivated in pure crop,
• yield_L: theoretical yield (in weight or volume units / ha / cropping season)

associated with hosts in sanitary status L as if cultivated in pure crop,
• yield_I: theoretical yield (in weight or volume units / ha / cropping season)

associated with hosts in sanitary status I as if cultivated in pure crop,
• yield_R: theoretical yield (in weight or volume units / ha / cropping season)

associated with hosts in sanitary status R as if cultivated in pure crop,
• planting_cost = planting costs (in monetary units / ha / cropping season) as

if cultivated in pure crop,
• market_value = market values of the production (in monetary units / weight

or volume unit).
cultivars_genes_list

a list containing, for each host genotype, the indices of carried resistance genes.

genes a data.frame of parameters associated with each resistance gene and with the
evolution of each corresponding pathogenicity gene. Columns of the dataframe
are:

• geneName: names of resistance genes,
• target_trait: aggressiveness components (IR, LAT, IP, or PR) targeted by

resistance genes,

96 simul_landsepi

• efficiency: resistance gene efficiencies (percentage of reduction of targeted
aggressiveness components: IR, 1/LAT, IP and PR),

• age_of_activ_mean: expected delays to resistance activation (for APRs),
• age_of_activ_var: variances of the delay to resistance activation (for APRs),
• mutation_prob: mutation probabilities for pathogenicity genes (each of

them corresponding to a resistance gene),
• Nlevels_aggressiveness: number of adaptation levels related to each resis-

tance gene (i.e. 1 + number of required mutations for a pathogenicity gene
to fully adapt to the corresponding resistance gene),

• adaptation_cost: fitness penalties paid by pathogen genotypes fully adapted
to the considered resistance genes on all hosts,

• relative_advantage: fitness advantages of pathogen genotype fully adapted
to the considered resistance genes on hosts carrying these genes, relative to
those that do not carry these genes,

• tradeoff_strength: strengths of the trade-off relationships between the level
of aggressiveness on hosts that do and do not carry the resistance genes.

• recombination_sd: standard deviation of the normal distribution used for
recombination of quantitative traits during sexual reproduction (infinitesi-
mal model)

landscape a sp object containing the landscape (required only if videoMP4=TRUE).

area a vector containing polygon areas (must be in square meters).

rotation a dataframe containing for each field (rows) and year (columns, named "year_1",
"year_2", etc.), the index of the cultivated croptype. Importantly, the matrix
must contain 1 more column than the real number of simulated years.

basic_patho_param

a list of i. pathogen aggressiveness parameters on a susceptible host for a
pathogen genotype not adapted to resistance and ii. sexual reproduction pa-
rameters:

• infection_rate = maximal expected infection rate of a propagule on a healthy
host,

• propagule_prod_rate = maximal expected effective propagule production
rate of an infectious host per time step,

• latent_period_mean = minimal expected duration of the latent period,
• latent_period_var = variance of the latent period duration,
• infectious_period_mean = maximal expected duration of the infectious pe-

riod,
• infectious_period_var = variance of the infectious period duration,
• survival_prob = probability for a propagule to survive the off-season (can

be entered as a matrix to give a different probability for every year (rows)
and every croptype (columns)),

• repro_sex_prob = probability for an infectious host to reproduce via sex
rather than via cloning (can be entered as a vector of size time_param$nSTpY+1
to give a different probability for every time step),

• sigmoid_kappa = kappa parameter of the sigmoid contamination function,
• sigmoid_sigma = sigma parameter of the sigmoid contamination function,

simul_landsepi 97

• sigmoid_plateau = plateau parameter of the sigmoid contamination func-
tion,

• sex_propagule_viability_limit = maximum number of cropping seasons up
to which a sexual propagule is viable

• sex_propagule_release_mean = average number of seasons after which a
sexual propagule is released,

• clonal_propagule_gradual_release = Whether or not clonal propagules sur-
viving the bottleneck are gradually released along the following cropping
season.

disp_patho_clonal

a vectorized matrix giving the probability of pathogen dispersal from any field
of the landscape to any other field.

disp_patho_sex a vectorized matrix giving the probability of pathogen dispersal for sexual propag-
ules from any field of the landscape to any other field.

disp_host a vectorized matrix giving the probability of host dispersal from any field of the
landscape to any other field

treatment list of parameters related to pesticide treatments:

• treatment_degradation_rate = degradation rate (per time step) of chemical
concentration,

• treatment_efficiency = maximal efficiency of chemical treatments (i.e. frac-
tional reduction of pathogen infection rate at the time of application),

• treatment_timesteps = vector of time-steps corresponding to treatment ap-
plication dates,

• treatment_cultivars = vector of indices of the cultivars that receive treat-
ments,

• treatment_cost = cost of a single treatment application (monetary units/ha)
• treatment_application_threshold = vector of thresholds (i.e. disease sever-

ity, one for each treated cultivar) above which the treatment is applied in a
polygon

pI0 probability for the first cultivar to be infected (and infectious, i.e. state I) by the
first pathogen genotype in all polygons of the landscape at t=0 (i.e. the beginning
of the simulation). It can also be entered as a vector of length NhostNpathoNpoly
giving the probability for each cultivar, pathogen genotype and polygon (inde-
pendently from the possible presence of cultivars carrying resistance genes).

epid_outputs a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of epidemiological and economic outputs to gen-
erate (see details):

• "audpc" : Area Under Disease Progress Curve (average number of diseased
host individuals per time step and square meter)

• "audpc_rel" : Relative Area Under Disease Progress Curve (average pro-
portion of diseased host individuals relative to the total number of existing
hosts)

• "gla" : Green Leaf Area (average number of healthy host individuals per
time step and square meter)

98 simul_landsepi

• "gla_rel" : Relative Green Leaf Area (average proportion of healthy host
individuals relative to the total number of existing hosts)

• "eco_yield" : total crop yield (in weight or volume units per ha)
• "eco_cost" : operational crop costs (in monetary units per ha)
• "eco_product" : total crop products (in monetary units per ha)
• "eco_margin" : Margin (products - operational costs, in monetary units per

ha)
• "contrib": contribution of pathogen genotypes to LIR dynamics
• "HLIR_dynamics", "H_dynamics", "L_dynamics", "IR_dynamics", "HLI_dynamics",

etc.: Epidemic dynamics related to the specified sanitary status (H, L, I or
R and all their combinations). Graphics only, works only if graphic=TRUE.

• "all" : compute all these outputs (default)
• "" : none of these outputs will be generated.

evol_outputs a character string (or a vector of character strings if several outputs are to be
computed) specifying the type of evolutionary outputs to generate :

• "evol_patho": Dynamics of pathogen genotype frequencies
• "evol_aggr": Evolution of pathogen aggressiveness
• "durability": Durability of resistance genes
• "all": compute all these outputs (default)
• "": none of these outputs will be generated.

thres_breakdown

an integer (or vector of integers) giving the threshold (i.e. number of infections)
above which a pathogen genotype is unlikely to go extinct, used to characterise
the time to invasion of resistant hosts (several values are computed if several
thresholds are given in a vector).

audpc100S the audpc in a fully susceptible landscape (used as reference value for graphics).

writeTXT a logical indicating if outputs must be written in text files (TRUE, default) or not
(FALSE).

graphic a logical indicating if graphics must be generated (TRUE, default) or not (FALSE).

videoMP4 a logical indicating if a video must be generated (TRUE) or not (FALSE, de-
fault). Works only if graphic=TRUE and epid_outputs="audpc_rel" (or epid_outputs="all").

keepRawResults a logical indicating if binary files must be kept after the end of the simula-
tion (default=FALSE). Careful, many files may be generated if keepRawRe-
sults=TRUE.

Details

See ?landsepi for details on the model and assumptions. Briefly, the model is stochastic, spa-
tially explicit (the basic spatial unit is an individual field), based on a SEIR (‘susceptible-exposed-
infectious-removed’, renamed HLIR for ’healthy-latent-infectious-removed’ to avoid confusions
with ’susceptible host’) structure with a discrete time step. It simulates the spread and evolution
(via mutation, recombination through sexual reproduction, selection and drift) of a pathogen in a
heterogeneous cropping landscape, across cropping seasons split by host harvests which impose
potential bottlenecks to the pathogen. A wide array of resistance deployment strategies (possibly

simul_landsepi 99

including chemical treatments) can be simulated and evaluated using several possible outputs to
assess the epidemiological, evolutionary and economic performance of deployment strategies (See
?epid_output and ?evol_output for details).

Value

A list containing all outputs that have been required via "epid_outputs" and "evol_outputs". A set
of text files, graphics and a video showing epidemic dynamics can be generated. If keepRawRe-
sults=TRUE, a set of binary files is generated for every year of simulation and every compartment:

• H: healthy hosts,

• Hjuv: juvenile healthy hosts (for host reproduction),

• L: latently infected hosts,

• I: infectious hosts,

• R: removed hosts,

• P: propagules.

Each file indicates for every time-step the number of individuals in each field, and when appropriate
for each host and pathogen genotype. Additionally, a binary file called TFI is generated and gives
the Treatment Frequency Indicator (expressed as the number of treatment applications per polygon).

References

Rimbaud L., Papaïx J., Rey J.-F., Barrett L. G. and Thrall P. H. (2018). Assessing the durability
andefficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Compu-
tational Biology 14(4):e1006067.

See Also

model_landsepi, epid_output, evol_output, video, runSimul

Examples

Not run:
Spatially-implicit simulation with a single 1-km^2 patch 100% cultivated
with a susceptible cultivar

simul_landsepi()

Spatially-implicit simulation with 2 patches (S + R) during 3 years

Simulation parameters
time_param <- list(Nyears = 3, nTSpY = 120)
area <- c(100000, 100000)
rotation <- data.frame(year_1 = c(0, 1), year_2 = c(0, 1), year_3 = c(0, 1), year_4 = c(0, 1))
croptype_names <- c("Susceptible crop", "Resistant crop")
croptypes_cultivars_prop <- data.frame(
croptypeID = c(0, 1),
cultivarID = c(0, 1),
proportion = c(1, 1)

100 simul_landsepi

)
cultivars <- rbind(
loadCultivar(name = "Susceptible", type = "growingHost"),
loadCultivar(name = "Resistant", type = "growingHost")
)
genes <- loadGene(name = "MG", type = "majorGene")
cultivars_genes_list <- list(numeric(0), 0)

Run simulation
simul_landsepi(
seed = 12345, time_param, croptype_names, croptypes_cultivars_prop, cultivars,
cultivars_genes_list, genes, landscape = NULL, area, rotation,
basic_patho_param = loadPathogen(disease = "rust"),
disp_patho_clonal = c(0.99, 0.01, 0.01, 0.99),
disp_patho_sex = c(0.99, 0.01, 0.01, 0.99),
disp_host = c(1, 0, 0, 1),
pI0 = c(5e-4)
)

Spatially-explicit simulation with built-in landscape during 10 years
Generate a mosaic of four croptypes in balanced proportions
and medium level of spatial aggregation

Simulation and Landscape parameters
Nyears <- 10
nTSpY <- 120
landscape <- loadLandscape(1)
Npoly <- length(landscape)
library(sf)
area <- st_area(st_as_sf(landscape))
rotation <- AgriLand(landscape, Nyears,
rotation_period = 1, rotation_realloc = FALSE,
rotation_sequence = c(0, 1, 2, 3),
prop = rep(1 / 4, 4), aggreg = 0.5, graphic = TRUE, outputDir = getwd()
)
rotation <- data.frame(rotation)[, 1:(Nyears + 1)]
croptype_names <- c("Susceptible crop"
, "Resistant crop 1"
, "Resistant crop 2"
, "Resistant crop 3")
croptypes_cultivars_prop <- data.frame(croptypeID = c(0, 1, 2, 3), cultivarID = c(0, 1, 2, 3),
proportion = c(1, 1, 1, 1))
cultivars <- data.frame(rbind(
loadCultivar(name = "Susceptible", type = "growingHost"),
loadCultivar(name = "Resistant1", type = "growingHost"),
loadCultivar(name = "Resistant2", type = "growingHost"),
loadCultivar(name = "Resistant3", type = "growingHost")
), stringsAsFactors = FALSE)
Nhost <- nrow(cultivars)
genes <- data.frame(rbind(
loadGene(name = "MG 1", type = "majorGene"),
loadGene(name = "MG 2", type = "majorGene"),

summary 101

loadGene(name = "MG 3", type = "majorGene")
), stringsAsFactors = FALSE)
cultivars_genes_list <- list(numeric(0), 0, 1, 2)
Npatho <- prod(genes$Nlevels_aggressiveness)

Run simulation
simul_landsepi(
seed = 12345, time_param = list(Nyears = Nyears, nTSpY = nTSpY),
croptype_names, croptypes_cultivars_prop, cultivars,
cultivars_genes_list, genes, landscape, area, rotation,
basic_patho_param = loadPathogen(disease = "rust"),
disp_patho_clonal = loadDispersalPathogen(1)[[1]],
disp_patho_sex = as.numeric(diag(Npoly)),
disp_host = as.numeric(diag(Npoly)),
pI0 = c(5E-4)
)

End(Not run)

summary summary

Description

Prints the summary of a LandsepiParams object.

Usage

S4 method for signature 'LandsepiParams'
summary(object)

Arguments

object a LandsepiParams object.

survivalProbToMatrix Survival probability To Matrix

Description

Transform the off-season survival probability of the pathogen (1D vector of length Nyears*Ncroptypes)
into a matrix (for visualization purpose)

Usage

survivalProbToMatrix(params)

102 survivalProbToMatrix

Arguments

params a LandsepiParams object.

Details

After updating the off-season survival probability with updateSurvivalProb(), this function re-
turns the probability as a matrix for every year (rows) and croptypes (columns) as well as, if crop-
types have been previously allocated to a landscape, a matrix for every polygon (rows) and year
(columns).

Value

a list containing a matrix of dimensions (Nyears, Ncroptypes) as well as a matrix of dimensions
(Npoly, Nyears)

See Also

updateSurvivalProb

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears=10, nTSpY=120)
simul_params <- setPathogen(simul_params, loadPathogen("rust"))

cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)

croptypes <- loadCroptypes(simul_params
, names = c("Susceptible crop", "Resistant crop", "Mixture"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop", "Resistant")
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture", c("Susceptible", "Resistant"))
simul_params <- setCroptypes(simul_params, croptypes)

Ncroptypes <- nrow(simul_params@Croptypes)
Nyears <- simul_params@TimeParam$Nyears

landscape <- loadLandscape(1)
simul_params <- setLandscape(simul_params, landscape)
simul_params <- allocateLandscapeCroptypes(simul_params,
rotation_period = 0, rotation_sequence = croptypes$croptypeID,
rotation_realloc = FALSE,
prop = rep(1/Ncroptypes, Ncroptypes),
aggreg = 0.05, graphic = FALSE)

One probability per year and per croptype:
simul_params <- updateSurvivalProb(simul_params

switch_patho_to_aggr 103

, mat=matrix(runif(Nyears*Ncroptypes), ncol=Ncroptypes))
simul_params@Pathogen
survivalProbToMatrix(simul_params)

End(Not run)

switch_patho_to_aggr Switch from index of genotype to indices of agressiveness on different
components

Description

Finds the level of aggressiveness on different components (targeted by different resistance genes)
from the index of a given pathogen genotype

Usage

switch_patho_to_aggr(index_patho, Ngenes, Nlevels_aggressiveness)

Arguments

index_patho index of pathogen genotype

Ngenes number of resistance genes
Nlevels_aggressiveness

vector of the number of adaptation levels related to each resistance gene

Value

a vector containing the indices of aggressiveness on the different components targeted by the resis-
tance genes

Examples

switch_patho_to_aggr(5, 3, c(2, 2, 3))

updateReproSexProb Update the probability of sexual reproduction

Description

set the probabilities for an infectious host to reproduce via sex rather than via cloning at every time
step. Note that time parameters must be set before updating sexual reproduction probabilities.

Usage

updateReproSexProb(params, vec)

104 updateSurvivalProb

Arguments

params a LandsepiParams object

vec a vector of size TimeParam$nTSpY +1 (season end) with the probabilities for
an infectious host to reproduce via sex rather than via cloning at each time step.

Value

a LandsepiParams object updated

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears=10, nTSpY=120)
simul_params <- setPathogen(simul_params, loadPathogen("rust"))
repro_sex_probs <- c(rep(0.0, 120), 1.0)
simul_params <- updateReproSexProb(simul_params, repro_sex_probs)
simul_params@Pathogen

End(Not run)

updateSurvivalProb Update pathogen survival probability during the off-season

Description

update survival probability of the pathogen with a probability value for every simulated year (num-
ber of years = Nyears) and every croptype (number of croptypes = Ncroptypes). Note that time
parameters, pathogen and croptypes must be set before updating survival probabilities.

Usage

updateSurvivalProb(params, mat_year = NULL, mat_croptype = NULL, mat = NULL)

Arguments

params a LandsepiParams object

mat_year a vector of size Nyear, giving survival probabilities for every year (replicated for
every croptype).

mat_croptype a vector of size Ncroptypes, giving survival probabilities for every croptype
(replicated for every year).

mat a matrix of dimension (Nyears, Ncroptypes) giving survival probabilities for
every year (rows) and every croptype (columns).

updateSurvivalProb 105

Details

Unless the matrix mat is filled, the matrix containing the survival probability during the offsea-
son is computed for every year and croptype with mat[year, croptype] = mat_year[year] *
mat_croptype[croptype].

Value

a LandsepiParams object updated.

See Also

survivalProbToMatrix

Examples

Not run:
simul_params <- createSimulParams()
simul_params <- setTime(simul_params, Nyears=10, nTSpY=120)
simul_params <- setPathogen(simul_params, loadPathogen("rust"))

cultivar1 <- loadCultivar(name = "Susceptible", type = "wheat")
cultivar2 <- loadCultivar(name = "Resistant", type = "wheat")
cultivars <- data.frame(rbind(cultivar1, cultivar2), stringsAsFactors = FALSE)
simul_params <- setCultivars(simul_params, cultivars)

croptypes <- loadCroptypes(simul_params
, names = c("Susceptible crop", "Resistant crop", "Mixture"))
croptypes <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop", "Resistant")
croptypes <- allocateCroptypeCultivars(croptypes, "Mixture", c("Susceptible", "Resistant"))
simul_params <- setCroptypes(simul_params, croptypes)
Ncroptypes <- nrow(simul_params@Croptypes)
Nyears <- simul_params@TimeParam$Nyears

Same probability in every croptype:
simul_params <- updateSurvivalProb(simul_params, mat_year=1:Nyears/100)
simul_params@Pathogen
Same probability every year:
simul_params <- updateSurvivalProb(simul_params, mat_croptype=1:Ncroptypes/10)
simul_params@Pathogen
specific probability for different croptypes and years:
simul_params <- updateSurvivalProb(simul_params
, mat_year=1:Nyears/100, mat_croptype=1:Ncroptypes/10)
simul_params@Pathogen
One probability per year and per croptype:
simul_params <- updateSurvivalProb(simul_params
, mat=matrix(runif(Nyears*Ncroptypes), ncol=Ncroptypes))
simul_params@Pathogen
survivalProbToMatrix(simul_params)

End(Not run)

106 video

video Generation of a video

Description

Generates a video showing the epidemic dynamics on a map representing the cropping landscape.
(requires ffmpeg library).

Usage

video(
audpc,
time_param,
Npatho,
landscape,
area,
rotation,
croptypes,
croptype_names = c(),
cultivars_param,
keyDates = NULL,
nMapPY = 10,
path = getwd()

)

Arguments

audpc A dataframe containing audpc outputs (generated through epid_output). 1 line
per year and 1 column per cultivar, with an additional column for the average
audpc in the landscape.

time_param list of simulation parameters:

• Nyears = number cropping seasons,
• nTSpY = number of time-steps per cropping season.

Npatho number of pathogen genotypes.

landscape a sp object containing the landscape.

area a vector containing polygon areas (must be in square meters).

rotation a dataframe containing for each field (rows) and year (columns, named "year_1",
"year_2", etc.), the index of the cultivated croptype. Importantly, the matrix
must contain 1 more column than the real number of simulated years.

croptypes a dataframe with three columns named ’croptypeID’ for croptype index, ’cul-
tivarID’ for cultivar index and ’proportion’ for the proportion of the cultivar
within the croptype.

croptype_names a vector of croptype names (for legend).

video 107

cultivars_param

a list of parameters associated with each host genotype (i.e. cultivars) when
cultivated in pure crops:

• name = vector of cultivar names,
• max_density = vector of maximum host densities (per square meter) at the

end of the cropping season as if cultivated in pure crops,
• cultivars_genes_list = a list containing, for each host genotype, the indices

of carried resistance genes.

keyDates a vector of times (in time steps) where to draw vertical lines in the AUDPC
graphic. Usually used to delimit durabilities of the resistance genes. No line is
drawn if keyDates=NULL (default).

nMapPY an integer specifying the number of epidemic maps per year to generate.

path path where binary files are located and where the video will be generated.

Details

The left panel shows the year-after-year dynamics of AUDPC, for each cultivar as well as the global
average. The right panel illustrates the landscape, where fields are hatched depending on the culti-
vated croptype, and coloured depending on the prevalence of the disease. Note that up to 9 different
croptypes can be represented properly in the right panel.

Value

A video file of format webM

Examples

Not run:
demo_landsepi()

End(Not run)

Index

∗ SEIR
landsepi-package, 4

∗ datasets
Cultivars_list, 26
dispP, 28
landscapeTEST, 45

∗ demo-genetic
landsepi-package, 4

∗ deployment
landsepi-package, 4

∗ durability
landsepi-package, 4

∗ model
landsepi-package, 4

∗ resistance
landsepi-package, 4

∗ spatial
landsepi-package, 4

∗ stochastic
landsepi-package, 4

AgriLand, 9, 66
allocateCroptypeCultivars, 12, 46, 47, 78
allocateCultivarGenes, 13, 46
allocateLandscapeCroptypes, 11, 14, 66,

86
antideriv_verhulst, 17

checkCroptypes, 17
checkCultivars, 18
checkCultivarsGenes, 18
checkDispersalHost, 19
checkDispersalPathogen, 19
checkGenes, 20
checkInoculum, 20
checkLandscape, 21
checkOutputs, 21
checkPathogen, 22
checkPI0_mat, 22
checkSimulParams, 23

checkTime, 23
checkTreatment, 24
compute_audpc100S, 24, 56
createSimulParams, 25, 46, 73
Cultivars_list, 26

demo_landsepi, 27, 74
dispP, 28, 50
dispP_1 (dispP), 28
dispP_2 (dispP), 28
dispP_3 (dispP), 28
dispP_4 (dispP), 28
dispP_5 (dispP), 28

epid_output, 29, 34, 99
evol_output, 32, 33, 99

getMatrixCroptypePatho, 35, 36, 38, 53
getMatrixCultivarPatho, 35, 36, 38, 53
getMatrixGenePatho, 35, 36, 37, 38, 53
getMatrixPolyPatho, 35, 36, 38, 38

initialize,LandsepiParams-method, 39
inoculumToMatrix, 41, 53, 85
invlogit, 42
is.in.01, 43
is.positive, 44
is.strict.positive, 44
is.wholenumber, 45

landscapeTEST, 45, 55
landscapeTEST1 (landscapeTEST), 45
landscapeTEST2 (landscapeTEST), 45
landscapeTEST3 (landscapeTEST), 45
landscapeTEST4 (landscapeTEST), 45
landscapeTEST5 (landscapeTEST), 45
landsepi (landsepi-package), 4
landsepi-package, 4
LandsepiParams, 46
LandsepiParams-class (LandsepiParams),

46

108

INDEX 109

loadCroptypes, 12, 46, 47, 78, 79
loadCultivar, 46, 48, 80
loadDispersalHost, 47, 49, 81
loadDispersalPathogen, 47, 50, 82, 83
loadGene, 46, 51, 83, 84
loadInoculum, 52, 85
loadLandscape, 46, 50, 54, 86
loadOutputs, 25, 47, 55, 87, 88
loadPathogen, 46, 56, 89, 93
loadSimulParams, 57
loadTreatment, 47, 58, 93
logit, 59

model_landsepi, 60, 99
multiN, 11, 65, 67

periodic_cov, 11, 67
plot_allocation, 69
plot_freqPatho, 70
plotland, 67, 69
price_reduction, 71
print, 72
print,LandsepiParams-method (print), 72

resetCultivarsGenes, 72
runShinyApp, 27, 73
runSimul, 27, 73, 99

saveDeploymentStrategy, 58, 76
setCroptypes, 13, 46, 48, 78
setCultivars, 13, 14, 46, 49, 79
setDispersalHost, 47, 49, 81
setDispersalPathogen, 47, 50, 82
setGenes, 14, 46, 51, 83
setInoculum, 41, 47, 53, 85
setLandscape, 55
setLandscape (setLansdcape), 86
setLansdcape, 86
setOutputs, 47, 56, 87
setPathogen, 46, 57, 88
setSeed, 90
setSeedValue, 91
setTime, 47, 91
setTreatment, 47, 59, 92
show, 93
show,LandsepiParams-method (show), 93
simul_landsepi, 94
summary, 101
summary,LandsepiParams-method

(summary), 101

survivalProbToMatrix, 101, 105
switch_patho_to_aggr, 103

updateReproSexProb, 103
updateSurvivalProb, 102, 104

video, 99, 106

	landsepi-package
	AgriLand
	allocateCroptypeCultivars
	allocateCultivarGenes
	allocateLandscapeCroptypes
	antideriv_verhulst
	checkCroptypes
	checkCultivars
	checkCultivarsGenes
	checkDispersalHost
	checkDispersalPathogen
	checkGenes
	checkInoculum
	checkLandscape
	checkOutputs
	checkPathogen
	checkPI0_mat
	checkSimulParams
	checkTime
	checkTreatment
	compute_audpc100S
	createSimulParams
	Cultivars_list
	demo_landsepi
	dispP
	epid_output
	evol_output
	getMatrixCroptypePatho
	getMatrixCultivarPatho
	getMatrixGenePatho
	getMatrixPolyPatho
	initialize,LandsepiParams-method
	inoculumToMatrix
	invlogit
	is.in.01
	is.positive
	is.strict.positive
	is.wholenumber
	landscapeTEST
	LandsepiParams
	loadCroptypes
	loadCultivar
	loadDispersalHost
	loadDispersalPathogen
	loadGene
	loadInoculum
	loadLandscape
	loadOutputs
	loadPathogen
	loadSimulParams
	loadTreatment
	logit
	model_landsepi
	multiN
	periodic_cov
	plotland
	plot_allocation
	plot_freqPatho
	price_reduction
	print
	resetCultivarsGenes
	runShinyApp
	runSimul
	saveDeploymentStrategy
	setCroptypes
	setCultivars
	setDispersalHost
	setDispersalPathogen
	setGenes
	setInoculum
	setLansdcape
	setOutputs
	setPathogen
	setSeed
	setSeedValue
	setTime
	setTreatment
	show
	simul_landsepi
	summary
	survivalProbToMatrix
	switch_patho_to_aggr
	updateReproSexProb
	updateSurvivalProb
	video
	Index

