--- title: "Dual Inlet" description: > A minimal example for processing .isox data from a dual inlet experiments output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Dual Inlet} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, include=FALSE} # default chunk options knitr::opts_chunk$set(collapse = TRUE, message = FALSE, comment = "#>") ``` ```{r, message=FALSE} # libraries library(isoorbi) #load isoorbi R package library(forcats) #better ordering of factor variables in plots library(dplyr) # for mutating data frames library(ggplot2) # for data visualization ``` # A basic data processing example ```{r} # Read .isox test data df <- system.file("extdata", "testfile_dual_inlet_new.isox", package = "isoorbi") |> orbi_read_isox() |> # reads .isox test data orbi_simplify_isox() |> # optionally: keeps only most important columns; equivalent to simplify check box in IsoX # check for issues orbi_flag_satellite_peaks() |> # removes minor signals that were reported by IsoX in the same tolerance window where the peak of interest is orbi_flag_weak_isotopocules(min_percent = 10) |> # removes signals of isotopocules that were not detected at least in min_percent scans orbi_flag_outliers(agc_fold_cutoff = 2) |> # removes outlying scans that have more than 2 times or less than 1/2 times the average number of ions in the Orbitrap analyzer; another method: agc_window (see function documentation for more details) orbi_define_basepeak(basepeak_def = "M0") # sets one isotopocule in the dataset as the base peak (denominator) for ratio calculation ``` No satellite peaks, no weak isotopocules, a few AGC fold outliers: ```{r, fig.width=8, fig.height=5} df |> orbi_plot_raw_data(isotopocule = "15N", y = tic * it.ms, y_scale = "log") ``` # Define dual inlet blocks ```{r} # define blocks df_w_blocks <- df |> # general definition orbi_define_blocks_for_dual_inlet( ref_block_time.min = 10, # the reference block is 10 min long sample_block_time.min = 10, # the sample block is 10 min long startup_time.min = 5, # there is 5 min of data before the reference block starts, to stabilize spray conditions change_over_time.min = 2, # it takes 2 min to make sure the right solution is measured after switching the valve sample_block_name = "sample", ref_block_name = "reference" ) |> # fine adjustments orbi_adjust_block(block = 1, shift_start_time.min = 2) |> # the 1st reference block is shorter by 2 min, cut from the start orbi_adjust_block(block = 4, set_start_time.min = 38, set_end_time.min = 44) # the start and end of the 2nd reference block are manually set # get blocks info blocks_info <- df_w_blocks |> orbi_get_blocks_info() blocks_info |> knitr::kable() ``` # Raw data plots ## Plot 1: default block highlights + outliers ```{r, fig.width=8, fig.height=5} # ions df_w_blocks |> orbi_plot_raw_data( isotopocules = "15N", y = ions.incremental ) # ratios - you can see that even the AGC outliers still create decent ratios df_w_blocks |> orbi_plot_raw_data( isotopocules = "15N", y = ratio ) ``` ## Plot 2: highlight blocks in data + no outliers ```{r, fig.width=8, fig.height=5} df_w_blocks |> orbi_plot_raw_data( isotopocules = "15N", y = ratio, color = NULL, add_all_blocks = TRUE, show_outliers = FALSE ) + # add other ggplot elements, e.g. more specific axis labels labs(x = "time [min]", y = "15N/M0 ratio") ``` ## Plot 3: highlight sample blocks on top ```{r, fig.width=8, fig.height=5} df_w_blocks |> orbi_plot_raw_data( isotopocules = "15N", y = ratio, add_all_blocks = TRUE, show_outliers = FALSE, color = factor(block) ) + labs(x = "time [min]", y = "15N/M0 ratio", color = "block #") ``` # Data summaries ```{r} # calculate summary df_summary <- df_w_blocks |> # segment (optional) orbi_segment_blocks(into_segments = 3) |> # calculate results, including for the unused parts of the data blocks orbi_summarize_results( ratio_method = "sum", include_unused_data = TRUE ) ``` ## Plot 1: ratios summary by block and segment ```{r, fig.width=8, fig.height=7} # plot all isotopocules using a ggplot from scratch df_summary |> filter(data_type == "data") |> mutate(block_seg = sprintf("%s.%s", block, segment) |> fct_inorder()) |> # data ggplot() + aes( x = block_seg, y = ratio, ymin = ratio - ratio_sem, ymax = ratio + ratio_sem, color = sample_name ) + geom_pointrange() + facet_grid(isotopocule ~ ., scales = "free_y") + # scales scale_color_brewer(palette = "Set1") + theme_bw() + labs(x = "block.segment", y = "ratio") ``` ## Plot 2: ratios with block backgrounds and raw data ```{r, fig.width=8, fig.height=6} # make a plot for 15N plot2 <- df_w_blocks |> filter(isotopocule == "15N") |> mutate(panel = "raw ratios") |> # raw data plot orbi_plot_raw_data( y = ratio, color = NULL, add_all_blocks = TRUE, show_outliers = FALSE ) + # ratio summary data geom_pointrange( data = function(df) { df_summary |> filter(as.character(isotopocule) == df$isotopocule[1]) |> mutate(panel = "summary") }, map = aes( x = mean_time.min, y = ratio, ymin = ratio - ratio_sem, ymax = ratio + ratio_sem, shape = sample_name ), size = 0.5 ) + facet_grid(panel ~ ., switch = "y") + theme(strip.placement = "outside") + labs(y = NULL, title = "15N/M0") plot2 ``` ```{r, fig.width=8, fig.height=6} # same but with 18O plot2 %+% (df_w_blocks |> filter(isotopocule == "18O") |> mutate(panel = "raw ratios")) + labs(title = "18O/M0") ```