
Package ‘ipfr’
October 13, 2022

Title List Balancing for Reweighting and Population Synthesis

Version 1.0.2

Description Performs iterative proportional updating given a seed table and
an arbitrary number of marginal distributions. This is commonly used in
population synthesis, survey raking, matrix rebalancing, and other
applications. For example, a household survey may be weighted to match the
known distribution of households by size from the census. An origin/
destination trip matrix might be balanced to match traffic counts.
The approach used by this package is based on a paper from
Arizona State University (Ye, Xin, et. al. (2009)
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&
type=pdf>).
Some enhancements have been made to their work including primary and
secondary target balance/importance, general marginal agreement, and weight
restriction.

License Apache License (== 2.0)

URL https://github.com/dkyleward/ipfr

BugReports https://github.com/dkyleward/ipfr/issues

Depends R (>= 3.2.0)

Imports dplyr (>= 0.7.3), ggplot2 (>= 2.2.1), magrittr (>= 1.5), tidyr
(>= 0.5.1), mlr (>= 2.11)

LazyData true

Suggests knitr, rmarkdown, testthat (>= 2.1.0), covr

VignetteBuilder knitr

RoxygenNote 7.0.2

NeedsCompilation no

Author Kyle Ward [aut, cre, cph],
Greg Macfarlane [ctb]

Maintainer Kyle Ward <kyleward084@gmail.com>

Repository CRAN

Date/Publication 2020-04-01 20:20:02 UTC

1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&type=pdf
https://github.com/dkyleward/ipfr
https://github.com/dkyleward/ipfr/issues

2 ipu

R topics documented:

ipfr . 2
ipu . 2
ipu_matrix . 5
setup_arizona . 5
synthesize . 6

Index 7

ipfr ipfr: A package to perform iterative proportional fitting

Description

The main function is ipu. For a 2D/matrix problem, the ipu_matrix function is easier to use. The
resulting weight_tbl from ipu() can be fed into synthesize to generate a synthetic population

Author(s)

Maintainer: Kyle Ward <kyleward084@gmail.com> [copyright holder]

Other contributors:

• Greg Macfarlane <gregmacfarlane@byu.edu> [contributor]

See Also

Useful links:

• https://github.com/dkyleward/ipfr

• Report bugs at https://github.com/dkyleward/ipfr/issues

ipu Iterative Proportional Updating

Description

A general case of iterative proportional fitting. It can satisfy two, disparate sets of marginals that do
not agree on a single total. A common example is balancing population data using household- and
person-level marginal controls. This could be for survey expansion or synthetic population creation.
The second set of marginal/seed data is optional, meaning it can also be used for more basic IPF
tasks.

https://github.com/dkyleward/ipfr
https://github.com/dkyleward/ipfr/issues

ipu 3

Usage

ipu(
primary_seed,
primary_targets,
secondary_seed = NULL,
secondary_targets = NULL,
primary_id = "id",
secondary_importance = 1,
relative_gap = 0.01,
max_iterations = 100,
absolute_diff = 10,
weight_floor = 1e-05,
verbose = FALSE,
max_ratio = 10000,
min_ratio = 1e-04

)

Arguments

primary_seed In population synthesis or household survey expansion, this would be the house-
hold seed table (each record would represent a household). It could also be a trip
table, where each row represents an origin-destination pair.

primary_targets

A named list of data frames. Each name in the list defines a marginal dimen-
sion and must match a column from the primary_seed table. The data frame
associated with each named list element can contain a geography field (start-
ing with "geo_"). If so, each row in the target table defines a new geography
(these could be TAZs, tracts, clusters, etc.). The other column names define the
marginal categories that targets are provided for. The vignette provides more
detail.

secondary_seed Most commonly, if the primary_seed describes households, the secondary seed
table would describe the persons in each household. Must contain the same
primary_id column that links each person to their respective household in
primary_seed.

secondary_targets

Same format as primary_targets, but they constrain the secondary_seed ta-
ble.

primary_id The field used to join the primary and secondary seed tables. Only necessary if
secondary_seed is provided.

secondary_importance

A real between 0 and 1 signifying the importance of the secondary targets. At
an importance of 1, the function will try to match the secondary targets exactly.
At 0, only the percentage distributions are used (see the vignette section "Target
Agreement".)

relative_gap After each iteration, the weights are compared to the previous weights and the
the relative_gap threshold, then the process terminates.

max_iterations maximum number of iterations to perform, even if relative_gap is not reached.

4 ipu

absolute_diff Upon completion, the ipu() function will report the worst-performing marginal
category and geography based on the percent difference from the target. absolute_diff
is a threshold below which percent differences don’t matter.

For example, if if a target value was 2, and the expanded weights equaled 1,
that’s a 100 is only 1.

Defaults to 10.

weight_floor Minimum weight to allow in any cell to prevent zero weights. Set to .0001 by
default. Should be arbitrarily small compared to your seed table weights.

verbose Print iteration details and worst marginal stats upon completion? Default FALSE.

max_ratio real number. The average weight per seed record is calculated by dividing the
total of the targets by the number of records. The max_scale caps the maximum
weight at a multiple of that average. Defaults to 10000 (basically turned off).

min_ratio real number. The average weight per seed record is calculated by dividing the
total of the targets by the number of records. The min_scale caps the minimum
weight at a multiple of that average. Defaults to 0.0001 (basically turned off).

Value

a named list with the primary_seed with weight, a histogram of the weight distribution, and two
comparison tables to aid in reporting.

References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&type=pdf

Examples

hh_seed <- dplyr::tibble(
id = c(1, 2, 3, 4),
siz = c(1, 2, 2, 1),
weight = c(1, 1, 1, 1),
geo_cluster = c(1, 1, 2, 2)

)

hh_targets <- list()
hh_targets$siz <- dplyr::tibble(

geo_cluster = c(1, 2),
`1` = c(75, 100),
`2` = c(25, 150)

)

result <- ipu(hh_seed, hh_targets, max_iterations = 5)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&type=pdf

ipu_matrix 5

ipu_matrix Balance a matrix given row and column targets

Description

This function simplifies the call to ‘ipu()‘ for the simple case of a matrix and row/column targets.

Usage

ipu_matrix(mtx, row_targets, column_targets, ...)

Arguments

mtx a matrix

row_targets a vector of targets that the row sums must match

column_targets a vector of targets that the column sums must match

... additional arguments that are passed to ‘ipu()‘. See ipu for details.

Value

A matrix that matches row and column targets

Examples

mtx <- matrix(data = runif(9), nrow = 3, ncol = 3)
row_targets <- c(3, 4, 5)
column_targets <- c(5, 4, 3)
ipu_matrix(mtx, row_targets, column_targets)

setup_arizona Create the ASU example

Description

Sets up the Arizona example IPU problem and is used in multiple places throughout the package
(vignettes/tests).

Usage

setup_arizona()

Value

A list of four variables: hh_seed, hh_targets, per_seed, and per_targets. These can be used directly
by ipu.

6 synthesize

Examples

setup_arizona()

synthesize Creates a synthetic population based on ipu results

Description

A simple function that takes the weight_tbl output from ipu and randomly samples based on the
weight.

Usage

synthesize(weight_tbl, group_by = NULL, primary_id = "id")

Arguments

weight_tbl the data.frame of the same name output by ipu.

group_by if provided, the data.frame will be grouped by this variable before sampling.
If not provided, tidyverse/dplyr groupings will be respected. If no grouping info
is present, samples are drawn from the entire table.

primary_id The field used to join the primary and secondary seed tables. Only necessary if
secondary_seed is provided.

Value

A data.frame with one record for each synthesized member of the population (e.g. household). A
new_id column is created, but the previous primary_id column is maintained to facilitate joining
back to other data sources (e.g. a person attribute table).

Examples

hh_seed <- dplyr::tibble(
id = c(1, 2, 3, 4),
siz = c(1, 2, 2, 1),
weight = c(1, 1, 1, 1),
geo_cluster = c(1, 1, 2, 2)
)
hh_targets <- list()
hh_targets$siz <- dplyr::tibble(

geo_cluster = c(1, 2),
`1` = c(75, 100),
`2` = c(25, 150)

)
result <- ipu(hh_seed, hh_targets, max_iterations = 5)
synthesize(result$weight_tbl, "geo_cluster")

Index

ipfr, 2
ipfr-package (ipfr), 2
ipu, 2, 2, 5, 6
ipu_matrix, 2, 5

setup_arizona, 5
synthesize, 2, 6

7

	ipfr
	ipu
	ipu_matrix
	setup_arizona
	synthesize
	Index

