
Package ‘fuzzySim’
October 30, 2024

Type Package

Title Fuzzy Similarity in Species Distributions

Version 4.26

Date 2024-10-29

Maintainer A. Marcia Barbosa <ana.marcia.barbosa@gmail.com>

Imports graphics, methods, modEvA (> 3.9), stats, stringi, utils

Suggests aod, parallel, phylolm, raster, terra, tools

Encoding UTF-8

Description Functions to compute fuzzy versions of species occurrence patterns based on presence-
absence data (including inverse distance interpolation, trend surface analysis, and prevalence-
independent favourability obtained from probability of presence), as well as pair-wise fuzzy sim-
ilarity (based on fuzzy logic versions of commonly used similarity indices) among those occur-
rence patterns. Includes also functions for model consensus and comparison (over-
lap and fuzzy similarity, loss or gain), and for data preparation, such as obtaining unique abbrevi-
ations of species names, cleaning and gridding (thinning) point occur-
rence data onto raster maps, selecting absences under specified criteria, convert-
ing species lists (long format) to presence-absence tables (wide format), transpos-
ing part of a data frame, selecting relevant variables for models, assessing the false discov-
ery rate, or analysing and dealing with multicollinearity. Initially described in Bar-
bosa (2015) <doi:10.1111/2041-210X.12372>.

License GPL-3

URL http://fuzzysim.r-forge.r-project.org/

NeedsCompilation no

Author A. Marcia Barbosa [aut],
Paul Melloy [ctb],
Jose Carlos Guerrero [fnd],
A. Marcia Barbosa [cre]

Depends R (>= 2.10)

Repository CRAN

Date/Publication 2024-10-30 08:20:06 UTC

1

https://doi.org/10.1111/2041-210X.12372
http://fuzzysim.r-forge.r-project.org/

2 Contents

Contents
fuzzySim-package . 3
appendData . 5
bioThreat . 6
cleanCoords . 8
corSelect . 11
distPres . 15
dms2dec . 17
entropy . 18
Fav . 20
favClass . 22
FDR . 24
fuzSim . 26
fuzzyConsensus . 29
fuzzyOverlay . 31
fuzzyRangeChange . 34
getPreds . 37
getRegion . 38
gridRecords . 41
integerCols . 44
modelTrim . 45
modOverlap . 47
multConvert . 48
multGLM . 50
multicol . 54
multTSA . 56
pairwiseRangemaps . 58
percentTestData . 60
prevalence . 61
rangemapSim . 62
rarity . 64
rotif.env . 65
rotifers . 67
selectAbsences . 68
sharedFav . 71
simFromSetOps . 73
simMat . 75
spCodes . 77
splist2presabs . 79
stepByStep . 80
stepwise . 83
summaryWald . 85
timer . 86
transpose . 87
triMatInd . 88
vulnerability . 89

Index 92

fuzzySim-package 3

fuzzySim-package Fuzzy Similarity in Species Distributions

Description

Functions to compute fuzzy versions of species occurrence patterns based on presence-absence
data (including inverse distance interpolation, trend surface analysis, and prevalence-independent
favourability obtained from probability of presence), as well as pair-wise fuzzy similarity (based
on fuzzy logic versions of commonly used similarity indices) among those occurrence patterns.
Includes also functions for model consensus and comparison (fuzzy overlap and fuzzy similarity,
loss or gain), and for data preparation such as obtaining unique abbreviations of species names,
cleaning species occurrence records, gridding (thinning) point occurrence data onto raster maps,
converting species lists (long format) to presence-absence tables (wide format), transposing part of
a data frame, selecting relevant variables for models, assessing the false discovery rate, or analysing
and dealing with multicollinearity. Includes also sample datasets for providing practical examples.
A step-by-step illustrated tutorial is available from the package homepage (http://fuzzysim.r-forge.r-
project.org).

Details

Package: fuzzySim
Type: Package
Version: 4.26
Date: 2024-10-29
License: GPL-3

Author(s)

A. Marcia Barbosa

Maintainer: A. Marcia Barbosa <ana.marcia.barbosa@gmail.com>

References

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858.

Examples

data(rotifers)

head(rotifers)

add column with species name abbreviations:

4 fuzzySim-package

rotifers$spcode <- spCodes(rotifers$species, sep.species = "_",
nchar.gen = 1, nchar.sp = 5, nchar.ssp = 0)

head(rotifers)

convert species list (long format) to presence-absence table
(wide format):

rotifers.presabs <- splist2presabs(rotifers, sites.col = "TDWG4",
sp.col = "spcode", keep.n = FALSE)

head(rotifers.presabs)

get 3rd-degree spatial trend surface for some species distributions:

data(rotif.env)

names(rotif.env)

rotifers.tsa <- multTSA(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1)

head(rotifers.tsa)

get inverse squared distance to presence for each species:

rotifers.isqd <- distPres(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 2, inv = TRUE)

head(rotifers.isqd)

get prevalence-independent environmental favourability models
for each species:

data(rotif.env)

names(rotif.env)

rotifers.fav <- multGLM(data = rotif.env, sp.cols = 18:20,
var.cols = 5:17, id.col = 1, step = FALSE, trim = TRUE,
Favourability = TRUE)

get matrix of fuzzy similarity between species distributions:

either based on inverse squared distance to presence:
rot.fuz.sim.mat <- simMat(rotifers.isqd[, -1], method = "Jaccard")

appendData 5

or on environmental favourability for presence:
rot.fuz.sim.mat <- simMat(rotifers.fav$predictions[, 5:7],
method = "Jaccard")

head(rot.fuz.sim.mat)

transpose fuzzy rotifer distribution data to compare
regional species composition rather than species' distributions:

names(rotifers.isqd)

rot.fuz.reg <- transpose(rotifers.fav$predictions, sp.cols = 5:7,
reg.names = 1)

head(rot.fuz.reg)

get matrix of fuzzy similarity between (some) regions'
species compositions:

reg.fuz.sim.mat <- simMat(rot.fuz.reg[, 1:10], method = "Jaccard")

head(reg.fuz.sim.mat)

appendData Append data

Description

This function appends the rows of a dataframe ’data2’ at the bottom of another dataframe ’data1’,
using the values in the columns with matching names, and (optionally, by default) filling missing
columns with NAs.

Usage

appendData(data1, data2, fill = TRUE, add.source = TRUE)

Arguments

data1 object inheriting class ’data.frame’ (or that can be coerced with ’as.data.frame’)
to which to append data.

data2 object inheriting class ’data.frame’ (or that can be coerced with ’as.data.frame’)
to append to ’data1’, with column names matching those of the corresponding
columns in ’data1’. Both datasets can have more columns than those whose
names match.

fill logical, whether the result should keep all columns of ’data1’ that are missing in
’data2’, filling them with NAs in the rows with no data. The default is TRUE.
If set to FALSE, the result will keep only the columns of ’data1’ that are also
present in ’data2’.

6 bioThreat

add.source logical, whether the result should include an additional column saying from
which input data frame (’data1’ or ’data2’) each row came.

Details

This function is asymmetric, i.e. appendData(data1, data2) may output different columns than
appendData(data2, data1). ’data1’ dictates the columns that the result will have. Columns of
’data2’ that are not matched in ’data1’ are not kept in the output.

Value

This function returns a data frame with all the columns and rows of ’data1’, extended with the
rows of ’data2’ with its values for the columns with matching names in ’data1’. By default, with
’add.source = TRUE’, there is also an additional column specifying the source input object. If ’fill’
is set to FALSE, the result only carries the columns with matching names in both data frames.

Author(s)

A. Marcia Barbosa

See Also

rbindlist in package data.table; rbind.fill in package plyr.

Examples

df1 = data.frame(A = 3:1, B = letters[1:3], C = c(1, 0, 1))
df2 = data.frame(A = 4:5, B = letters[5:4])

appendData(df1, df2)

appendData(df1, df2, fill = FALSE)

appendData(df1, df2, fill = FALSE, add.source = FALSE)

bioThreat Biotic threat of a stronger over a weaker species based on their
favourability values

Description

This function takes two vectors of Favourability values at different localities for, respectively, a
stronger and a weaker species (e.g., a superior vs. an inferior competitor, or an invasive predator vs.
an unadapted native prey), and calculates the level of threat that the former may potentially pose to
the latter in each locality.

Usage

bioThreat(strong_F, weak_F, character = FALSE, ...)

bioThreat 7

Arguments

strong_F a numeric vector of favourability values (obtained, e.g., with functions Fav or
multGLM) for the stronger species.

weak_F a numeric vector of favourability values for the weaker species. Must be of the
same lenght and in the same order as ’strong_F’.

character logical value indicating whether the result should be returned in character rather
numeric form. Defaults to FALSE.

... additional arguments to pass to favClass, namely the breaks for separating
favourability values into low, intermediate and high (see Details).

Details

Based on the notion of "favorableness" by Richerson & Lum (1980), according to which compet-
ing species may or may not be able to coexist depending on their relative environmental fitnesses,
Acevedo et al. (2010, 2012) and some subsequent studies (e.g. Romero et al. 2014, Munoz et al.
2015, Chamorro et al. 2019) proposed possible biotic interaction outcomes of different combina-
tions of favourability values for two species. Favourability has the advantage, in contrast with other
types of potential distribution metrics, of being directly comparable among diferent species, inde-
pendently of their relative occurrence frequencies (see Fav). This function builds on those proposals
by including additional possible combinations of higher, intermediate or low favourability values
(following Munoz & Real 2006), producing the following classification of biotic threat across a set
of analysed localities:

0 (’grey’): areas where favourability is low for at least one of the species (abiotic exclusion), so
biotic threat does not apply.

1 (’green’): areas where favourability is high for both species, so they should both be able to thrive
and therefore co-occur (sympatric coexistence), hence biotic threat is low.

2 (’yellow’): areas where favourability is high for the weaker species and intermediate for the
stronger species, so the level of threat is moderate.

3 (’orange’): areas where favourability is intermediate for both species, so the stronger one poten-
tially prevails and the level of threat is high.

4 (’red’): areas where favourability is high for the stronger species and intermediate for the weaker
species, in which case the level of threat is very high (biotic exclusion).

Value

This function returns either an integer or a character vector (following the ’character’ argument,
which is set to FALSE by default) of the same length as ’strong_F’ and ’weak_F’, classifying each
locality with the level of biotic threat posed by the former on the latter (see Details).

Author(s)

A. Marcia Barbosa

8 cleanCoords

References

Acevedo P., Ward A.I., Real R. & Smith G.C. (2010) Assessing biogeographical relationships of
ecologically related species using favourability functions: a case study on British deer. Diversity
and Distributions, 16: 515-528

Acevedo P., Jimenez-Valverde A., Melo-Ferreira J., Real R. & Alves, P.C. (2012) Parapatric species
and the implications for climate change studies: a case study on hares in Europe. Global Change
Biology, 18: 1509-1519

Chamorro D., Munoz A.R., Martinez-Freiria F. & Real R. (2019) Using the fuzzy logic in the dis-
tribution modelling of competitive interactions. Poster, IBS Malaga 2019 - 9th Biennial Conference
of the International Biogeography Society

Munoz A.R. & Real R. (2006) Assessing the potential range expansion of the exotic monk parakeet
in Spain. Diversity and Distributions, 12: 656-665

Munoz A.R., Real R. & Marquez A.L. (2015) Interacciones a escala nacional entre rapaces rupi-
colas en base a modelos de distribucion espacial. Los casos del buitre leonado, alimoche y aguila
perdicera. Informe tecnico, Universidad de Malaga & Fundacion EDP

Richerson P.J. & Lum K. (1980) Patterns of plant species diversity in California: relation to weather
and topography. American Naturalist, 116:504-536

Romero D., Baez J.C., Ferri-Yanez F., Bellido J. & Real R. (2014) Modelling favourability for
invasive species encroachment to identify areas of native species vulnerability. The Scientific World
Journal, 2014: 519710

See Also

sharedFav, Fav, favClass

Examples

data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 19:20, var.cols = 5:17)
head(mods$predictions)
favs <- mods$predictions[, 3:4]
threat <- bioThreat(strong_F = favs[,1], weak_F = favs[,2])
threat_chr <- bioThreat(strong_F = favs[,1], weak_F = favs[,2], char = TRUE)
data.frame(favs, threat = threat, threat_col = threat_chr)

cleanCoords Clean coordinates

Description

This function takes a data frame with species occurrences and removes the rows whose coordinates
do not pass a set of user-specified filters (see Arguments). Row names are inheritted from the input
data frame, i.e. if row "2" is cleaned out, output rownames will be c("1", "3", ...).

cleanCoords 9

Usage

cleanCoords(data, coord.cols = NULL, uncert.col = NULL, abs.col = NULL,
year.col = NULL, rm.dup = !is.null(coord.cols),
rm.equal = !is.null(coord.cols), rm.imposs = !is.null(coord.cols),
rm.missing.any = !is.null(coord.cols), rm.missing.both = !is.null(coord.cols),
rm.zero.any = !is.null(coord.cols), rm.zero.both = !is.null(coord.cols),
rm.imprec.any = !is.null(coord.cols), rm.imprec.both = !is.null(coord.cols),
imprec.digits = 0, rm.uncert = !is.null(uncert.col), uncert.limit = 50000,
uncert.na.pass = TRUE, rm.abs = !is.null(abs.col), year.min = NULL,
year.na.pass = TRUE, plot = TRUE)

Arguments

data an object inheriting class ’data.frame’ with the spatial coordinates to be cleaned,
or a ’SpatVector’ of points.

coord.cols character or integer vector of length 2, with either the names or the positions of
the columns that contain the spatial coordinates in ’data’ - in this order, LONGi-
tude and LATitude, or x and y. Can be left NULL if ’data’ is a ’SpatVector’, in
which case the coordinates will be extracted with terra::crds().

uncert.col character or integer vector of length 1, with either the name or the position of
the column that reports spatial uncertainty in ’data’ (e.g., in GBIF this column
is usually named "coordinateUncertaintyInMeters").

abs.col character or integer vector of length 1, with either the name or the position of
the column that specifies whether the species is present or absent (e.g., in GBIF
this column is usually named "occurrenceStatus").

year.col character or integer vector of length 1, with either the name or the position of
the column that specifies the year in which the observation was made (e.g., in
GBIF this column is usually named "year").

rm.dup logical, whether to remove rows with exactly the same pair of coordinates. The
default is TRUE if ’coord.cols’ is not NULL, and FALSE otherwise.

rm.equal logical, whether to remove rows with exactly the same pair of coordinates, i.e.
where latitude = longitude. The default is TRUE if ’coord.cols’ is not NULL,
and FALSE otherwise.

rm.imposs logical, whether to remove rows with coordinates outside planet Earth, i.e. with
absolute value >180 for longitude or >90 for latitude. The default is TRUE if
’coord.cols’ is not NULL, and FALSE otherwise. Note that this is only valid for
unprojected angular coordinates in geographic degrees.

rm.missing.any logical, whether to remove rows where at least one of the coordinates is NA.
The default is TRUE if ’coord.cols’ is not NULL, and FALSE otherwise.

rm.missing.both

logical, whether to remove rows where both coordinates are NA. The default is
TRUE if ’coord.cols’ is not NULL and FALSE otherwise, but it is not used (as
it is redundant) if rm.missing.any=TRUE.

rm.zero.any logical, whether to remove rows where at least one of the coordinates equals
zero (which is often an error). The default is TRUE if ’coord.cols’ is not NULL,
and FALSE otherwise.

10 cleanCoords

rm.zero.both logical, whether to remove rows where both coordinates equal zero (which is
often an error). The default is TRUE if ’coord.cols’ is not NULL and FALSE
otherwise, but it is not used (as it is redundant) if rm.zero.any=TRUE.

rm.imprec.any logical, whether to remove rows where at least one of the coordinates is impre-
cise, i.e. has no more decimal places than ’imprec.digits’. The default is TRUE
if ’coord.cols’ is not NULL and FALSE otherwise, but note this is normally only
relevant for unprojected geographical coordinates in degrees; if your coordinates
are in meters, they are usually precise enough without decimal places, so you
should probably set this argument and the next to FALSE.

rm.imprec.both logical, whether to remove rows where both coordinates are imprecise, i.e. have
no more decimal places than ’imprec.digits’. The default is TRUE if ’coord.cols’
is not NULL and FALSE otherwise, but it is not used (as it is redundant) if
rm.imprec.any=TRUE. See ’rm.imprec.any’ above for important details.

imprec.digits integer, maximum number of digits to consider that a coordinate is imprecise.
Used only if ’rm.imprec.any’ or ’rm.imprec.both’ is TRUE. The default is 0, for
eliminating coordinates with no more than zero decimal places.

rm.uncert logical, whether to remove rows where the value in ’uncert.col’ is higher than
’uncert.limit’. The default is TRUE if ’uncert.col’ is not NULL, and FALSE
otherwise.

uncert.limit lnumeric, threshold value for ’uncert.col’. If rm.uncert=TRUE and ’uncert.col’
is provided, rows with values above this will be excluded. The default is 50,000,
i.e. 50 km if the values in ’uncert.col’ are in meters.

uncert.na.pass logical, whether rows with NA in ’uncert.col’ should be kept as having no un-
certainty. The default is TRUE.

rm.abs logical, whether to remove rows where the value in ’abs.col’ is (case-insensitive)
’absent’. The default is TRUE if ’abs.col’ is not NULL, and FALSE otherwise.

year.min positive integer specifying the minimum (earliest) value admitted for the year
column. The default is NULL (no limit).

year.na.pass logical, whether rows with NA in ’year.col’ should be kept as if fulfilling the
year.min criterion. The default is TRUE.

plot logical value specifying whether to plot the result. The default is TRUE.

Details

This function applies some basic cleaning procedures for species occurrence data, removing some of
the most common mistakes in biodiversity databases. It is inspired by a few functions (namely ’co-
ord_incomplete’, ’coord_imprecise’, ’coord_impossible’, ’coord_unlikely’ and ’coord_uncertain’)
that were present in the ’scrubr’ package by Scott Chamberlain, which was archived (https://github.com/ropensci-
archive/scrubr).

Value

This function returns a data frame of the input ’data’ (or a spatial data frame of class ’SpatVector’
if this matches the input) without the rows that met the specified removal criteria. The row names
match the original ones in ’data’, at least if ’data’ is of class ’data.frame’. Messages are displayed
in the console saying how many rows passed each removal filter. If plot=TRUE (the default), a plot
is also displayed with the selected points (blue dots) and the excluded points (red "x").

corSelect 11

Author(s)

A. Marcia Barbosa

See Also

gridRecords

Examples

Not run:
you can run these examples if you have the 'geodata' package installed

download some species occurrences from GBIF:
occ <- geodata::sp_occurrence(genus = "Orycteropus", species = "afer",
fixnames = FALSE)

clean occurrences:
names(occ)
occ_clean <- cleanCoords(occ,

coord.cols = c("decimalLongitude", "decimalLatitude"),
abs.col = "occurrenceStatus",
uncert.col = "coordinateUncertaintyInMeters",
uncert.limit = 10000, # 10 km tolerance
year.col = "year", year.min = 1950)

End(Not run)

corSelect Select among correlated variables based on a given criterion

Description

This function computes pairwise correlations among the variables in a dataset and, among each pair
of variables correlated above a given threshold(or, optionally, below a given significance value), it
excludes the variable with either the highest variance inflation factor (VIF), or the weakest, least sig-
nificant or least informative bivariate (individual) relationship with the response variable, according
to a given criterion.

Usage

corSelect(data, sp.cols = NULL, var.cols, coeff = TRUE,
cor.thresh = ifelse(isTRUE(coeff), 0.8, 0.05),
select = ifelse(is.null(sp.cols), "VIF", "p.value"), test = "Chisq",
family = "auto", use = "pairwise.complete.obs", method = "pearson",
verbosity = 1)

12 corSelect

Arguments

data a data frame containing the response and predictor variables.

sp.cols name or index number of the column of ’data’ that contains the response (e.g.
species) variable. Currently, only one ’sp.cols’ can be used at a time, so an error
message is returned if length(sp.cols) > 1. If left NULL, ’select’ will be "VIF"
by default.

var.cols names or index numbers of the columns of ’data’ that contain the predictor vari-
ables.

coeff logical value indicating whether two variables should be considered highly cor-
related based on the magnitude of their coefficient of correlation. The default
is TRUE. If set to FALSE, this classification will be based on the p-value of
the correlation, but mind that (with sufficient sample size) correlations can be
statistically significant even if weak.

cor.thresh if coeff=TRUE (the default): threshold value of correlation coefficient above
which (or below which, for negative correlations) two predictor variables are
considered highly correlated. The default is 0.8. If coeff=FALSE: threshold
value of p-value below which two predictor variables are considered highly (or
significantly) correlated. The default is 0.05.

select character value indicating the criterion for excluding variables among those that
are highly correlated. Can be "VIF" (the default if ’sp.cols’ is NULL), "p.value"
(the default if ’sp.cols’ is specified), "AIC", "BIC", or "cor" (see Details).

test argument to pass to the FDR function (which, in turn, passes it to anova) if
test="p.value". The default is currently "Chisq" for back-compatibility.

family If ’sp.col’ is not NULL, the error distribution and (optionally) the link function
to use for assessing significant / informative variables (see glm or family for
details). The default "auto" automatically uses "binomial" family for response
variables containing only values of 0 and 1; "poisson" for positive integer re-
sponses (i.e. count data); "Gamma" for positive non-integer; and "gaussian"
(i.e., linear models) otherwise.

use argument to pass to cor indicating what to do when there are missing val-
ues. Can be "pairwise.complete.obs" (the default here), "everything", "all.obs",
"complete.obs", "na.or.complete".

method argument to pass to cor specifying the correlation coefficient to use. Can be
"pearson" (the default, with a recommended minimum of 30 rows of data),
"kendall", or "spearman" (with a recommended minimum of 10 rows of data).

verbosity integer value indicating the amount of messages to display. The default is 1, for
a medium amount of messages. Use 2 for more messages.

Details

Correlations among variables are often considered problematic in multivariate models, as they in-
flate the variance of coefficients and thus may bias the interpretation of the effects of those variables
on the response (Legendre & Legendre 2012). Note, however, that the perceived problem often
stems from misconceptions about the interpretation of multiple regression models, and that re-
moving (albeit correlated) variables usually reduces predictive power (Morrissey & Ruxton 2018,

corSelect 13

Gregorich et al. 2021, Vanhove 2021). Removing high correlations is, however, a way of reducing
the number of variables to include in a model, when the potentially meaningful variables are still
numerous and no better a priori selection criterion is available.

One of the strategies to reduce correlations within a dataset consists of excluding one from each pair
of highly correlated variables. However, it is not always straightforward (or ecological knowledge
is not alway sufficient) to choose which variable to exclude. This function selects among correlated
variables based either on their variance inflation factor (VIF: Marquardt 1970; Mansfield & Helms
1982) within the variables dataset (obtained with the multicol function and recalculated iteratively
after each variable exclusion); or on their relationship with the response, by simply computing the
correlation between each variable and the response and excluding the variable with the smallest
absolute coefficient; or by building a bivariate generalized linear model (glm) of each variable
against the response and excluding, among each of two correlated variables, the one with the largest
(worst) p-value, AIC (Akaike’s Information Criterion: Akaike, 1973) or BIC (Bayesian Information
Criterion, also known as Schwarz criterion, SBC or SBIC: Schwarz, 1978), which is calculated with
the FDR function.

If ’select’ is NULL, or if ’select’ is other than "VIF" but ’sp.cols’ is NULL, the function returns
only a table showing the pairs of variables that are correlated beyond the given threshold, without
selection or exclusion. If the ’select’ criterion requires assessing bivariate relationships and ’sp.cols’
is provided, the function uses only the rows of the dataset where ’sp.cols’ (used as the response
variable) contains finite values against which the predictor variables can be modelled; rows with
NA or NaN in ’sp.cols’ are thus excluded from the calculation of correlations among predictor
variables.

Value

This function returns a list of 7 elements (unless select=NULL, in which case it returns only the
first of these elements):

high.correlations

data frame showing the pairs of input variables that are correlated beyond the
given threshold, their correlation coefficient and its associated p-value.

bivariate.significance

data frame with the individual p-value, AIC, BIC and correlation coefficient (if
one of these was the ’select’ criterion and if ’sp.cols’ was provided) of each of
the highly correlated variables against the response variable.

excluded.vars character vector containing the names of the variables to exclude (i.e., from each
highly correlated pair, the variable with the worse ’select’ score.

selected.vars character vector containing the names of the variables to select (i.e., the non-
correlated variables and, from each correlated pair, the variable with the better
’select’ score).

selected.var.cols

integer vector containing the column indices of the selected variables in ’data’.
strongest.remaining.corr

numerical value indicating the strongest correlation coefficient among the se-
lected variables.

remaining.multicollinearity

data frame showing the multicollinearity among the selected variables.

14 corSelect

Author(s)

A. Marcia Barbosa

References

Akaike H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Gregorich M., Strohmaier S., Dunkler D. & Heinze G. (2021) Regression with Highly Correlated
Predictors: Variable Omission Is Not the Solution. Int. J. Environ. Res. Public Health, 18: 4259.

Legendre P. & Legendre L. (2012) Numerical ecology (3rd edition). Elsevier, Amsterdam: 990 pp.

Marquardt D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and non-
linear estimation. Technometrics 12: 591-612.

Mansfield E.R. & Helms B.P. (1982) Detecting multicollinearity. The American Statistician 36:
158-160.

Morrissey M.B. & Ruxton G.D. (2018) Multiple Regression Is Not Multiple Regressions: The
Meaning of Multiple Regression and the Non-Problem of Collinearity. Philosophy, Theory, and
Practice in Biology, 10: 003. DOI: 10.3998/ptpbio.16039257.0010.003

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

Vanhove J. (2021) Collinearity isn’t a disease that needs curing. Meta-Phsychology 5, MP.2020.2548.
DOI: 10.15626/MP.2021.2548

See Also

multicol, FDR, cor; and collinear in package collinear, which handles continuous and categori-
cal variables

Examples

data(rotif.env)

corSelect(rotif.env, var.cols = 5:17, select = NULL)

corSelect(rotif.env, var.cols = 5:17)

corSelect(rotif.env, sp.cols = 46, var.cols = 5:17)

corSelect(rotif.env, sp.cols = 46, var.cols = 5:17, cor.thresh = 0.7)

corSelect(rotif.env, sp.cols = 46, var.cols = 5:17, select = "BIC", method = "spearman")

distPres 15

distPres (Inverse) distance to the nearest presence

Description

This function takes a matrix or data frame containing species presence (1) and absence (0) data and
their spatial coordinates (optionally also a pre-calculated distance matrix between all localities), and
calculates the (inverse) distance from each locality to the nearest presence locality for each species.

Usage

distPres(data, sp.cols, coord.cols = NULL, id.col = NULL,
dist.mat = NULL, CRS = NULL, method = "euclidean", suffix = "_D",
p = 1, inv = TRUE, verbosity = 2)

Arguments

data a matrix or data frame containing, at least, two columns with spatial coordinates,
and one column per species containing their presence (1) and absence (0) data,
with localities in rows.

sp.cols names or index numbers of the columns containing the species presences and
absences in ’data’. It must contain only zeros (0) for absences and ones (1) for
presences.

coord.cols names or index numbers of the columns containing the spatial coordinates in
’data’ (in this order, x and y, or longitude and latitude).

id.col optionally, the name or index number of a column (to be included in the output)
containing locality identifiers in ’data’.

dist.mat optionally, if you do not want distances calculated with any of the methods avail-
able in the dist function of package stats, you may provide a distance matrix
calculated elsewhere for the localities in ’data’. This is especially advisable for
large geographic extents, where you will get much more accurate distances with
a function that considers the curvature of the Earth – e.g., function distance in
package terra, or function st_distance in package sf.

CRS coordinate reference system of the ’coord.cols’ in ’data’, in one of the fol-
lowing formats: WKT/WKT2, <authority>:<code>, or PROJ-string notation
(see terra::crs()). Ignored if ’dist.mat’ is provided. Otherwise, if ’CRS’
is provided and the ’terra’ package is installed, distances are computed with
terra::distance(), thus accounting for the curvature of the Earth.

method (if neither ’dist.mat’ nor ’CRS’ are provided) the method with which to com-
pute the distances between localities. Available options are those of dist. The
default is "euclidean".

suffix character indicating the suffix to add to the distance columns in the resulting
data frame. The default is "_D".

p the power to which distance should be raised. The default is 1; use 2 or higher
if you want more conservative distances.

16 distPres

inv logical value indicating whether distance should be inverted, i.e. standardized
to vary between 0 and 1 and then subtracted from 1, so that it varies between
0 and 1 and higher values mean closer to presence. The default is TRUE, which
is adequate as a fuzzy version of presence-absence (for using e.g. with fuzSim
and simMat). In this case, presences maintain the value 1, and inverse distance
to presence is calculated only for absence localities.

verbosity integer specifying the amount of messages to display along the process. The
default is 2, for the maximum amount of messages available.

Details

This function can be used to calculate a simple spatial interpolation model of a species’ distribution
(e.g. Barbosa 2015, Areias-Guerreiro et al. 2016).

Value

This function returns a matrix or data frame containing the identifier column (if provided in ’id.col’)
and one column per species containing the distance (inverse by default) from each locality to the
nearest presence of that species.

Author(s)

A. Marcia Barbosa

References

Areias-Guerreiro J., Mira A. & Barbosa A.M. (2016) How well can models predict changes in
species distributions? A 13-year-old otter model revisited. Hystrix - Italian Journal of Mammalogy,
in press. DOI: http://dx.doi.org/10.4404/hystrix-27.1-11867

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858

See Also

dist

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

calculate plain distance to presence:

rotifers.dist <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 1,
inv = FALSE, suffix = "_D")

dms2dec 17

head(rotifers.dist)

calculate inverse squared distance to presence:

rotifers.invd2 <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 2,
inv = TRUE, suffix = "_iDsq")

head(rotifers.invd2)

dms2dec Degree-minute-second to decimal degree coordinates

Description

This function converts degree-minute-second geographic coordinates to decimal degree (numeric)
coordinates appropriate for mapping and analysis.

Usage

dms2dec(dms,
seps = c("\\u00ba", "\\u00b0", "\\'", "\\'", "\\\"", "\\\\?"))

Arguments

dms character vector of geographic coordinates (latitude or longitude) in degree-
minute-second-hemisphere format, e.g. 41° 34’ 10.956" N (with or without
spaces); or in degree-decimal minute format, e.g. 41° 34.1826’ N (with or with-
out spaces)

seps character vector of possible separators in ’dms’. The default includes commonly
used symbols for degrees, minutes and seconds, converted with stringi::stri_escape_unicode()
for portability

Value

This function returns a numeric vector of the input coordinates after conversion to decimal degree
format.

Author(s)

A. Marcia Barbosa (https://github.com/AMBarbosa) with contributions by Paul Melloy (https://github.com/PaulMelloy)

18 entropy

Examples

coords_dms <- structure(list(Longitude = c("31º40'44.12''E", "31º41'23.35''E",
"31º37'01.94''E", "30º53'07.75''E"), Latitude = c("24º54'36.44''S",
"24º05'02.09''S", "25º09'46.72''S", "24º12'09.02''S")), row.names = c(NA, 4L),
class = "data.frame")
coords_dms

lon_dec <- dms2dec(coords_dms$Longitude)
lat_dec <- dms2dec(coords_dms$Latitude)

coords_dec <- sapply(coords_dms, dms2dec)
coords_dec

entropy (Fuzzy) entropy

Description

This function computes fuzzy entropy (Kosko 1986, Estrada & Real 2021), or optionally Shannon’s
(1948) entropy.

Usage

entropy(data, sp.cols = 1:ncol(data), method = "fuzzy", base = exp(1),
plot = TRUE, plot.type = "lollipop", na.rm = TRUE, ...)

Arguments

data a vector, matrix or data frame containing the data to analyse.

sp.cols names or index numbers of the columns of ’data’ that contain the values for
which to compute entropy (if ’data’ is not a vector). The default is to use all
columns.

method character value indicating the method to use. Can be "fuzzy" (the default) or
"Shannon". The former requires the input to be a fuzzy system (e.g. Favourability
values), while the latter requires probabilities. If method="Shannon" and the
values for a vector or column do not sum up to 1, they are divided by their sum
so that this additional requirement is met (Estrada & Real 2021).

base base for computing the logarithm if method="Shannon". The default is the nat-
ural logarithm.

plot logical value indicating whether to plot the results (if ’data’ has more than one
column). The default is TRUE.

plot.type character value indicating the type of plot to produce (if plot=TRUE). Can be
"lollipop" (the default) or "barplot".

na.rm logical value indicating whether NA values should be removed before computa-
tions. The default is TRUE.

... additional arguments to be passed to barplot or to modEvA::lollipop.

entropy 19

Details

Fuzzy entropy (Kosko 1986) applies to fuzzy systems (such as Favourability) and it can take values
between zero and one. Fuzzy entropy equals one when the distribution of the values is uniform,
i.e. 0.5 in all localities. The smaller the entropy, the more orderly the distribution of the values, i.e.
the closer they are to 0 or 1, distinguishing (potential) presences and absences more clearly. Fuzzy
entropy can reflect the overall degree of uncertainty in a species’ distribution model predictions,
and it is directly comparable across species and study areas (Estrada & Real 2021).

Shannon’s entropy requires that the input values are probabilities and sum up to 1 (Shannon 1948).
This makes sense when analysing the probability that a unique event occurs in a finite universe.
However, if a species has more than one presence, the sum of probabilities in all localities equals
the number of presences. To satisfy the condition that the inputs sum up to 1, this function divides
each value by the sum of values when this is not the case (if method="Shannon"). Notice that this
has a mathematical justification but not a biogeographical sense, and (unlike fuzzy entropy) the
results are comparable only between models based on the same number of presences + absences,
e.g. in a context of selection of variables for a model (Estrada & Real 2021).

Value

This function returns a numeric value of entropy for ’data’ (if it is a numeric vector) or for each of
’sp.cols’ in ’data’ (if it is a matrix or data frame). Optionally (and by default), a plot is also produced
with these values (if there is more than one column) for visual comparison.

Author(s)

A. Marcia Barbosa

References

Estrada A. & Real R. (2021) A stepwise assessment of parsimony and fuzzy entropy in species
distribution modelling. Entropy, 23: 1014

Kosko B. (1986) Fuzzy entropy and conditioning. Information Sciences, 40: 165-174

Shannon C.E. (1948) A mathematical theory of communication. Bell System Technical Journal,
27: 379-423

Examples

data(rotif.env)

pred <- multGLM(rotif.env, sp.cols = 18:20, var.cols = 5:17)$predictions

head(pred)

entropy(pred, sp.cols = c("Abrigh_F", "Afissa_F", "Apriod_F"))

entropy(pred, sp.cols = c("Abrigh_P", "Afissa_P", "Apriod_P"), method = "Shannon")

20 Fav

Fav Favourability (probability without the effect of sample prevalence)

Description

Computes prevalence-independent favourability for a species’ presence, based on a presence/(pseudo)absence
model object, or on a vector of predicted probability values plus either the modelled binary response
variable, the total number of modelled ones and zeros, or the prevalence (proportion of ones) in the
modelled binary response (i.e., in the training data).

Usage

Fav(model = NULL, obs = NULL, pred = NULL, n1n0 = NULL, sample.preval = NULL,
method = "RBV", true.preval = NULL, verbosity = 2)

Arguments

model a binary-response, presence/(pseudo)absence probability-producing model ob-
ject of class "glm", "gam", "gbm", "randomForest" or "bart" (computed with
keeptrees=TRUE), obtained with weights=NULL.

obs alternatively to ’model’, a vector of the 1 and 0 values of the binary response
variable (e.g. presence-absence of a species) in the model training data. This
argument is ignored if ’model’ is provided.

pred alternatively to ’model’, a numeric vector, RasterLayer or SpatRaster of pre-
dicted presence probability values, produced by a presence/(pseudo)absence
modelling method yielding presence probability (obtained with weights=NULL).
This argument is ignored if ’model’ is provided.

n1n0 alternatively to ’obs’ or ’sample.preval’, an integer vector of length 2 provid-
ing the total numbers of modelled ones and zeros (in this order) of the binary
response variable in the model training data. Ignored if ’obs’ or ’model’ is pro-
vided.

sample.preval alternatively to ’obs’ or ’n1n0’, the prevalence (proportion of ones) of the binary
response variable in the model training data. Ignored if ’model’ is provided.

method either "RBV" for the original Real, Barbosa & Vargas (2006) procedure, or "AT"
if you want to try out the modification proposed by Albert & Thuiller (2008) (but
see Details!).

true.preval the true prevalence (as opposed to sample prevalence), necessary if you want to
try the "AT" method (but see Details!).

verbosity numeric value indicating the amount of messages to display; currently meaning-
ful values are 0, 1, and 2 (the default).

Fav 21

Details

Methods such as Generalized Linear Models, Generalized Additive Models, Random Forests, Boosted
Regression Trees / Generalized Boosted Models, Bayesian Additive Regression Trees and several
others, are widely used for modelling species’ potential distributions using presence/absence data
and a set of predictor variables. These models predict presence probability, which (unless presences
and abences are given different weights) incorporates the prevalence (proportion of presences) of
the species in the modelled sample. So, predictions for restricted species are always generally low,
while predictions for widespread species are always generally higher, regardless of the actual envi-
ronmental quality. Barbosa (2006) and Real, Barbosa & Vargas (2006) proposed an environmental
favourability function which is based on presence probability and cancels out uneven proportions
of presences and absences in the modelled data. Favourability thus assesses the extent to which
the environmental conditions change the probability of occurrence of a species with respect to its
overall prevalence in the study area. Model predictions become, therefore, directly comparable
among species with different prevalences, without the need to artificially assign different weights
to presences and absences.

Using simulated data, Albert & Thuiller (2008) proposed a modification to the favourability func-
tion, but it requires knowing the true prevalence of the species (not just the prevalence in the mod-
elled sample), which is rarely possible in real-world modelling. Besides, this suggestion was based
on the misunderstanding that the favourability function was a way to obtain the probability of oc-
currence when prevalence differs from 50%, which is incorrect (see Acevedo & Real 2012).

To get environmental favourability with either the Real, Barbosa & Vargas ("RBV") or the Albert &
Thuiller ("AT") method, you just need to get model predictions of presence probability from your
data, together with the proportions of presences and absences in the modelled sample, and then
use the ’Fav’ function. Input data for this function are either a model object of an implemented
class, or the vector of presences-absences (1-0) of your species and the corresponding presence
probability values, obtained e.g. with predict(mymodel, mydata, type = "response"). Alternatively
to the presences-absences, you can provide either the sample prevalence or the numbers of presences
and absences in the dataset that was used to generate the presence probabilities. In case you want
to use the "AT" method (but see Acevedo & Real 2012), you also need to provide the true (besides
the sample) prevalence of your species.

Value

If ’model’ is provided or if ’pred’ is a numeric vector, the function returns a numeric vector of the
favourability values. If ’model’ is not provided (which would override other arguments) and ’pred’
is a RasterLayer or a SpatRaster, the function returns an object of the same class, containing the
favourability values.

Note

This function is applicable only to presence probability values obtained without weighting pres-
ences and absences differently (i.e. with weights=NULL), thus reflecting the sample prevalence,
which is generally the default in presence/absence modelling functions (like glm). Note, how-
ever, that some modelling packages may use different defaults when calling these functions, e.g.
biomod2::BIOMOD_Modeling() with automatically generated pseudo-absences.

22 favClass

Author(s)

A. Marcia Barbosa

References

Acevedo P. & Real R. (2012) Favourability: concept, distinctive characteristics and potential use-
fulness. Naturwissenschaften 99: 515-522

Albert C.H. & Thuiller W. (2008) Favourability functions versus probability of presence: advan-
tages and misuses. Ecography 31: 417-422.

Barbosa A.M.E. (2006) Modelacion de relaciones biogeograficas entre predadores, presas y par-
asitos: implicaciones para la conservacion de mamiferos en la Peninsula Iberica. PhD Thesis,
University of Malaga (Spain).

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

See Also

multGLM

Examples

obtain a probability model and its predictions:

data(rotif.env)

names(rotif.env)

mod <- with(rotif.env, glm(Abrigh ~ Area + Altitude +
AltitudeRange + HabitatDiversity + HumanPopulation,
family = binomial))

prob <- predict(mod, data = rotif.env, type = "response")

obtain predicted favourability in different ways:

Fav(model = mod)

Fav(obs = rotif.env$Abrigh, pred = prob)

Fav(pred = mod$fitted.values, sample.preval = prevalence(model = mod))

favClass Classify favourability into 3 categories (low, intermediate, high)

favClass 23

Description

This function takes a vector of Favourability values and reclassifies them into 3 increasing cate-
gories: low, intermediate or high. By default, the breaks between these classes are 0.2 and 0.8 (see
Details), although these can be changed by the user.

Usage

favClass(fav, breaks = c(0.2, 0.8), character = FALSE)

Arguments

fav a numeric vector of favourability values (obtained, e.g., with functions Fav or
multGLM).

breaks a numeric vector of length 2 containing the two values which will divide fav
into the 3 classes. Defaults to c(0.2, 0.8) following the literature (see Details).

character logical value indicating whether the result should be returned in character rather
numeric form. Defaults to FALSE.

Details

Some applications of species distribution models imply setting a threshold to separate areas with
high and low probability or favourability for occurrence (see, e.g., bioThreat). However, it makes
little sense to establish as markedly different areas with, for example, 0.49 and 0.51 favourability
values (Hosmer & Lemeshow, 1989). It may thus be wiser to open a gap between values considered
as clearly favourable and clearly unfavourable. When this option is taken in the literature, com-
monly used breaks are 0.8 as a threshold to classify highly favourable values, as the odds are more
than 4:1 favourable to the species; 0.2 as a threshold below which to consider highly unfavourable
values, as odds are less than 1:4; and classifying the remaining values as intermediate favourability
(e.g., Munoz & Real 2006, Olivero et al. 2016).

Value

This function returns either an integer or a character vector (following the ’character’ argument,
which is set to FALSE by default), of the same length as fav, reclassifying it into 3 categories: 1
(’low’), 2 (’intermediate’), or 3 (’high’).

Author(s)

A. Marcia Barbosa

References

Hosmer D.W. Jr & Lemeshow S. (1989) Applied logistic regression. John Wiley & Sons, New York

Munoz A.R. & Real R. (2006) Assessing the potential range expansion of the exotic monk parakeet
in Spain. Diversity and Distributions, 12: 656-665

Olivero J., Fa J.E., Real R., Farfan M.A., Marquez A.L., Vargas J.M., Gonzalez J.P., Cunningham
A.A. & Nasi R. (2017) Mammalian biogeography and the Ebola virus in Africa. Mammal Review,
47: 24-37

24 FDR

See Also

Fav, multGLM

Examples

data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 20, var.cols = 5:17)
fav <- mods$predictions[, 2]
data.frame(fav = fav, favcl_num = favClass(fav),
favcl_chr = favClass(fav, character = TRUE))

FDR False Discovery Rate

Description

Calculate the false discovery rate (type I error) under repeated testing and determine which variables
to select and to exclude from multivariate analysis.

Usage

FDR(data = NULL, sp.cols = NULL, var.cols = NULL, pvalues = NULL,
test = "Chisq", model.type = NULL, family = "auto", correction = "fdr",
q = 0.05, verbose = NULL, verbosity = 1, simplif = FALSE)

Arguments

data a data frame containing the response and predictor variables (one in each col-
umn).

sp.cols name or index number of the column containing the response variable (currently
implemented for only one response variable at a time).

var.cols names or index numbers of the columns containing the predictor variables.

pvalues optionally, instead of ’data’, ’sp.cols’ and ’var.cols’, a data frame with the names
of the predictor variables in the first column andtheir bivariate p-values (ob-
tained elsewhere) in the second column. Example: pvalues <- data.frame(var =
letters[1:5], pval = c(0.02, 0.004, 0.07, 0.03, 0.05)).

test (if ’pvalues’ not provided) argument to pass to anova to obtain the p-value
for each variable. Should be one of "Chisq" (currently the default, for back-
compatibility), "Rao", "LRT" or "F" (the latter is not appropriate for models of
family "binomial").

model.type this argument (previously a character value, either "LM" or "GLM") is now
deprecated and ignored with a warning if provided. This information is now
included in argument ’family’ – e.g., if you want linear models (LM), you can
set ’family = "gaussian"’.

FDR 25

family The error distribution and (optionally) the link function to use (see glm or family
for details). The default "auto" automatically uses "binomial" family for re-
sponse variables containing only values of 0 and 1; "poisson" for positive integer
responses (i.e. count data); "Gamma" for positive non-integer; and "gaussian"
(i.e., linear models) otherwise.

correction the correction procedure to apply to the p-values; see p.adjust.methods for
available options and p.adjust for more information. The default is "fdr".

q the threshold value of FDR-corrected significance above which to reject vari-
ables. Defaults to 0.05.

verbose deprecated argument, replaced by ’verbosity’ (below).

verbosity integer value indicating the amount of messages to display. The default is 1, for
a medium amount of messages. Use 2 for more messages.

simplif logical value indicating if simplified results should be provided (see Value).

Details

It is common in ecology to search for statistical relationships between species’ occurrence and a
set of predictor variables. However, when a large number of variables is analysed (compared to
the number of observations), false findings may arise due to repeated testing. Garcia (2003) rec-
ommended controlling the false discovery rate (FDR; Benjamini & Hochberg 1995) in ecological
studies. The p.adjust R function performs this and other corrections to the significance (p) val-
ues of variables under repeated testing. The ’FDR’ function performs repeated regressions (either
linear or logistic) or uses already-obtained p values for a set of variables; calculates the FDR with
’p.adjust’; and shows which variables should be retained for or excluded from further multivariate
analysis according to their corrected p values (see, for example, Barbosa, Real & Vargas 2009).

The FDR function uses the Benjamini & Hochberg ("BH", alias "fdr") correction by default, but
check the p.adjust documentation for other available methods, namely "BY", which allows for
non-independent data. Input data may be the response variable (for example, the presence-absence
or abundance of a species) and the predictors (a table with one predictor variable in each column,
with the same number of rows and in the same order as the response). Alternatively, you may
already have performed the univariate regressions and have a set of variables and corresponding p
values which you want to correct with FDR; in this case, get a table with your variables’ names in
the first column and their p values in the second column, and supply it as the ’pvalues’ argument
(no need to provide response or predictors in this case).

Value

If simplif = TRUE, this function returns a data frame with the variables’ names as row names and
4 columns containing, respectively, their individual (bivariate) coefficients against the response,
their individual AIC (Akaike’s Information Criterion; Akaike, 1973), BIC (Bayesian Information
Criterion, also known as Schwarz criterion, SBC, SBIC; Schwarz, 1978), p-value and adjusted p-
value according to the applied ’correction’. If simplif = FALSE (the default), the result is a list of
two such data frames:

exclude with the variables to exclude.

select with the variables to select (under the given ’q’ value).

26 fuzSim

Author(s)

A. Marcia Barbosa

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Barbosa A.M., Real R. & Vargas J.M (2009) Transferability of environmental favourability models
in geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain.
Ecological Modelling 220: 747-754

Benjamini Y. & Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289-300

Garcia L.V. (2003) Controlling the false discovery rate in ecological research. Trends in Ecology
and Evolution 18: 553-554

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

See Also

p.adjust

Examples

data(rotif.env)

names(rotif.env)

FDR(data = rotif.env, sp.cols = 18, var.cols = 5:17)

FDR(data = rotif.env, sp.cols = 18, var.cols = 5:17, simplif = TRUE)

my_pvalues <- data.frame(var = letters[1:5], pval = c(0.02, 0.004, 0.07, 0.03, 0.05))
FDR(pvalues = my_pvalues)

fuzSim Fuzzy similarity

Description

This function calculates fuzzy similarity, based on a fuzzy version of the binary similarity index
specified in method, between two binary (0 or 1) or fuzzy (between 0 and 1) variables.

Usage

fuzSim(x, y, method, na.rm = TRUE)

fuzSim 27

Arguments

x numeric vector or SpatRaster layer of (optionally fuzzy) presence-absence data,
with 1 meaning presence, 0 meaning absence, and values in between mean-
ing fuzzy presence (or the degree to which each locality belongs to the set
of species presences, or to which each species belongs to the locality; Zadeh,
1965). Fuzzy presence-absence can be obtained, for example, with functions
multGLM, multTSA or distPres in this package, or with any other function that
computes presence probability or spatial/environmental suitability for a species.

y numeric vector or SpatRaster to overlap with ’x’, of the same length and in the
same order.

method the similarity index to compute between x and y. Currently available options are
"Jaccard", "Sorensen", "Simpson" and "Baroni" (see Details).

na.rm logical value indicating whether NA values should be ignored. The default is
TRUE.

Details

Similarity between ecological communities, beta diversity patterns, biotic regions, and distribu-
tional relationships among species are commonly determined based on pair-wise (dis)similarities in
species’ occurrence patterns. Some of the most commonly employed similarity indices are those
of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), which are
here implemented in their fuzzy versions (Barbosa, 2015), able to deal with both binary and fuzzy
data. Jaccard’s and Baroni’s indices have associated tables of significant values (Baroni-Urbani &
Buser 1976, Real & Vargas 1996, Real 1999).

Note that the Jaccard index’s translation to fuzzy logic (where intersection = minimum and union =
maximum) is equivalent to the weighted Jaccard index (Ioffe 2010) and to the overlap, coincidence
and consistence indices of Real et al. (2010).

Jaccard’s and Sorensen’s indices have also been recommended as prevalence-independent metrics
for evaluating the performance of models of species distributions and ecological niches (Leroy et
al. 2018). These indices are equivalent to other previously recommended model evaluation met-
rics: the F-measure (which equals Sorensen’s index), and the proxy of the F-measure for presence-
background data, which equals 2 times Jaccard’s index (Li and Guo 2013, Leroy et al. 2018).

Value

The function returns a value between 0 and 1 representing the fuzzy similarity between the provided
’x’ and ’y’ vectors. Note, for example, that Jaccard similarity can be converted to dissimilarity (or
Jaccard distance) if subtracted from 1, while 1-Sorensen is not a proper distance metric as it lacks
the property of triangle inequality (see https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%
80%93Dice_coefficient).

Note

The formulas used in this function may look slighty different from some of their published versions
(e.g. Baroni-Urbani & Buser 1976), not only because the letters are switched, but because here the
A and B are the numbers of attributes present in each element, whether or not they are also present
in the other one. Thus, our ’A+B’ is equivalent to ’A+B+C’ in formulas where A and B are the

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

28 fuzSim

numbers of attributes present in one but not the other element, and our A+B-C is equivalent to their
A+B+C. The formulas used here (adapted from Olivero et al. 1998) are faster to calculate, visibly
for large datasets.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858.

Baroni-Urbani C. & Buser M.W. (1976) Similarity of Binary Data. Systematic Zoology, 25: 251-
259

Ioffe S. (2010) Improved Consistent Sampling, Weighted Minhash and L1 Sketching. 2010 IEEE
International Conference on Data Mining, Sydney, NSW, Australia, pp. 246-255, doi: 10.1109/ICDM.2010.80

Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Memoires de la Societe Vaudoise des Sciences Naturelles, 37: 547-579

Leroy B., Delsol R., Hugueny B., Meynard C. N., Barhoumi C., Barbet-Massin M. & Bellard C.
(2018) Without quality presence-absence data, discrimination metrics such as TSS can be mislead-
ing measures of model performance. Journal of Biogeography, 45: 1994-2002

Li W. & Guo Q. (2013) How to assess the prediction accuracy of species presence-absence models
without absence data? Ecography, 36: 788-799

Olivero J., Real R. & Vargas J.M. (1998) Distribution of breeding, wintering and resident waterbirds
in Europe: biotic regions and the macroclimate. Ornis Fennica, 75: 153-175

Real R. (1999) Tables of significant values of Jaccard’s index of similarity. Miscellania Zoologica
22: 29:40

Real R. & Vargas J.M (1996) The probabilistic basis of Jaccard’s index of similarity. Systematic
Biology 45: 380-385

Simpson, G.G. (1960) Notes on the measurement of faunal resemblance. Amer. J. Sci. 258A,
300-311

Sorensen T. (1948) A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab, 5(4): 1-34

Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8: 338-353

See Also

simMat; modOverlap

Examples

data(rotif.env)

names(rotif.env)

fuzzyConsensus 29

you can calculate similarity between binary species occurrence patterns:

fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Jaccard")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Sorensen")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Simpson")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Baroni")

or you can model environmental favourability for these species
and calculate fuzzy similarity between their environmental predictions
which goes beyond the strict coincidence of their occurrence records:

fav <- multGLM(rotif.env, sp.cols = 18:19, var.cols = 5:17, step = TRUE,
FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $ predictions

fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Jaccard")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Sorensen")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Simpson")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Baroni")

fuzzyConsensus Fuzzy consensus among model predictions

Description

This function takes a data frame or a (multilayer) SpatRaster map of favourability predictions (i.e.,
directly comparable predictions obtained from presence probability; see Fav) and it computes the
consensus favourability, i.e., a row-wise weighted mean in which larger weights are assigned to
models with higher loadings in the first axis of a principal components analysis (Baquero et al.
2021).

Usage

fuzzyConsensus(data, weights = "PCA1", simplif = TRUE, plot = TRUE,
biplot = FALSE, verbosity = 2, do.par = TRUE)

Arguments

data matrix, data frame or (multilayer) ’SpatRaster’ map containing the favourability
values to combine.

weights method for computing the weights for the weighted average of favourability
values. Currently only "PCA1" is implemented.

simplif logical value. If TRUE (the default), the output includes only the numeric vector
of weighted mean favourability. If set to FALSE, the output will include also the
complete PCA result (if weights="PCA1").

plot logical value indicating whether to produce a barplot of the PCA axis loadings.
The default is TRUE.

30 fuzzyConsensus

biplot logical value indicating whether to produce a biplot of the PCA. The default is
FALSE, as it makes computation slower.

verbosity integer value indicating the amount of messages to display in the console. The
default is to emit all messages available.

do.par logical value indicating whether to override the current plotting parameters (restor-
ing them on exit). The default is TRUE.

Details

Species distribution models are often computed using different modelling methods and/or climate
scenarios. One way to summarize or combine them is to do a principal components analysis (PCA)
of the different model predictions: The first axis of this PCA captures consistent spatial patterns in
the predicted values across the different models (Araujo, Pearson, et al. 2005; Araujo, Whittaker,
et al. 2005; Marmion et al. 2009; Thuiller 2004). However, the units of the PCA axes are difficult
to interpret. Baquero et al. (2021) solved this by computing a weighted average of the favourability
values (which are commensurable and therefore directly comparable across species and study areas;
Real et al. 2006, Acevedo & Real 2012), using the loadings of the first PCA axis as weights. The
result is therefore in the same scale as favourability, and it incorporates the degree of consensus
among models, which dictates how much weight each model has in the prediction, thus avoiding
disparate predictions to be blindly mixed and averaged out (Baquero et al. 2021).

Value

If simplif=TRUE (the default), the function returns a numeric vector with length equal to the num-
ber of rows in ’data’ (if ’data’ is a matrix or data frame), or a ’SpatRaster’ layer (if ’data’ is a
’SpatRaster’ object), with the consensus among the input favourabilities. If simplif=FALSE, the
function returns a list containing, additionally, the output of prcomp.

Author(s)

A. Marcia Barbosa

References

Acevedo P. & Real R. (2012) Favourability: Concept, distinctive characteristics and potential use-
fulness. Naturwissenschaften, 99: 515-522

Araujo M.B., Pearson R.G., Thuiller W. & Erhard M. (2005) Validation of species-climate impact
models under climate change. Global Change Biology, 11: 1504-1513

Araujo M.B., Whittaker R.J., Ladle R.J. & Erhard M. (2005) Reducing uncertainty in projections
of extinction risk from climate change. Global Ecology and Biogeography, 14: 529-538

Baquero R.A., Barbosa A.M., Ayllon D., Guerra C., Sanchez E., Araujo M.B. & Nicola G.G. (2021)
Potential distributions of invasive vertebrates in the Iberian Peninsula under projected changes in
climate extreme events. Diversity and Distributions, 27(11): 2262-2276

Marmion M., Parviainen M., Luoto M., Heikkinen R.K. & Thuiller W. (2009) Evaluation of con-
sensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59-69

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245

fuzzyOverlay 31

Thuiller W. (2004) Patterns and uncertainties of species’ range shifts under climate change. Global
Change Biology, 10: 2020-2027

See Also

weighted.mean

Examples

Not run:
this example requires having the 'gam' package installed

data(rotif.env)

library(gam)

get two different model predictions for one of the species in this dataset:

names(rotif.env)
vars <- names(rotif.env)[5:17]

form_glm <- as.formula(paste("Ttetra ~", paste(vars, collapse = "+")))
mod_glm <- glm(form_glm, family = binomial, data = rotif.env)
pred_glm <- predict(mod_glm, rotif.env, type = "response")

form_gam <- as.formula(paste("Ttetra ~", paste("s(", vars, ")", collapse = "+")))
mod_gam <- gam(form_gam, family = binomial, data = rotif.env)
pred_gam <- predict(mod_gam, rotif.env, type = "response")

convert probability predictions to favourability:

fav_glm <- Fav(pred = pred_glm, sample.preval = prevalence(model = mod_glm))
fav_gam <- Fav(pred = pred_gam, sample.preval = prevalence(model = mod_gam))

compute the consensus favourability of these two models:

fav_consensus <- fuzzyConsensus(cbind(fav_glm, fav_gam))

cor(cbind(fav_glm, fav_gam, fav_consensus))

End(Not run)

fuzzyOverlay Overlay operations based on fuzzy logic

32 fuzzyOverlay

Description

Logical and set operations are useful for comparative distribution modelling, to assess consensus
or mismatches between the predictions of different models, and to quantify differences between
models obtained for different time periods. Fuzzy set theory (Zadeh 1965, Barbosa & Real 2012)
allows performing such operations without converting model predictions from continuous to binary,
thus avoiding the application of arbitrary thresholds and the distortion or over-simplification of those
predictions. The result is a continuous numerical value quantifying the intersection, union, sum, or
other operation among model predictions, whether binary or continuous.

Usage

fuzzyOverlay(data, overlay.cols = NULL, op = "intersection",
na.rm = FALSE, round.digits = 2)

Arguments

data matrix, data frame, or multilayer SpatRaster containing the model predictions to
compare.

overlay.cols vector of the names or index numbers of the columns or layers to compare. The
default is all columns or layers in data.

op character value indicating the operation to perform between the (specified) pre-
diction columns or layers in ’data’. Options are:

• "consensus" for the arithmetic mean of predictions (or the fuzzy equivalent
of the proportion of models that agree that the species can potentially occur
at each site);

• "fuzzy_and" or "intersection" for fuzzy intersection;
• "fuzzy_or" or "union" for fuzzy union;
• "prob_and" or "prob_or" for probabilistic and/or, respectively (see Details);
• "maintenance" for the values where all predictions for the same row/pixel

(rounded to the number of digits specified in ’round.digits’) are the same.

If ’data’ has only two columns/layers to compare, further options are:

• "xor" for exclusive ’or’
• "AnotB" for the the occurrence of the species in column/layer 1 in detriment

of that in column/layer 2;
• "expansion" for the prediction increase in rows/pixels where column/layer

2 has higher values than column/layer 1;
• "contraction" for the prediction decrease in rows/pixels where column/layer

2 has lower values than column/layer 1;
• "change" for a mix of the latter two, with positive values where there is

an increase and negative values where there is a decrease in favourability
from columns/layers 1 to 2. For expansion, contraction and maintenance,
rows/pixels where the values do not satisfy the condition (i.e. second col-
umn/layer larger, smaller, or roughly equal to the first) get a value of zero.

na.rm logical value indicating if NA values should be ignored. The default is FALSE,
so rows/pixels with NA in any of the prediction columns/layers get NA as a
result.

fuzzyOverlay 33

round.digits integer value indicating the number of decimal places to be used if op = "main-
tenance". The default is 2.

Details

If your predictions are probabilities, "prob_and" (probabilistic ’and’) gives the probability of all
species in ’data’ occurring simultaneously by multiplying all probabilities; and "prob_or" (proba-
bilistic ’or’) gives the probability of any of them occurring at each site. These can be quite restric-
tive, though; probabilistic "and" can give particularly irrealistically small values.

If you have (or convert your probabilities to) favourability predictions, which can be used directly
with fuzzy logic (Real et al. 2006; see Fav function), you can use "fuzzy_and" or "intersection"
to get the favourability for all species to co-occur at each site, and "fuzzy_or" or "union" to get
favourability for any of them to occur at each site (Barbosa & Real 2012).

Value

This function returns a vector with length equal to the number of rows in ’data’, or (if the input is
a SpatRaster) a SpatRaster layer of the same dimensions as the input’s first layer, containing the
row-wise or pixel-wise result of the operation performed.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Real R. (2012) Applying fuzzy logic to comparative distribution modelling: a case
study with two sympatric amphibians. The Scientific World Journal, 2012, Article ID 428206

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

Zadeh, L.A. (1965) Fuzzy sets. Information and Control, 8: 338-353

See Also

fuzSim, modOverlap and fuzzyRangeChange for overall (not row-wise or pixel-wise) comparisons
among model predictions.

Examples

data(rotif.env)

names(rotif.env)

get model predictions for 3 of the species in rotif.env:

mods <- multGLM(rotif.env, sp.cols = 18:20, var.cols = 5:17, id.col = 1,
step = TRUE, FDR = TRUE, trim = TRUE)

preds <- mods$predictions[, c("Abrigh_F", "Afissa_F", "Apriod_F")]

34 fuzzyRangeChange

calculate intersection and union among those predictions:

preds$intersect <- fuzzyOverlay(preds, op = "intersection")

preds$union <- fuzzyOverlay(preds, op = "union")

head(preds)

imagine you have a model prediction for species 'Abrigh' in a future time
(here we will create one by randomly jittering the current predictions)

preds$Abrigh_imag <- jitter(preds[, "Abrigh_F"], amount = 0.2)
preds$Abrigh_imag[preds$Abrigh_imag < 0] <- 0
preds$Abrigh_imag[preds$Abrigh_imag > 1] <- 1

you can calculate row-wise prediction changes from Abrigh to Abrigh_imag:

preds$Abrigh_exp <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "expansion")

preds$Abrigh_contr <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "contraction")

preds$Abrigh_chg <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "change")

preds$Abrigh_maint <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "maintenance")

head(preds)

fuzzyRangeChange Range change based on continuous (fuzzy) values

Description

This function quantifies overall range change (expansion, contraction, maintenance and balance)
based on either presence-absence data or the continuous predictions of two models.

Usage

fuzzyRangeChange(pred1, pred2, number = TRUE, prop = TRUE,
na.rm = TRUE, round.digits = 2,
measures = c("Gain", "Loss", "Stable positive", "Stable negative", "Balance"),
plot = TRUE, plot.type = "lollipop", x.lab = TRUE, ...)

fuzzyRangeChange 35

Arguments

pred1 numeric vector or SpatRaster layer containing the predictions (between 0 and 1)
of the model that will serve as reference.

pred2 numeric vector or SpatRaster layer containing the predictions (between 0 and 1)
of the model whose change will be calculated. Must be of the same dimensions
and in the same order as ’pred1’.

number logical value indicating if results should include the fuzzy number of cases. The
default is TRUE.

prop logical value indicating if results should include the proportion of the total num-
ber of cases. The default is TRUE.

na.rm logical value indicating whether NA values should be ignored. The default is
TRUE.

round.digits argument to pass to fuzzyOverlay, indicating the number of decimal places to
which to round ’pred’ for calculating ’maintenance’ or ’stability’. The default is
2.

measures character vector listing the range change measures to calculate. The default
includes all available measures.

plot logical value indicating whether to plot the results. The default is TRUE.

plot.type character value indicating the type of plot to produce (if plot=TRUE). Can be
"lollipop" (the default) or "barplot".

x.lab logical value indicating whether to add the x axis labels to the plot (i.e., the
names below each lollipop or bar). The default is TRUE, but users may set it to
FALSE and then add labels differently (e.g. with different names or rotations).

... additional arguments to pass to barplot or to modEvA::lollipop (if plot=TRUE).

Value

This function returns a data frame with the following values in different rows (among those included
in ’measures’):

Gain sum of the predicted values that have increased from ’pred1’ to ’pred2’ (fuzzy
equivalent of the number of localities that gained presence)

Loss sum of the predicted values that have decreased from ’pred1’ to ’pred2’ (fuzzy
equivalent of the number of localities that lost presence)

Stable positive

fuzzy equivalent of the number of (predicted) presences that have remained as
such (when rounded to ’round.digits’) between ’pred1’ and ’pred2’

Stable negative

fuzzy equivalent of the number of (predicted) absences that have remained as
such (when rounded to ’round.digits’) between ’pred1’ and ’pred2’)

Balance sum of the change in predicted values from ’pred1’ to ’pred2’ (fuzzy equivalent
of the balance of gained and lost presences)

36 fuzzyRangeChange

If number=TRUE (the default), there is a column named "Number" with the number of localities in
each of the above categories. If prop=TRUE (the default), there is a column named "Proportion" in
which this number is divided by the total number of reference values (i.e., the fuzzy range or fuzzy
non-range size). If plot=TRUE (the default), a plot is also produced representing the last column of
the result data frame.

Author(s)

A. Marcia Barbosa

See Also

fuzSim, modOverlap for other ways to compare models; fuzzyOverlay for row-wise or pixel-wise
model comparisons

Examples

get an environmental favourability model for a rotifer species:

data(rotif.env)

names(rotif.env)

fav_current <- multGLM(rotif.env, sp.cols = 18, var.cols = 5:17,
step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $
predictions

imagine you have a model prediction for this species in a future time
(here we will create one by randomly jittering the current predictions)

fav_imag <- jitter(fav_current, amount = 0.2)
fav_imag[fav_imag < 0] <- 0
fav_imag[fav_imag > 1] <- 1

calculate range change given by current and imaginary future predictions:

fuzzyRangeChange(fav_current, fav_imag)

fuzzyRangeChange(fav_current, fav_imag, las = 2)

fuzzyRangeChange(fav_current, fav_imag, prop = FALSE)

fuzzyRangeChange(fav_current, fav_imag, ylim = c(-0.3, 0.3))

fuzzyRangeChange(fav_current, fav_imag, plot.type = "barplot")

getPreds 37

getPreds Get model predictions

Description

This function allows getting the predictions of multiple models when applied to a given dataset. It
can be useful if you have a list of model objects (e.g. resulting from multGLM) and want to apply
them to a new data set containing the same variables for another region or time period. There are
options to include the logit link (’Y’) and/or ’Favourability’ (see Fav).

Usage

getPreds(data, models, id.col = NULL, Y = FALSE, P = TRUE,
Favourability = TRUE, incl.input = FALSE, verbosity = 2)

Arguments

data an object of class either ’data.frame’ or ’RasterStack’ to which to apply the
’models’ (below) to get their predictions; must contain all variables (with the
same names, case-sensitive) included in any of the ’models’.

models an object of class ’list’ containing one or more model objects, obtained e.g. with
function glm or multGLM.

id.col optionally, the index number of a column of ’data’ containing row identifiers, to
be included in the result. Ignored if incl.input = TRUE, or if ’data’ is a Raster-
Stack rather than a data frame.

Y logical, whether to include the logit link (y) value in the predictions.

P logical, whether to include the probability value in the predictions.

Favourability logical, whether to include Favourability in the predictions (see Fav).

incl.input logical, whether to include input columns in the output data frame (if the ’data’
input is a data frame too). The default is FALSE.

verbosity numeric value indicating the amount of messages to display; currently meaning-
ful values are 0, 1, and 2 (the default).

Value

This function returns the model predictions in an object of the same class as the input ’data’, i.e.
either a data frame or a RasterStack.

Author(s)

A. Marcia Barbosa

See Also

multGLM, predict

38 getRegion

Examples

data(rotif.env)

names(rotif.env)

identify rotifer data in the Eastern and Western hemispheres:

unique(rotif.env$CONTINENT)

rotif.env$HEMISPHERE <- "Eastern"

rotif.env$HEMISPHERE[rotif.env$CONTINENT %in%
c("NORTHERN_AMERICA", "SOUTHERN_AMERICA")] <- "Western"

head(rotif.env)

separate the rotifer data into hemispheres

east.hem <- rotif.env[rotif.env$HEMISPHERE == "Eastern",]
west.hem <- rotif.env[rotif.env$HEMISPHERE == "Western",]

make models for 3 of the species in rotif.env based on their distribution
in the Eastern hemisphere:

mods <- multGLM(east.hem, sp.cols = 18:20, var.cols = 5:17,
id.col = 1, step = FALSE, FDR = FALSE, trim = FALSE)

get the models' predictions for the Western hemisphere dataset:

preds <- getPreds(west.hem, models = mods$models, P = TRUE,
Favourability = TRUE)

head(preds)

getRegion Get region

Description

This function computes a polygon around a set of point coordinates, which may be useful for de-
limiting background or (pseudo)absence regions for computing species distibution models. Some
of the ’type’ options, especially those involving clusters, attempt to somewhat address survey bias
by making smaller polygons around areas with fewer or more isolated points.

getRegion 39

Usage

getRegion(
pres.coords,
type = "width",
clust_dist = 100,
dist_mult = 1,
width_mult = 0.5,
weight = TRUE,
CRS = NULL,
verbosity = 2,
plot = TRUE

)

Arguments

pres.coords a SpatVector of points, or an object inheriting class ’data.frame’ with 2 columns
containing, respectively, the x and y, or longitude and latitude coordinates (in
this order!) of the points where species presence was recorded.

type character indicating which procedure to use for defining the region around ’pres.coords’.
Options are:

• "width": a buffer whose radius is the minimum diameter of the ’pres.coords’
spatial extent (computed with terra::width()), multiplied by ’width_mult’;

• "mean_dist": a buffer whose radius is the mean pairwise terra::distance()
among ’pres.coords’, multiplied by ’dist_mult’;

• "inv_dist": a buffer whose radius is inversely proportional to the sum of
the distances from each point to all other points in ’pres.coords’ (a rough
measure of how isolated each point is, possibly indicating an opportunistic
record in a sparsely surveyed area);

• "clust_mean_dist": a different buffer around each cluster of ’pres.coords’
(clusters computed with stats::hclust(), method = "simple") and then
stats::cutree() with h = clust_dist*1000), sized according to the mean
pairwise distance of each cluster’s ’pres.coords’.

• "clust_width": a different buffer around each cluster of ’pres.coords’ (clus-
ters computed as described for ’clust_mean_dist’), sized according to the
terra::width() of each cluster’s ’pres.coords’.

clust_dist if ’type’ involves clusters, numeric value specifying the distance threshold (in
km) within which points are clustered together. Default 100.

dist_mult if type = "mean_dist" or "clust_mean_dist", multiplier of the mean pairwise
point distance to use for the terra::buffer() radius around each cluster. De-
fault 1.

width_mult if type = "width" or "clust_width", multiplier of the width to use for the terra::buffer()
radius. Default 0.5.

weight logical (default TRUE, used only if ’type’ includes clusters) indicating whether
to weigh the radius of the buffer around each cluster proportionally to the num-
ber of points that it includes. If TRUE (the default), clusters with fewer points
(possibly indicating more sparsely surveyed areas) get smaller buffers than the
mean distances among them.

40 getRegion

CRS coordinate reference system of ’pres.coords’ (if it is not a SpatVector with a
defined CRS already), in one of the following formats: WKT/WKT2, <author-
ity>:<code>, or PROJ-string notation (see terra::crs()).

verbosity integer indicating the amount of messages to displayalong the process. The
default is 2, for all available messages.

plot logical (default TRUE) indicating whether to plot the resulting region (in yelow),
together with the input ’pres.coords’ (black points, or points coloured according
to their cluster) and a label with the number of points in each cluster (if ’type’
involves clusters).

Details

Most methods for computing species distribution models require predictor values for regions be-
yond those with species occurrence records, i.e. background or (pseudo)absence areas. The extent
of these regions has a strong effect on model predictions. Ideally, they should include the areas that
are within the reach of the species AND were reasonably surveyed. While sometimes we have a
large enough and delimited area that we can use (e.g. when modelling a region where a national
or regional distribution atlas is available), often we need to approximate the areas that appear to be
both reasonably surveyed and within the species’ reach.

Mind that no automated procedure can properly address all possible issues related to uneven data
collection, or properly conform to all possible species distribution and survey patterns. Mind also
that the output region from this function does not consider geographical barriers, or other factors
that should also be taken into account when delimiting a region for modelling.

It is thus recommended to try different values for ’type’ and associated parameters; judge for your-
self which one provides the most plausible approximation to the surveyed region accessible to your
target species; and possibly post-process (i.e. further edit) the resulting region in light of the avail-
able knowledge of that species’ distribution, survey patterns and study region.

Value

SpatVector polygon delimiting a region around ’pres.coords’

Author(s)

A. Marcia Barbosa

See Also

terra::buffer(), terra::width()

gridRecords 41

gridRecords Grid (or thin) point occurrence records to the resolution of a raster
map

Description

This function takes a (single or multi-layer) SpatRaster or a Raster* object and a set of spatial
coordinates of a species’ presence (and optionally absence) records, and returns a data frame of the
presences and absences with their raster values in the grid of pixels (cells). This is analogous to
removing duplicates and thinning points (both presences and absences) with a distance equal to the
pixel size of the raster map(s) on which analysis will be based.

Usage

gridRecords(rst, pres.coords, abs.coords = NULL, absences = TRUE,
species = NULL, na.rm = TRUE, plot = FALSE)

Arguments

rst a Raster* or SpatRaster object (the latter is processed faster) with the desired
spatial resolution and extent for the species presence-(pseudo)absence data, and
the layer(s) whose values to extract for those data.

pres.coords a SpatVector of points, or an object inheriting class ’data.frame’ with 2 columns
containing, respectively, the x and y, or longitude and latitude coordinates (in
this order, and in the same coordinate reference system as ’rst’) of the points
where species presence was recorded.

abs.coords (optional) same as ’pres.coords’ but for points where the species was not recorded.
If abs.coords=NULL and absences=TRUE (the default), all pixels that are not
intersected by ’pres.coords’ will be returned as having absence of records.

absences logical value indicating whether pixels without presence records should be re-
turned as absences. The default is TRUE.

species (optional) character vector, of the same length as ’nrow(pres.coords)’, indicating
the species to which each pair of coordinates corresponds. Useful for gridding
records of more than one species at a time. Its unique values will be used as
column names in the output. If this argument is specified, ’abs.coords’ cannot
be used.

na.rm logical value indicating whether pixels with NA in all of the ’rst’ layers should
be excluded from the output data frame. The default is TRUE.

plot logical value specifying whether to plot the resulting presences and absences.
The default is FALSE (for back-compatibility).

Details

See e.g. Baez et al. (2020), where this function was first used to get unique presences and absences
from point occurrence data at the spatial resolution of marine raster variables.

42 gridRecords

You should consider cleaning the coordinates beforehand, e.g. with cleanCoords.

If your output has an overly large and/or spatially biased set of absences, you can use selectAbsences
afterwards.

Value

This function returns a data frame with the following columns:

’presence’ integer, 1 for the cells (pixels) with at least one presence point; and (if ab-
sences=TRUE) 0 for the cells without any presence point, or with at least one
absence point (if ’abs.coords’ are provided) AND no presence points. If the
’species’ argument is provided, instead of ’presence’ you get one column named
as each species.

’x’, ’y’ centroid coordinates of each cell (pixel).

’cell’ the pixel identifier in ’rst’.
one column for each layer in ’rst’

value of each pixel for each layer.

If plot=TRUE, the fuction also plots the resulting presences (blue "plus" signs) and absences (red
"minus" signs).

Note

This function requires either the raster or the terra package, depending on the class of ’rst’.

Author(s)

A. Marcia Barbosa

References

Baez J.C., Barbosa A.M., Pascual P., Ramos M.L. & Abascal F. (2020) Ensemble modelling of the
potential distribution of the whale shark in the Atlantic Ocean. Ecology and Evolution, 10: 175-184

See Also

cleanCoords, selectAbsences

Examples

Not run:

you can run these examples if you have the 'terra' package installed
require(terra)

import a raster map and aggregate it to a coarser resolution:
r <- terra::rast(system.file("ex/elev.tif", package = "terra"))
r <- terra::aggregate(r, 6)
plot(r)

gridRecords 43

generate some random presence and absence points:
set.seed(123)
presences <- terra::spatSample(as.polygons(r), 100)
set.seed(456)
absences <- terra::spatSample(as.polygons(r), 70)

add these points to the map:
points(presences, pch = 20, cex = 0.3, col = "black")
points(absences, pch = 20, cex = 0.3, col = "white")

use 'gridRecords' on these points:
gridded_pts <- gridRecords(rst = r, pres.coords = terra::crds(presences),
abs.coords = terra::crds(absences))

head(gridded_pts)

map the gridded points (presences black, absences white):
points(gridded_pts[, c("x", "y")], col = gridded_pts$presence)

you can also do it with only presence (no absence) records
in this case, by default (with 'absences = TRUE'),
all pixels without presence points are returned as absences:

gridded_pres <- gridRecords(rst = r, pres.coords = terra::crds(presences))

head(gridded_pres)

plot(r)
points(presences, pch = 20, cex = 0.2, col = "black")
points(gridded_pres[, c("x", "y")], col = gridded_pres$presence)

with only presence (no absence) records, as in this latter case,
you can grid records for multiple species at a time
by adding a 'species' argument

presences$species <- rep(c("species1", "species2", "species3"), each = 33)

values(presences)

plot(r, col = hcl.colors(n = 100, palette = "blues"))
plot(presences, col = as.factor(presences$species), add = TRUE)

gridded_pres_mult <- gridRecords(rst = r, pres.coords = terra::crds(presences),
species = presences$species)

head(gridded_pres_mult)

add each each species' gridded presences to the map:
points(gridded_pres_mult[gridded_pres_mult[, 1] == 1, c("x", "y")], col = 1, pch = 1)
points(gridded_pres_mult[gridded_pres_mult[, 2] == 1, c("x", "y")], col = 2, pch = 2)
points(gridded_pres_mult[gridded_pres_mult[, 3] == 1, c("x", "y")], col = 3, pch = 3)

44 integerCols

End(Not run)

integerCols Classify integer columns

Description

This function detects which numeric columns in a data frame contain only whole numbers, and
converts those columns to integer class, so that they take up less space.

Usage

integerCols(data)

Arguments

data a data frame containing possibly integer columns classified as "numeric".

Value

The function returns a data frame with the same columns as ’data’, but with those that are numeric
and contain only whole numbers (possibly including NA) now classified as "integer".

Author(s)

A. Marcia Barbosa

See Also

is.integer, as.integer, multConvert

Examples

dat <- data.frame(
var1 = 1:10,
var2 = as.numeric(1:10),
var3 = as.numeric(c(1:4, NA, 6:10)),
var4 = as.numeric(c(1:3, NaN, 5, Inf, 7, -Inf, 9:10)),
var5 = as.character(1:10),
var6 = seq(0.1, 1, by = 0.1),
var7 = letters[1:10]

) # creates a sample data frame

dat

str(dat)
var2 classified as "numeric" but contains only whole numbers
var3 same as var2 but containing also NA values

modelTrim 45

var4 same as var2 but containing also NaN and infinite values
var5 contains only whole numbers but initially classified as factor

dat <- integerCols(dat)

str(dat)
var2 and var3 now classified as "integer"
var4 remains as numeric because contains infinite and NaN
(not integer) values
var5 remains as factor

modelTrim Trim off non-significant variables from a model

Description

This function performs a stepwise removal of non-significant variables from a model object, fol-
lowing Crawley (2005, 2007).

Usage

modelTrim(model, method = "summary", alpha = 0.05, verbosity = 2, phy = NULL)

Arguments

model a model object of class ’lm’, ’glm’ or ’phylolm’.

method the method for getting the p-value of each variable. Can be either "summary" for
the p-values of the coefficient estimates, or (if the model class is ’lm’ or ’glm’)
"anova" for the p-values of the variables themselves (see Details).

alpha the threshold p-value above which a variable is to be removed.

verbosity integer number indicating the amount of messages to display; the default is the
maximum number of messages available.

phy if ’model’ is of class ’phylolm’, the phylogenetic tree to pass to phylolm::phylolm()
when re-computing the model after the removal of each non-significant variable.

Details

Stepwise variable selection is a common procedure for simplifying models. It maximizes predictive
efficiency in an objective and reproducible way, and it is useful when the individual importance of
the predictors is not known a priori (Hosmer & Lemeshow, 2000). The step R function performs
such procedure using an information criterion (AIC) to select the variables, but it often leaves
variables that are not significant in the model. Such variables can be subsequently removed with
a stepwise procedure (e.g. Crawley 2005, p. 208; Crawley 2007, p. 442 and 601; Barbosa &
Real 2010, 2012; Estrada & Arroyo 2012). The ’modelTrim’ function performs such removal
automatically until all remaining variables are significant. It can also be applied to a full model
(i.e., without previous use of the ’step’ function), as it serves as a backward stepwise selection
procedure based on the significance of the coefficients (if method = "summary", the default) or on

46 modelTrim

the significance of the variables (if method = "anova", better when there are categorical variables in
the model). See also stepwise for a more complete stepwise selection procedure based on a data
frame.

Value

The updated input model object after stepwise removal of non-significant variables.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Real R. (2010) Favourable areas for expansion and reintroduction of Iberian lynx
accounting for distribution trends and genetic diversity of the European rabbit. Wildlife Biology in
Practice 6: 34-47

Barbosa A.M. & Real R. (2012) Applying fuzzy logic to comparative distribution modelling: a case
study with two sympatric amphibians. The Scientific World Journal, Article ID 428206

Crawley, M.J. (2005) Statistics: An introdution using R. John Wiley & Sons, Ltd.

Crawley, M.J. (2007) The R Book. John Wiley & Sons, Ltd.

Estrada A. & Arroyo B. (2012) Occurrence vs abundance models: Differences between species with
varying aggregation patterns. Biological Conservation, 152: 37-45

Hosmer D. W. & Lemeshow S. (2000) Applied Logistic Regression (2nd ed). John Wiley and Sons,
New York

See Also

step, stepwise

Examples

load sample data:

data(rotif.env)

names(rotif.env)

build a stepwise model of a species' occurrence based on
some of the variables:

mod <- with(rotif.env, step(glm(Abrigh ~ Area + Altitude + AltitudeRange +
HabitatDiversity + HumanPopulation, family = binomial)))

examine the model:

summary(mod) # includes non-significant variables

modOverlap 47

use modelTrim to get rid of those:

mod <- modelTrim(mod)

summary(mod) # only significant variables remain

modOverlap Overall overlap between model predictions

Description

This function calculates the degree of overlap between the predictions of two models, using niche
comparison metrics such as Schoener’s D, Hellinger distance and Warren’s I.

Usage

modOverlap(pred1, pred2, na.rm = TRUE)

Arguments

pred1 numeric vector or SpatRaster layer of the predictions of a model, with values
between 0 and 1.

pred2 numeric vector or SpatRaster layer of the predictions of another model, also
with values between 0 and 1; must be of the same dimensions and in the same
order as ’pred1’.

na.rm logical value indicating whether NA values should be removed prior to calcula-
tion. The default is TRUE.

Details

See Warren et al. (2008).

Value

This function returns a list of 3 metrics:

SchoenerD Schoener’s (1968) D statistic for niche overlap, varying between 0 (no overlap)
and 1 (identical niches).

WarrenI the I index of Warren et al. (2008), based on Hellinger distance (below) but
re-formulated to also vary between 0 (no overlap) and 1 (identical niches).

HellingerDist Hellinger distance (as in van der Vaart 1998, p. 211) between probability distri-
butions, varying between 0 and 2.

Author(s)

A. Marcia Barbosa

48 multConvert

References

Schoener T.W. (1968) Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology
49: 704-726

van der Vaart A.W. (1998) Asymptotic statistics. Cambridge Univ. Press, Cambridge (UK)

Warren D.L., Glor R.E. & Turelli M. (2008) Environmental niche equivalency versus conservatism:
quantitative approaches to niche evolution. Evolution, 62: 2868-83 (and further ERRATUM)

See Also

fuzSim; fuzzyOverlay; niche.overlap in package phyloclim; ecospat.niche.overlap in pack-
age ecospat

Examples

get an environmental favourability model for a rotifer species:

data(rotif.env)

names(rotif.env)

fav_current <- multGLM(rotif.env, sp.cols = 18, var.cols = 5:17,
step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $
predictions

imagine you have a model prediction for this species in a future time
(here we will create one by randomly jittering the current predictions)

fav_imag <- jitter(fav_current, amount = 0.2)
fav_imag[fav_imag < 0] <- 0
fav_imag[fav_imag > 1] <- 1

calculate niche overlap between current and imaginary future predictions:

modOverlap(fav_current, fav_imag)

multConvert Multiple conversion

Description

This function can simultaneously convert multiple columns of a matrix or data frame.

Usage

multConvert(data, conversion, cols = 1:ncol(data))

multConvert 49

Arguments

data A matrix or data frame containing columns that need to be converted

conversion the conversion to apply, e.g. as.factor or a custom-made function

cols the columns of ’data’ to convert

Details

Sometimes we need to change the data type (class, mode) of a variable in R. There are various
possible conversions, performed by functions like as.integer, as.factor or as.character. If
we need to perform the same conversion on a number of variables (columns) in a data frame, we
can convert them all simultaneously using this function. By default it converts all columns in ’data’,
but you can specify just some of those. ’multConvert’ can also be used to apply other kinds of
transformations – for example, if you need to divide some of your columns by 100, just write a
function to do this and then use ’multConvert’ to apply this function to any group of columns.

Value

The input data with the specified columns converted as specified in ’conversion’.

Author(s)

A. Marcia Barbosa

Examples

data(rotif.env)

str(rotif.env)

convert the first 4 columns to character:
converted.rotif.env <- multConvert(data = rotif.env,
conversion = as.character, cols = 1:4)

str(converted.rotif.env)

names(rotif.env)

divide some columns by 100:

div100 <- function(x) x / 100

rotif.env.cent <- multConvert(data = rotif.env,
conversion = div100, cols = c(6:10, 12:17))

head(rotif.env.cent)

50 multGLM

multGLM GLMs with variable selection for multiple species

Description

This function performs selection of variables and calculates generalized linear models for a set
of presence/absence records in a data frame, with a range of options for data partition, variable
selection, and output form.

Usage

multGLM(data, sp.cols, var.cols, id.col = NULL, block.cols = NULL,
family = "binomial", test.sample = 0, FDR = FALSE, test = "Chisq",
correction = "fdr", FDR.first = TRUE, corSelect = FALSE, coeff = TRUE,
cor.thresh = ifelse(isTRUE(coeff), 0.8, 0.05), cor.method = "pearson",
step = TRUE, trace = 0, start = "null.model", direction = "both",
select = "AIC", trim = TRUE, Y.prediction = FALSE, P.prediction = TRUE,
Favourability = TRUE, group.preds = TRUE, TSA = FALSE, coord.cols = NULL,
degree = 3, verbosity = 2, test.in = "Rao", test.out = "LRT", p.in = 0.05,
p.out = 0.1, ...)

Arguments

data a data frame in wide format (see splist2presabs) containing, in separate columns,
your species’ binary (0/1) occurrence data and the predictor variables.

sp.cols names or index numbers of the columns containing the species data to be mod-
elled.

var.cols names or index numbers of the columns containing the predictor variables to be
used for modelling.

id.col (optional) name or index number of column containing the row identifiers (if
defined, it will be included in the output ’predictions’ data frame).

block.cols [UNDER IMPLEMENTATION] names or index numbers of the columns con-
taining predictor variables to force into the model, even when a selection method
is applied to the remaining variables.

family argument to be passed to the glm function; currently, only ’binomial’ is imple-
mented here.

test.sample a subset of data to set aside for subsequent model testing. Can be a value be-
tween 0 and 1 for a proportion of the data to choose randomly (e.g. 0.2 for
20%); or an integer number for a particular number of cases to choose randomly
among the records in ’data’; or a vector of integers for the index numbers of
the particular rows to set aside; or "Huberty" for his rule of thumb based on the
number of variables (Huberty 1994, Fielding & Bell 1997).

FDR logical value indicating whether to do a preliminary exclusion of variables based
on the false discovery rate (see FDR). The default is FALSE.

multGLM 51

test argument to pass to the FDR function (which, in turn, passes it to anova) if
FDR=TRUE. The default is currently "Chisq" for back-compatibility.

correction argument to pass to the FDR function if FDR=TRUE. The default is "fdr", but
see p.adjust for other options.

FDR.first logical value indicating whether FDR exclusion (if FDR=TRUE) should be ap-
plied at the beginning. The default is TRUE. If set to FALSE (and if FDR=TRUE),
FDR exclusion will be applied after ’corSelect’ below.

corSelect logical value indicating whether to select among highly correlated variables us-
ing corSelect. The default is FALSE.

coeff logical value to pass to corSelect (if corSelect=TRUE) indicating whether two
variables should be considered highly correlated based on the magnitude of their
coefficient (rather than p-value) of correlation. The default is TRUE.

cor.thresh numerical value indicating the correlation threshold to pass to corSelect (if
corSelect=TRUE).

cor.method character value to pass to corSelect (if corSelect=TRUE) specifying the cor-
relation coefficient to use. Can be "pearson" (the default), "kendall" or "spear-
man".

step logical, whether to perform a stepwise selection of variables, using either the
step function (if select = "AIC" or "BIC") or the stepwise function (if select =
"p.value").

trace if positive, information is printed during the stepwise selection (if step=TRUE).
Larger values may give more detailed information.

start character string specifying whether to start with the ’null.model’ (so that vari-
able selection starts forward) or with the ’full.model’ (so selection starts back-
ward). Used only if step=TRUE.

direction if step=TRUE, argument to be passed to step or to stepwise specifying the
direction of variable selection. Can be ’forward’, ’backward’, or ’both’ (the
default).

select character string specifying the criterion for stepwise selection of variables if
step=TRUE. Options are the default "AIC" (Akaike’s Information Criterion;
Akaike, 1973); BIC (Bayesian Information Criterion, also known as Schwarz
criterion, SBC or SBIC; Schwarz, 1978); or "p.value" (Murtaugh, 2014). The
first two options imply using step as the variable selection function, while the
last option calls the stepwise function. If you set select="p.value", we rec-
ommend also setting trim=FALSE to avoid mixing different significance criteria.

trim logical value indicating whether to trim off non-significant variables from the
models using modelTrim. This argument is TRUE by default (for back-compatibility),
and it can be used whether or not step=TRUE – e.g. Crawley (2005, p. 208) and
Crawley (2007, p. 442 and 601) recommend that step (with AIC selection) be
followed by significance-based backward elimination).

Y.prediction logical value indicating whether to include output predictions in the scale of the
predictor variables (type = "link" in predict.glm).

P.prediction logical, whether to include output predictions in the scale of the response vari-
able, i.e. probability (type = "response" in predict.glm).

52 multGLM

Favourability logical, whether to apply the Favourability function to remove the effect of
prevalence on predicted probability (Real et al. 2006) and include its results
in the output.

group.preds logical, whether to group together predictions of similar type (’Y’, ’P’ or ’F’)
in the output ’predictions’ table (e.g. if FALSE: sp1_Y, sp1_P, sp1_F, sp2_Y,
sp2_P, sp2_F; if TRUE: sp1_Y, , sp2_Y, sp1_P, sp2_P, sp1_F, sp2_F).

TSA logical, whether to add a trend surface analysis (calculated individually for each
species) as a spatial variable in each model (with type="Y" – see multTSA for
more details). The default is FALSE. If TRUE, this spatial trend will be treated
as any other variable, i.e. also considered by arguments ’FDR’, ’corSelect’, etc.

coord.cols argument to pass to multTSA (if TSA=TRUE).

degree argument to pass to multTSA (if TSA=TRUE).

verbosity numeric value indicating the amount of messages to display, from less to more
verbose; currently meaningful values are 0, 1, and 2 (the default).

test.in argument to pass to stepwise if select="p.value".

test.out argument to pass to stepwise if select="p.value".

p.in argument to pass to stepwise if select="p.value".

p.out argument to pass to stepwise if select="p.value".

... (for back-compatibility) additional arguments to be passed to modelTrim (if
trim=TRUE).

Details

This function automatically calculates binomial GLMs for one or more species (or other binary
variables) in a data frame. The function can optionally perform stepwise variable selection using
either stepwise or step (and it does so by default) instead of forcing all variables into the models,
starting from either the null model (the default, so selection starts forward) or from the full model
(so selection starts backward), and using AIC, BIC or statistical significance as a variable selection
criterion. Instead or subsequently, it can also perform stepwise removal of non-significant variables
from the models using the modelTrim function.

There is also an optional preliminary selection among highly correlated variables, and/or prelimi-
nary selection of variables with a significant bivariate relationship with the response, based on the
false discovery rate (FDR). Note, however, that some variables can be significant in a multivariate
model even if they would not have been selected by FDR.

Favourability can also be calculated by default, removing the effect of training prevalence from
occurrence probability and thus allowing direct comparisons between different models (Real et al.
2006; Acevedo & Real 2012).

By default, all data are used in model training, but you can define an optional ’test.sample’ to be re-
served for model testing afterwards. You may also want to do a previous check for multicollinearity
among variables, e.g. the variance inflation factor (VIF), using multicol.

The ’multGLM’ function will create a list of the resulting models (each with the name of the corre-
sponding species column) and a data frame with their predictions (’Y’, ’P’ and/or ’F’, all of which
are optional). If you plan on representing these predictions in a GIS format based on .dbf tables
(e.g. ESRI Shapefile), remember that .dbf only allows up to 10 characters in column names; ’mult-
GLM’ predictions will add 2 characters (_Y, _P and/or _F) to each of your species column names,

multGLM 53

so better use species names/codes with up to 8 characters in the data set that you are modelling. You
can create (sub)species name abbreviations with the spCodes function.

Value

This function returns a list with the following components:

predictions a data frame with the model predictions (if either of Y.prediction, P.prediction
or Favourability are TRUE).

models a list of the resulting model objects.

variables a list of character vectors naming the variables finally included in each model
according to the specified selection criteria.

Note

With step=TRUE (the default), an error may occur if there are missing values in some of the
variables that are selected (see "Warning" in step). If this happens, you can use something like
data=na.omit(data[, c(sp.col, var.cols)]).

Thanks are due to Prof. Jose Carlos Guerrero at the University of the Republic (Uruguay), who
funded the implementation of the options select="p.value" and FDR.first=FALSE.

Author(s)

A. Marcia Barbosa

References

Acevedo P. & Real R. (2012) Favourability: concept, distinctive characteristics and potential use-
fulness. Naturwissenschaften, 99:515-522

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Crawley, M.J. (2005) Statistics: An introdution using R. John Wiley & Sons, Ltd.

Crawley, M.J. (2007) The R Book. John Wiley & Sons, Ltd.

Fielding A.H. & Bell J.F. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49

Huberty C.J. (1994) Applied Discriminant Analysis. Wiley, New York, 466 pp. Schaafsma W.
& van Vark G.N. (1979) Classification and discrimination problems with applications. Part IIa.
Statistica Neerlandica 33: 91-126

Murtaugh P.A. (2014) In defense of P values. Ecology, 95:611-617

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

See Also

glm, step, stepwise

54 multicol

Examples

data(rotif.env)

names(rotif.env)

make models for 2 of the species in rotif.env:

mods <- multGLM(rotif.env, sp.cols = 46:47, var.cols = 5:17, id.col = 1,
step = TRUE, FDR = TRUE, trim = TRUE)

names(mods)
head(mods$predictions)
names(mods$models)
mods$models[[1]]
mods$models[["Ttetra"]]

include each species' spatial trend in the models:

mods <- multGLM(rotif.env, sp.cols = 46:47, var.cols = 5:17, id.col = 1,
step = TRUE, FDR = TRUE, trim = TRUE, TSA = TRUE, coord.cols = c(11, 10))

mods$models[[1]]
mods$models[["Ttetra"]]

mods$variables
you can then use these selected variables elsewhere

multicol Analyse multicollinearity in a dataset, including VIF

Description

This function analyses multicollinearity in a set of variables or in a model, including the R-squared,
tolerance and variance inflation factor (VIF).

Usage

multicol(vars = NULL, model = NULL, reorder = TRUE)

Arguments

vars A matrix or data frame containing the numeric variables for which to calculate
multicollinearity. Only the ’independent’ (predictor, explanatory, right hand
side) variables should be entered, as the result obtained for each variable de-
pends on all the other variables present in the analysed data set.

model Alternatively to ’vars’, a model object of class "glm" to calculate ’multicol’
among the included variables.

multicol 55

reorder logical, whether variables should be output in decreasing order or VIF value
rather than in their input order. The default is TRUE.

Details

Testing collinearity among covariates is a recommended step of data exploration before applying a
statistical model (Zuur et al. 2010). However, you can also calculate multicollinearity among the
variables already included in a model.

The multicol function calculates the degree of multicollinearity in a set of numeric variables, using
three closely related measures: R squared (the coefficient of determination of a linear regression of
each predictor variable on all other predictor variables, i.e., the amount of variation in each variable
that is accounted for by other variables in the dataset); tolerance (1 - R squared), i.e. the amount of
variation in each variable that is not included in the remaining variables; and the variance inflation
factor: VIF = 1 / (1 - R squared), which, in a linear model with these variables as predictors, reflects
the degree to which the variance of an estimated regression coefficient is increased due only to the
correlations among covariates (Marquardt 1970; Mansfield & Helms 1982).

Value

The function returns a matrix with one row per analysed variable, the names of the variables as row
names, and 3 columns: R-squared, Tolerance and VIF.

Author(s)

A. Marcia Barbosa

References

Marquardt D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and non-
linear estimation. Technometrics 12: 591-612.

Mansfield E.R. & Helms B.P. (1982) Detecting multicollinearity. The American Statistician 36:
158-160.

Zuur A.F., Ieno E.N. & Elphick C.S. (2010) A protocol for data exploration to avoid common
statistical problems. Methods in Ecology and Evolution 1: 3-14.

See Also

vif in package HH, vif in package usdm

Examples

data(rotif.env)
names(rotif.env)

calculate multicollinearity among the predictor variables:
multicol(rotif.env[, 5:17], reorder = FALSE)
multicol(rotif.env[, 5:17])

you can also calculate multicol among the variables included in a model:
mod <- step(glm(Abrigh ~ Area + Altitude + AltitudeRange +

56 multTSA

HabitatDiversity + HumanPopulation + Latitude + Longitude +
Precipitation + PrecipitationSeasonality + TemperatureAnnualRange
+ Temperature + TemperatureSeasonality + UrbanArea,
data = rotif.env))
multicol(model = mod)

more examples using R datasets:
multicol(trees)

you'll get a warning and some NA results if any of the variables
is not numeric:
multicol(OrchardSprays)

so define the subset of numeric 'vars' to calculate 'multicol' for:
multicol(OrchardSprays[, 1:3])

multTSA Trend Surface Analysis for multiple species

Description

This function performs trend surface analysis for one or more species at a time. It converts cate-
gorical presence-absence (1-0) data into continuous surfaces denoting the spatial trend in species’
occurrence patterns.

Usage

multTSA(data, sp.cols, coord.cols, id.col = NULL, degree = 3,
step = TRUE, criterion = "AIC", type = "P", Favourability = FALSE,
suffix = "_TS", save.models = FALSE, verbosity = 2, ...)

Arguments

data a matrix or data frame containing, at least, two columns with spatial coordinates,
and one column per species containing their presence (1) and absence (0) data,
with localities in rows.

sp.cols names or index numbers of the columns containing the species presences and
absences in data. Must contain only zeros (0) for absences and ones (1) for
presences.

coord.cols names or index numbers of the columns containing the spatial coordinates in
data (x and y, or longitude and latitude, in this order!).

id.col optionally, the name or index number of a column (to be included in the output)
containing locality identifiers in data.

degree the degree of the spatial polynomial to use (see Details). The default is 3.
step logical value indicating whether the regression of presence-absence on the spa-

tial polynomial should do a stepwise inclusion of the polynomial terms (using
the step function with default settings, namely backward AIC selection), rather
than forcing all terms into the equation. The default is TRUE.

multTSA 57

criterion character value indicating whether the backward stepwise selection of variables
(if step = TRUE) should be made according to "AIC" (the default, using the
step function) or to "significance" (using the modelTrim function).

type the type of trend surface to obtain. Can be either "Y" for the raw polynomial
equation (i.e. in the scale of the predictors, e.g. if you want to use the spatial
trend as a predictor variable in a model), "P" for the logit-transformed proba-
bility (e.g. if you want to use the output as a prediction of presence probability
based on spatial trend alone), or "F" for spatial favourability, i.e., prevalence-
independent probability (see Fav).

Favourability deprecated argument; ’type’ should now be used instead, although (at least for
the timebeing) this will still be accepted (with Favourability=TRUE internally
resulting in type="F") for back-compatibility.

suffix character indicating the suffix to add to the trend surface columns in the resulting
data frame. The default is "_TS".

save.models logical value indicating whether the models obtained from the regressions should
be saved and included in the output. The default is FALSE.

verbosity integer value indicating the amount of messages to display; currently meaningful
values are 0, 1, and 2 (the default).

... additional arguments to be passed to modelTrim (if step = TRUE and criterion
= "significance").

Details

Trend Surface Analysis is a way to model the spatial structure in species’ distributions by regressing
occurrence data on the spatial coordinates x and y, for a linear trend, or on polynomial terms of these
coordinates (x^2, y^2, x*y, etc.), for curvilinear trends (Legendre & Legendre, 1998; Borcard et al.,
2011). Second- and third-degree polynomials are often used. ’multTSA’ allows specifying the
degree of the spatial polynomial to use. By default, it uses a 3rd-degree polynomial and performs
stepwise AIC selection of the polynomial terms to include.

Value

This function returns a matrix or data frame containing the identifier column (if provided in ’id.col’)
and one column per species containing the value predicted by the trend surface analysis. If save.models
= TRUE, the output is a list containing this dataframe plus a list of the model objects.

Author(s)

A. Marcia Barbosa

References

Borcard D., Gillet F. & Legendre P. (2011) Numerical Ecology with R. Springer, New York.

Legendre P. & Legendre L. (1998) Numerical Ecology. Elsevier, Amsterdam.

See Also

distPres, poly, multGLM

58 pairwiseRangemaps

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

tsa <- multTSA(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1)

head(tsa)

pairwiseRangemaps Pairwise intersection (and union) of range maps

Description

This function takes a set of rangemaps and returns a matrix containing the areas of their pairwise
intersections; optionally, also their individual areas and/our their areas of pairwise unions.

Usage

pairwiseRangemaps(rangemaps, projection = NULL, diag = TRUE, unions = TRUE,
verbosity = 2, Ncpu = 1, nchunks = 1, subchunks = NULL,
filename = "rangemap_matrix.csv")

Arguments

rangemaps a character vector of rangemap filenames, including the extension (e.g. ".shp"
or ".gpkg"), and the folder paths if not in the woorking directory.

projection DEPRECATED argument, previously required by function ’PBSmapping::importShapefile’,
which is now here replaced with ’terra::vect’. Will be ignored with a message
if provided. Mind that area computations are more accurate with unprojected
input maps (see ?terra::expanse).

diag logical, whether to fill the diagonal of the resulting matrix with the area of each
rangemap. The default is TRUE, and it is also automatically set to TRUE (as it
is necessary) if unions = TRUE.

unions logical, whether to fill the upper triangle of the resulting matrix with the area
of union of each pair of rangemaps. The default is TRUE. It is not as computa-
tionally intensive as the intersection, as it is calculated not with spatial but with
algebraic operations within the matrix (union = area1 + area2 - intersection).

verbosity integer number indicating the amount of progress messages to display.

Ncpu integer indicating the number of CPUs (central processing units) to employ if
parallel computing is to be used. The default is 1 CPU, which implies no parallel
computing, but you may want to increase this if you have many and/or large
rangemaps and your machine has more cores that can be used simultaneously.

pairwiseRangemaps 59

You can find out the total number of cores in you machine with the detectCores
function of the parallel package; a usually wise option is to use all cores except
one (i.e., Ncpu = parallel::detectCores()-1).

nchunks either an integer indicating the number of chunks of rows in which to divide
the results matrix for calculations, or character "decreasing" to indicate that the
matrix should be divided into chunks of decreasing number of rows (as intersec-
tions are calculated in the lower triangle, rows further down the matrix have an
increasing number of intersections to compute). Note, however, that rangemap
size, not rangemap number, is the main determinant of computation time. The
default is 1 (no division of the matrix) but, if you have many rangemaps, the pro-
cess can get clogged. With chunks, each set of rows of the matrix is calculated
and saved to disk, and the memory is cleaned before the next chunk begins.

subchunks optional integer vector specifying which chunks to actually calculate. This is
useful if a previous, time-consuming run of pairwiseRangemaps was interrupted
(e.g. by a power outage) and you want to calculate only the remaining chunks.

filename optional character vector indicating the name of the file to save the resulting
matrix to.

Details

This computation can be intensive and slow, especially if you have many and/or large rangemaps,
due to the time needed for pairwise spatial operations between them. You can set nchunks="decreasing"
for the matrix to be calculated in parts and the memory cleaned between one part and the next; and,
if your computer has more than one core that you can use, you can increase ’Ncpu’ to get parallel
computing.

Value

This function returns a square matrix containing, in the lower triangle, the area of the pair-wise
intersections among the input ’rangemaps’; in the diagonal (if diag = TRUE or union = TRUE), the
area of each rangemap; and in the upper triangle (if union = TRUE), the area of the pair-wise unions
among the rangemaps.

Note

This function previously used the PBSmapping package to import and intersect the rangemaps
and to calculate areas. Now it uses the terra package instead. Mind that, after the implementa-
tion of spherical geometry, area computations are more accurate with unprojected input maps (see
?terra::expanse). Small differences can thus arise between the results of the previous version and
the current version (from fuzzySim 4.9.4).

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Estrada A. (2016) Calcular corotipos sin dividir el territorio en OGUs: una adapta-
cion de los indices de similitud para su utilizacion directa sobre areas de distribucion. In: Gomez

60 percentTestData

Zotano J., Arias Garcia J., Olmedo Cobo J.A. & Serrano Montes J.L. (eds.), Avances en Bio-
geografia. Areas de Distribucion: Entre Puentes y Barreras, pp. 157-163. Editorial Universidad
de Granada & Tundra Ediciones, Granada (Spain)

See Also

rangemapSim

percentTestData Percent test data

Description

Based on the work of Schaafsma & van Vark (1979), Huberty (1994) provided a heuristic ("rule
of thumb") for determining an adequate proportion of data to set aside for testing species pres-
ence/absence models, based on the number of predictor variables that are used (Fielding & Bell
1997). The ’percentTestData’ function calculates this proportion as a percentage.

Usage

percentTestData(nvar)

Arguments

nvar the number of variables in the model.

Value

A numeric value of the percentage of data to leave out of the model for further model testing.

Author(s)

A. Marcia Barbosa

References

Huberty C.J. (1994) Applied Discriminant Analysis. Wiley, New York, 466 pp.

Schaafsma W. & van Vark G.N. (1979) Classification and discrimination problems with applica-
tions. Part IIa. Statistica Neerlandica 33: 91-126

Fielding A.H. & Bell J.F. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49

See Also

multGLM

prevalence 61

Examples

say you're building a model with 15 variables:

percentTestData(15)

the result tells you that 21% is an appropriate percentage of data
to set aside for testing your model, so train it with 79% of the data

prevalence Prevalence

Description

Prevalence is the proportion of presences of a species in a dataset, which is required (together with
presence probability) for computing Favourability.

Usage

prevalence(obs, model = NULL, event = 1, na.rm = TRUE)

Arguments

obs a vector or a factor of binary observations (e.g. 1 vs. 0, male vs. female, disease
vs. no disease, etc.). This argument is ignored if ’model’ is provided.

model alternatively to ’obs’, a binary-response model object of class "glm", "gam",
"gbm", "randomForest" or "bart". If this argument is provided, ’obs’ will be
extracted with ’modEvA::mod2obspred’.

event the value whose prevalence we want to calculate (e.g. 1, "present", etc.). This
argument is ignored if ’model’ is provided.

na.rm logical, whether NA values should be excluded from the calculation. The default
is TRUE.

Value

Numeric value of the prevalence of event in the obs vector.

Author(s)

A. Marcia Barbosa

62 rangemapSim

Examples

calculate prevalence from binary vectors:

(x <- rep(c(0, 1), each = 5))

(y <- c(rep(0, 3), rep(1, 7)))

(z <- c(rep(0, 7), rep(1, 3)))

prevalence(x)

prevalence(y)

prevalence(z)

(w <- c(rep("yes", 3), rep("nope", 7)))

prevalence(w, event = "yes")

calculate prevalence from a model object:

data(rotif.env)

mod <- glm(Abrigh ~ HabitatDiversity + HumanPopulation, family = binomial, data = rotif.env)

prevalence(model = mod)

same as:
prevalence(obs = rotif.env$Abrigh)

rangemapSim Pairwise similarity between rangemaps

Description

Calculate pairwise similarity among rangemaps from a matrix of their areas of intersection and
union

Usage

rangemapSim(rangemap.matrix, total.area,
method = c("Jaccard", "Sorensen", "Simpson", "Baroni"),
diag = FALSE, upper = FALSE, verbosity = 2)

rangemapSim 63

Arguments

rangemap.matrix

a matrix like the one produced by function pairwiseRangemaps, containing the
areas of pairwise intersection among rangemaps in the lower triangle, individual
rangemap areas in the diagonal, and pairwise union areas in the upper diagonal.

total.area numeric value indicating the total size of the study area, in the same units as the
areas in the rangemap.matrix. Used only if ’method’ uses shared absences (as
is the case of "Baroni")

method character value indicating the similarity index to use. Currently implemented
indices are "Jaccard", "Sorensen", "Simpson" and "Baroni". The default is the
first one.

diag logical value indicating if the diagonal of the resulting matrix should be filled
upper logical value indicating if the upper triangle of the resulting matrix should be

filled (symmetrical to the lower triangle)
verbosity integer number indicating the amount of messages to display.

Details

Distributional relationships among species are commonly determined based on pair-wise (dis)similarities
in species’ occurrence patterns. Some of the most commonly employed similarity indices are those
of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), which are
here implemented for comparing rangemaps based on their areas of intersection and union (Barbosa
& Estrada, in press).

Value

This function returns a square matrix of pairwise similarities between the rangemaps in ’rangemap.matrix’,
calculated with the (first) similarity index specified in ’method’.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Estrada A. (in press) Calcular corotipos sin dividir el territorio en OGUs: una
adaptacion de los indices de similitud para su utilizacion directa sobre areas de distribucion. In:
Areas de distribucion: entre puentes y barreras. Universidad de Granada, Spain.

Baroni-Urbani C. & Buser M.W. (1976) Similarity of Binary Data. Systematic Zoology, 25: 251-
259

Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Memoires de la Societe Vaudoise des Sciences Naturelles, 37: 547-579

Simpson G.G. (1960) Notes on the measurement of faunal resemblance. Amer. J. Sci. 258A,
300-311

Sorensen T. (1948) A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab, 5(4): 1-34

64 rarity

See Also

pairwiseRangemaps; simFromSetOps; simMat

rarity (Fuzzy) rarity

Description

This function computes the index of species rarity of Real et al. (2006), using either crisp (pres-
ence/absence, i.e. ones and zeros) or fuzzy values (e.g. Favourability, between zero and one), for a
single species or for several species across a study area. Rarity is like a (potential) richness index
in which rarer species have higher weight.

Usage

rarity(data, sp.cols = 1:ncol(data), na.rm = TRUE)

Arguments

data a numeric vector, matrix or data frame containing the presence/absence or the
Favourability (fuzzy presence) values for the target species.

sp.cols names or index numbers of the columns of ’data’ that contain the species values
for which to compute rarity. The default is to use all columns.

na.rm logical value indicating whether NA values should be removed before the com-
putation.

Details

If the input data include only one species (i.e. a numeric vector or a one-column table, with one
value for each locality), rarity is 1 divided by the sum of its values. If the input includes more than
one species or column, rarity is the sum of the product of each (fuzzy) presence value by the rarity
of the corresponding species, so that rarer species have higher weight in the resulting sum (Real et
al. 2006). See also Estrada et al. (2011) for a more complex version of fuzzy rarity.

Value

If ’data’ is a vector or a one-column table, or if ’sp.cols’ is of length 1, this function returns a single
value of rarity for the underlying species, which is simply 1 divided by the sum of its values. If
’data’ and ’sp.cols’ refer to more than 1 column, the function returns the total combined rarity value
of all corresponding species for each row in ’data’ (see Examples).

Author(s)

A. Marcia Barbosa

rotif.env 65

References

Real R., Estrada A., Barbosa A.M. & Vargas J.M. (2006) Aplicacion de la logica difusa al concepto
de rareza para su uso en Gap Analysis: el caso de los mamiferos terrestres en Andalucia. Serie
Geografica 13: 99-116

Estrada A., Real R. & Vargas J.M. (2011) Assessing coincidence between priority conservation
areas for vertebrate groups in a Mediterranean hotspot. Biological Conservation, 144: 1120-1129

See Also

vulnerability

Examples

data(rotif.env)

head(rotif.env)

rarity(rotif.env[, 18])

rarity(rotif.env, sp.cols = "Abrigh")

rarity(rotif.env, sp.cols = 18:47)
yields one value of combined rarity for each row in 'data'

fuzzy rarity (from favourability values):

pred <- multGLM(rotif.env, sp.cols = 18:20, var.cols = 5:17)$predictions

head(pred)

rarity(pred, sp.cols = "Abrigh_F")

rarity(pred, sp.cols = c("Abrigh_F", "Afissa_F", "Apriod_F"))
yields one value of combined rarity for each row in 'data'

rotif.env Rotifers and environmental variables on TDWG level 4 regions of the
world

Description

These data were extracted from a database of monogonont rotifer species presence records on the
geographical units used by the Biodiversity Information Standards (formerly Taxonomic Database
Working Group, TDWG: https://www.tdwg.org) and a few environmental (including human and
spatial) variables on the same spatial units. The original data were compiled and published by
Fontaneto et al. (2012) in long (narrow, stacked) format. Here they are presented in wide or un-
stacked format (presence-absence table, obtained with the splist2presabs function), reduced to

https://www.tdwg.org

66 rotif.env

the species recorded in at least 100 (roughly one third) different TDWG level 4 units, and with
abbreviations of the species’ names (obtained with the spCodes function). Mind that this is not a
complete picture of these species’ distributions, due to insufficient sampling in many regions.

Usage

data(rotif.env)

Format

A data frame with 291 observations on the following 47 variables.

TDWG4 a factor with 291 levels indicating the abbreviation code of each TDWG4 region

LEVEL_NAME a factor with 291 levels indicating the name of each TDWG4 region

REGION_NAME a factor with 47 levels indicating the name of the main geographical region to which
each TDWG4 level belongs

CONTINENT a factor with 9 levels indicating the continent to which each TDWG4 level belongs

Area a numeric vector

Altitude a numeric vector

AltitudeRange a numeric vector

HabitatDiversity a numeric vector

HumanPopulation a numeric vector

Latitude a numeric vector

Longitude a numeric vector

Precipitation a numeric vector

PrecipitationSeasonality a numeric vector

TemperatureAnnualRange a numeric vector

Temperature a numeric vector

TemperatureSeasonality a numeric vector

UrbanArea a numeric vector

Abrigh a numeric vector

Afissa a numeric vector

Apriod a numeric vector

Bangul a numeric vector

Bcalyc a numeric vector

Bplica a numeric vector

Bquadr a numeric vector

Burceo a numeric vector

Cgibba a numeric vector

Edilat a numeric vector

Flongi a numeric vector

rotifers 67

Kcochl a numeric vector

Kquadr a numeric vector

Ktropi a numeric vector

Lbulla a numeric vector

Lclost a numeric vector

Lhamat a numeric vector

Lluna a numeric vector

Llunar a numeric vector

Lovali a numeric vector

Lpatel a numeric vector

Lquadr a numeric vector

Mventr a numeric vector

Ppatul a numeric vector

Pquadr a numeric vector

Pvulga a numeric vector

Specti a numeric vector

Tpatin a numeric vector

Tsimil a numeric vector

Ttetra a numeric vector

Source

Fontaneto D., Barbosa A.M., Segers H. & Pautasso M. (2012) The ’rotiferologist’ effect and other
global correlates of species richness in monogonont rotifers. Ecography, 35: 174-182.

Examples

data(rotif.env)

head(rotif.env)

rotifers Rotifer species on TDWG level 4 regions of the world

Description

These data were extracted from a database of monogonont rotifer species records on the geograph-
ical units used by the Biodiversity Information Standards (formerly Taxonomic Database Work-
ing Group, TDWG: https://www.tdwg.org). The original data were compiled and published by
Fontaneto et al. (2012) for all TDWG levels. Here they are reduced to the TDWG - level 4 units
and to the species recorded in at least 100 (roughly one third) of these units. Mind that this is not a
complete picture of these species’ distributions, due to insufficient sampling in many regions.

https://www.tdwg.org

68 selectAbsences

Usage

data("rotifers")

Format

A data frame with 3865 observations on the following 2 variables.

TDWG4 a factor with 274 levels corresponding to the code names of the TDWG level 4 regions in
which the records were taken

species a factor with 30 levels corresponding to the names of the (sub)species recorded in at least
100 different TDWG level 4 regions

Source

Fontaneto D., Barbosa A.M., Segers H. & Pautasso M. (2012) The ’rotiferologist’ effect and other
global correlates of species richness in monogonont rotifers. Ecography, 35: 174-182.

Examples

data(rotifers)

head(rotifers, 10)

selectAbsences Select (spatially biased) absence rows.

Description

This function takes a matrix or data frame containing species presence (1) and absence (0) data,
and it selects among the absence rows to stay within a given number or ratio of absences, and/or
within and/or beyond a given distance to the presences. Optionally, absences can be selected with
higher probability towards the vicinity of presences, to reproduce survey bias; or according to a
user-provided bias raster.

Usage

selectAbsences(data, sp.cols, coord.cols = NULL, CRS = NULL, min.dist = NULL,
max.dist = NULL, n = NULL, mult.p = NULL, bias = FALSE, bunch = FALSE,
dist.mat = NULL, seed = NULL, plot = !is.null(coord.cols), df = TRUE,
verbosity = 2)

Arguments

data a data frame or an object that can be coerced to such (e.g. a matrix, tibble or
SpatVector) containing a column with the species’ presence (1) and absence (0)
records, with localities in rows; and (if distance or spatial bias are required) two
columns with the spatial coordinates, x and y.

selectAbsences 69

sp.cols names or index numbers of the columns containing the species presences (1)
and absences (0) in ’data’.

coord.cols names or index numbers of the columns containing the spatial coordinates in
’data’ (x and y, or longitude and latitude, in this order). Needed if distance or
spatial bias are required.

CRS coordinate reference system of the ’coord.cols’ in ’data’, in one of the fol-
lowing formats: WKT/WKT2, <authority>:<code>, or PROJ-string notation
(see terra::crs()). Ignored if ’dist.mat’ is provided. Otherwise, if ’CRS’
is provided and the ’terra’ package is installed, distances are computed with
terra::distance(), thus accounting for the curvature of the Earth.

min.dist (optional) numeric value specifying the minimum distance (in the same units as
’coord.cols’) at which selected absences should be from the presences.

max.dist (optional) numeric value specifying the maximum distance (in the same units as
’coord.cols’) at which selected absences should be from the presences.

n (optional) integer value specifying the number of absence rows to select. Can
also be specified as a ratio – see ’mult.p’ below.

mult.p (optional) numeric value specifying how many times the number of presences
to use as ’n’ (e.g. 10 times as many absences as presences). Ignored if ’n’ is not
NULL.

bias either a logical value TRUE to make the selection of absences biased towards
the vicinity of presences (which requires specifying ’coord.cols’; may take time
and memory for large datasets if ’dist.mat’ is not provided); or a SpatRaster layer
(quantifying e.g. survey effort or accessibility) with larger pixel values where
the selection of absences should be more likely. Note that this layer should have
the same approximate spatial resolution as ’data’. The default is FALSE, for no
bias.

dist.mat optional (but recommendable) argument to pass to distPres.

bunch [PENDING IMPLEMENTATION] logical value specifying if the selected ab-
sences should concentrate around presences in proportion to their local density,
as in Vollering et al. (2019). The default is FALSE.

seed (optional) integer value to pass to set.seed specifying the random seed to use
for sampling among the absences.

plot logical value specifying whether to plot the result. The default is TRUE if ’co-
ord.cols’ are provided.

df logical value specifying whether to return a dataframe with the input ’data’ after
removal of the non-selected absences. The default is TRUE. If set to FALSE,
the output is a logical vector specifying if each row of ’data’ was selected or not.

verbosity numeric value indicating the amount of messages to display. Choose 0 for no
messages.

Details

Species occurrence data typically incorporate two probability distributions: the actual probability
of the species being present, and the probability of it being recorded if it was present (Merow et al.

70 selectAbsences

2013). Thus, any covariation between recording probability and the predictor variables can bias the
predictions of species distribution models (Yackulic et al. 2013).

Methods to correct for this bias include the selection of (pseudo)absences preferably towards the
vicinity of presence records, in order to reproduce the survey bias. This function implements this
strategy in several (alternative or complementary) ways: 1) selecting absences within and/or beyond
a given distance from presences; 2) biasing the random selection of absences, making it more
likely towards the vicinity of presences (providing the ’prob’ argument in sample with the result of
distPres); or [PENDING IMPLEMENTATION!] 3) bunching up the absences preferably around
the areas with higher densities of presences (Vollering et al. 2019).

More recent versions allow using a raster map of weights (bias layer), with higher pixel values
where absence selection should be proportionaly more likely, and zero or NA where pseudoabsence
points should not be placed. This layer should normally reflect survey effort or a proxy, such as ac-
cessibility – e.g. proximity to roads or populated areas, human footprint (see e.g. geodata::footprint)
or travel time (e.g. geodata::travel_time). Users should provide the bias layer at aproximately the
same spatial resolution as the ’coord.cols’ in the input ’data’.

Value

This function returns the ’data’ input after removal of the non-selected absences, or (if df=FALSE)
a logical vector specifying if each row of ’data’ was selected or not. If plot=TRUE and provided
’coord.cols’, it also plots the presences (blue "plus" signs), the selected absences (red "minus" signs)
and the excluded absences (orange dots).

Author(s)

A. Marcia Barbosa

References

Vollering J., Halvorsen R., Auestad I. & Rydgren K. (2019) Bunching up the background betters
bias in species distribution models. Ecography, 42: 1717-1727

See Also

gridRecords, sample

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

table(rotif.env$Burceo)

select among the absences using different criteria:

burceo_select <- selectAbsences(data = rotif.env, sp.cols = "Burceo",
coord.cols = c("Longitude", "Latitude"), n = 150, seed = 123)

sharedFav 71

burceo_select <- selectAbsences(data = rotif.env, sp.cols = "Burceo",
coord.cols = c("Longitude", "Latitude"), mult.p = 1.5, seed = 123)

burceo_select <- selectAbsences(data = rotif.env, sp.cols = "Burceo",
coord.cols = c("Longitude", "Latitude"), max.dist = 18)

burceo_select <- selectAbsences(data = rotif.env, sp.cols = "Burceo",
coord.cols = c("Longitude", "Latitude"), max.dist = 18, min.dist = 5,
n = sum(rotif.env$Burceo), bias = TRUE)

sharedFav Shared favourability for two competing species

Description

This function implements the graphical analyses of Acevedo et al. (2010, 2012) on biogeographical
interactions. It takes two vectors of favourability values at different localities for, respectively,
a stronger and a weaker competing species (or two equally strong competitors), and plots their
favourableness or shared favourability to assess potential competitive interactions.

Usage

sharedFav(strong_F, weak_F, conf = 0.95, bin_interval = "0.1", ...)

Arguments

strong_F a numeric vector of favourability values (obtained, e.g., with functions Fav or
multGLM) for the stronger species.

weak_F a numeric vector of favourability values for the weaker species. Must be of the
same length and in the same order as strong_F.

conf confidence level for the confidence intervals in the plot. The default is 0.95. Set
it to NA for no confidence intervals (see "Note" below).

bin_interval character value specifying the method for grouping the favourability values into
bins for plotting and comparing mean favourability for each species. Currently
implemented options are "0.1" (the default, dividing the values at 0.1 intervals
as per Acevedo et al. 2010, 2012) and "quantiles" (as the former method may
produce an error if there are bins too small to allow computing confidence inter-
vals). See "Note" below.

... some additional arguments can be passed to barplot, such as "main" (for the
plot title) or "las" (for the orientation of the axis labels).

72 sharedFav

Details

This function implements the biogeographic analyses of Acevedo et al. (2010, 2012), assessing the
trends of environmental favourability across a range of favourability intersection values between
two interacting species. It first calculates the fuzzy intersection (minimum value) between the two
species’ favourability values at each locality (i.e., favourability for the occurrence of both species
simultaneously); it groups these values into 10 bins; and calculates the mean favourability (and its
confidence interval) for each of the two species within each interval.

According to the notion of "favorableness" by Richerson & Lum (1980), competing species may or
may not be able to coexist depending on their relative environmental fitnesses; competition between
species increases and competitive exclusion decreases as their favourability intersection increases
(Acevedo et al. 2010, 2012). The shaded area in the shared favourability plot, where at least one
of the species is at intermediate favourability, is the area where competitive interactions may limit
species occurrence. Outside this shaded area, where favourability is either very low for at least one
of the species (left) or very high for both species (right side of the plot), competition is not limiting
(see also bioThreat for details).

Value

This function returns the numeric value of the fuzzy overlap index (FOvI; Dubois & Prade 1980,
Acevedo et al. 2010, 2012), a data frame with the bin values and the shared favourability plot, with
circles and a continuous line representing favourability for the stronger species, and squares and a
dashed line representing favourability for the weaker species. The height of the bars at the bottom
represents the proportional sample size of each bin.

Note

This function may generate an error if one or more bins don’t have enough values for the confidence
interval to be computed. If this occurs, you can try a different ’bin_interval’ (e.g. "quantiles") or set
the ’conf’ argument to NA (in which case confidence intervals will not be computed). Either will
affect only the plot, not the overall fuzzy overlap value.

Author(s)

A. Marcia Barbosa

References

Acevedo P., Ward A.I., Real R. & Smith G.C. (2010) Assessing biogeographical relationships of
ecologically related species using favourability functions: a case study on British deer. Diversity
and Distributions, 16: 515-528

Acevedo P., Jimenez-Valverde A., Melo-Ferreira J., Real R. & Alves, P.C. (2012) Parapatric species
and the implications for climate change studies: a case study on hares in Europe. Global Change
Biology, 18: 1509-1519

Dubois D. & Prade H. (1980) Fuzzy sets and systems: theory and applications. Academic Press,
New York

Richerson P.J. & Lum K. (1980) Patterns of plant species and diversity in California: relation to
weather and topography. American Naturalist, 116: 504-536

simFromSetOps 73

See Also

bioThreat, Fav

Examples

get favourability model predictions for two species:
data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 19:20, var.cols = 5:17)
head(mods$predictions)
favs <- mods$predictions[, 3:4]

get shared favourability:
sharedFav(strong_F = favs[,1], weak_F = favs[,2], main = "Shared favourability")

sharedFav(strong_F = favs[,1], weak_F = favs[,2], bin_interval = "quantiles",
main = "Shared favourability", las = 2)

simFromSetOps Calculate similarity from set operations

Description

This function calculates pair-wise similarity based on the results of set operations (intersection,
union) among the subjects.

Usage

simFromSetOps(size1, size2, intersection, union, total.size = NULL,
method = c("Jaccard", "Sorensen", "Simpson", "Baroni"),
verbosity = 1)

Arguments

size1 size of subject 1 (e.g., area of the distribution range of a species, or its number
of presences within a grid). Not needed if method = "Jaccard".

size2 the same for subject 2.

intersection size of the intersection among subjects 1 and 2 (area of the intersection among
their distribution ranges, or number of grid cells in which they co-occur).

union size of the union of subjects 1 and 2.

total.size total size of the study area. Needed only when calculating a similarity index that
takes shared absences into account (i.e., method = "Baroni").

method the similarity index to use. Currently implemented options are "Jaccard", "Sorensen",
"Simpson" or "Baroni".

verbosity integer indicating whether to display messages.

74 simFromSetOps

Details

Similarities among ecological communities, beta diversity patterns, biotic regions, and distribu-
tional relationships among species are commonly determined based on pair-wise (dis)similarities
in species’ occurrence patterns. This function implements some of the most commonly employed
similarity indices, namely those of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-
Urbani & Buser (1976), based on the amount of occupied and overlap area between two species.

Value

The numeric value of similarity among subjects 1 and 2.

Author(s)

A. Marcia Barbosa

References

Baroni-Urbani C. & Buser M.W. (1976) Similarity of Binary Data. Systematic Zoology, 25: 251-
259

Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Memoires de la Societe Vaudoise des Sciences Naturelles, 37: 547-579

Simpson, G.G. (1960) Notes on the measurement of faunal resemblance. Amer. J. Sci. 258A,
300-311

Sorensen T. (1948) A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab, 5(4): 1-34

See Also

fuzSim, simMat

Examples

take two species which occur in 22 and 35 area units, respectively
and which overlap in 8 of those units:

sp1 <- 22
sp2 <- 35
int <- 8
uni <- sp1 + sp2 - int

calculate similarity between their distributions based on
different indices:

simFromSetOps(intersection = int, union = uni, method = "Jaccard")

simFromSetOps(sp1, sp2, int, uni, method = "Sorensen")

simMat 75

simFromSetOps(sp1, sp2, int, uni, method = "Simpson")

if you want Baroni-Urbani & Buser's index
you need to provide also the total size of your study area:

simFromSetOps(sp1, sp2, int, uni, total = 100, method = "Baroni")

simMat Pair-wise (fuzzy) similarity matrix

Description

simMat takes multiple species occurrence data or regional species composition, either categorical
(0 or 1) or fuzzy (between 0 and 1), and uses the fuzSim function to compute a square matrix of
pair-wise similarities between them, using a fuzzy logic version (Barbosa, 2015) of the specified
similarity index.

Usage

simMat(data, method, diag = TRUE, upper = TRUE, verbosity = 2, plot = FALSE, ...)

Arguments

data a matrix, data frame, or multilayer SpatRaster containing (optionally fuzzy)
species presence-absence data (in wide format, i.e. one column or layer per
species), with 1 meaning presence, 0 meaning absence, and values in between
for fuzzy presence (or the degree to which each locality belongs to the set
of species presences; see Zadeh, 1965). Fuzzy presence-absence can be ob-
tained, for example, with multGLM, distPres or multTSA. These data can also
be transposed for comparing regional species compositions.

method the similarity index whose fuzzy version to use. See fuzSim for available op-
tions.

diag logical value indicating whether the diagonal of the matrix should be filled (with
ones). Defaults to TRUE.

upper logical value indicating whether the upper triangle of the matrix (symmetric to
the lower triangle) should be filled. Defaults to TRUE.

verbosity integer value indicating the amount of messages to display; currently meaningful
values are 0, 1, and 2 (the default).

plot logical argument indicating whether to also plot the matrix as an image. The
default is FALSE (for back-compatibility).

... some additional arguments can be passed to image (and through to plot) if
plot=TRUE, such as ’col’, ’main’, ’font.main’ or ’cex.main’ (not ’axes’, ’xlab’
or ’ylab’, which are already defined by simMat).

76 simMat

Details

The fuzzy versions of species occurrence data and of binary similarity indices introduce tolerance
for small spatial differences in species’ occurrence localities, allow for uncertainty about species
occurrence, and may compensate for under-sampling and geo-referencing errors (Barbosa, 2015).

Value

This function returns a square matrix of pair-wise similarities among the species distributions
(columns) in data. Similarity is calculated with the fuzzy version of the index specified in method,
which yields traditional binary similarity if the data are binary (0 or 1), or fuzzy similarity if the
data are fuzzy (between 0 and 1) (Barbosa, 2015).

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858.

See Also

fuzSim

Examples

load and look at the rotif.env presence-absence data:

data(rotif.env)

head(rotif.env)

names(rotif.env)

build a matrix of similarity among these binary data
using e.g. Jaccard's index:

bin.sim.mat <- simMat(rotif.env[, 18:47], method = "Jaccard")

head(bin.sim.mat)

calculate a fuzzy version of the presence-absence data
based on inverse distance to presences:

rotifers.invd <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, suffix = ".d",
p = 1, inv = TRUE)

spCodes 77

head(rotifers.invd)

build a matrix of fuzzy similarity among these fuzzy
distribution data, using the fuzzy version of Jaccard's index:

fuz.sim.mat <- simMat(rotifers.invd[, -1], method = "Jaccard")

head(fuz.sim.mat)

plot the similarity matrices as colours:

image(x = 1:ncol(bin.sim.mat), y = 1:nrow(bin.sim.mat),
z = bin.sim.mat, col = rev(heat.colors(256)), xlab = "", ylab = "",
axes = FALSE, main = "Binary similarity")
axis(side = 1, at = 1:ncol(bin.sim.mat), tick = FALSE,
labels = colnames(bin.sim.mat), las = 2)
axis(side = 2, at = 1:nrow(bin.sim.mat), tick = FALSE,
labels = rownames(bin.sim.mat), las = 2)

image(x = 1:ncol(fuz.sim.mat), y = 1:nrow(fuz.sim.mat),
z = fuz.sim.mat, col = rev(heat.colors(256)), xlab = "", ylab = "",
axes = FALSE, main = "Fuzzy similarity")
axis(side = 1, at = 1:ncol(fuz.sim.mat), tick = FALSE,
labels = colnames(fuz.sim.mat), las = 2, cex = 0.5)
axis(side = 2, at = 1:nrow(fuz.sim.mat), tick = FALSE,
labels = rownames(fuz.sim.mat), las = 2)

plot a UPGMA dendrogram from each similarity matrix:

plot(hclust(as.dist(1 - bin.sim.mat), method = "average"),
main = "Binary cluster dendrogram")

plot(hclust(as.dist(1 - fuz.sim.mat), method = "average"),
main = "Fuzzy cluster dendrogram")

you can get fuzzy chorotypes from these similarity matrices
(or fuzzy biotic regions if you transpose 'data'),
so that localities are in columns and species in rows)
using the RMACOQUI package (Olivero et al. 2011)

spCodes Obtain unique abbreviations of species names

Description

This function takes a vector of species names and converts them to abbreviated species codes con-
taining the specified numbers of characters from the genus, the specific and optionally also the

78 spCodes

subspecific name. Separators can be specified by the user. The function checks that the resulting
codes are unique.

Usage

spCodes(species, nchar.gen = 3, nchar.sp = 3, nchar.ssp = 0,
sep.species = " ", sep.spcode = "", verbosity = 2)

Arguments

species a character vector containig the species names to be abbreviated.

nchar.gen the number of characters from the genus name to be included in the resulting
species code.

nchar.sp the number of characters from the specific name to be included in the resulting
species code.

nchar.ssp optionally, the number of characters from the subspecific name to be included in
the resulting species code. Set it to 0 if you have subspecific names in ’species’
but do not want them included in the resulting species codes.

sep.species the character that separates genus, specific and subspecific names in ’species’.
The default is a white space.

sep.spcode the character you want separating genus and species abbreviations in the result-
ing species codes. The default is an empty character (no separator).

verbosity integer value indicating the amount of messages to display. Defaults to 2, for
showing all messages.

Value

This function returns a character vector containing the species codes resulting from the abbreviation.
If the numbers of characters specified do not make for unique codes, an error message is displayed
showing which ’species’ names caused it, so that you can try again with different ’nchar.gen’,
’nchar.sp’ and/or ’nchar.ssp’.

Author(s)

A. Marcia Barbosa

See Also

substr, strsplit

Examples

data(rotifers)

head(rotifers)

add a column to 'rotifers' with shorter versions of the species names:

splist2presabs 79

Not run:
rotifers$spcode <- spCodes(rotifers$species, sep.species = "_",
nchar.gen = 1, nchar.sp = 4, nchar.ssp = 0, sep.spcode = ".")

this produces an error due to resulting species codes not being unique

End(Not run)

rotifers$spcode <- spCodes(rotifers$species, sep.species = "_",
nchar.gen = 1, nchar.sp = 5, nchar.ssp = 0, sep.spcode = ".")

with a larger number of characters from the specific name,
resulting codes are now unique

check out the result:
head(rotifers)

splist2presabs Convert a species list to a presence-absence table

Description

This function takes a locality+species dataset in long (stacked) format, i.e., a matrix or data frame
containing localities in one column and their recorded species in another column, and converts them
to a presence-absence table (wide format) suitable for mapping and for computing distributional
similarities (see e.g. simMat). Try out the Examples below for an illustration).

Usage

splist2presabs(data, sites.col, sp.col, keep.n = FALSE)

Arguments

data a matrix or data frame with localities in one column and species in another
column. Type or paste ’data(rotifers); head(rotifers)’ (without the quote marks)
in the R console for an example.

sites.col the name or index number of the column containing the localities in ’data’.

sp.col the name or index number of the column containing the species names or codes
in ’data’.

keep.n logical value indicating whether to get in the resulting table the number of times
each species appears in each locality; if FALSE (the default), only presence (1)
or absence (0) is recorded.

Value

A data frame containing the localities in the first column and then one column per species indicating
their presence or absence (or their number of records if keep.n = TRUE). Type ’data(rotif.env);
head(rotif.env[,18:47])’ (without the quote marks) in the R console for an example.

80 stepByStep

Author(s)

A. Marcia Barbosa

See Also

table

Examples

data(rotifers)

head(rotifers)

rotifers.presabs <- splist2presabs(rotifers, sites.col = "TDWG4",
sp.col = "species", keep.n = FALSE)

head(rotifers.presabs)

stepByStep Compare model predictions along a stepwise variable selection pro-
cess

Description

This function builds (or takes) a generalized linear model with stepwise inclusion of variables,
using either AIC, BIC or p.value as the selection criterion; and it returns the values predicted at
each step (i.e., as each variable is added or dropped), as well as their correlation with the final
model predictions.

Usage

stepByStep(data, sp.col, var.cols, family = binomial(link = "logit"),
Favourability = FALSE, trace = 0, direction = "both", select = "AIC",
k = 2, test.in = "Rao", test.out = "LRT", p.in = 0.05, p.out = 0.1,
cor.method = "pearson")

Arguments

data a data frame (or another object that can be coerced with "as.data.frame", e.g. a
matrix, a tibble, a SpatVector) containing the response and predictor variables
to model. Alternatively, a model object of class ’glm’, from which the names,
values and order of the variables will be taken – arguments ’sp.col’, ’var.cols’,
’family’, ’trace’, ’direction’, ’select’, ’k’, ’test.in’, ’test.out’, ’p.in’ and ’p.out’
will then be ignored.

sp.col (if ’data’ is not a model object) the name or index number of the column of ’data’
that contains the response variable.

var.cols (if ’data’ is not a model object) the names or index numbers of the columns of
’data’ that contain the predictor variables.

stepByStep 81

family (if ’data’ is not a model object) argument to pass to glm indicating the family
(and error distribution) to use in modelling. The default is binomial distribution
with logit link (for binary response variables).

Favourability logical, whether to apply the Favourability function to remove the effect of
prevalence from predicted probability (Real et al. 2006). Applicable only to
binomial GLMs. Defaults to FALSE.

trace (if ’data’ is not a model object) argument to pass to step (if select="AIC" or
"BIC") or to stepwise (if select="p.value"). If positive, information is printed
during the stepwise procedure. Larger values may give more detailed informa-
tion. The default is 0 (silent).

direction (if ’data’ is not a model object) argument to pass to step (if select="AIC"
or "BIC") or to stepwise (if select="p.value"). Can be "forward" or "both".
The default is the latter, to match related functions like step, stepwise and
multGLM. (Note that older versions of this function had "forward" as the default.)

select (if ’data’ is not a model object) character string specifying the criterion for
stepwise selection of variables if step=TRUE. Options are the default "AIC"
(Akaike’s Information Criterion; Akaike, 1973); BIC (Bayesian Information
Criterion, also known as Schwarz criterion, SBC or SBIC; Schwarz, 1978); or
"p.value" (Murtaugh, 2014). The first two options imply using step as the vari-
able selection function, while the last option calls the stepwise function.

k (if ’data’ is not a model object and select="AIC") argument passed to the step
function indicating the multiple of the number of degrees of freedom used for
the penalty. The default is 2, which yields the original AIC. You can use larger
values for a more stringent selection– e.g., for a critical p-value of 0.05, use
k = qchisq(0.05, 1, lower.tail = F). If select="BIC", k is accordingly changed
to log(n), being ’n’ the number of complete rows of the response + variables
dataframe (after removing missing values).

test.in (if ’data’ is not a model object and select="p.value") argument passed to add1
specifying the statistical test whose ’p.in’ a variable must pass to enter the
model. Can be "Rao" (the default), "LRT", "Chisq" or "F".

test.out (if ’data’ is not a model object and select="p.value") argument passed to drop1
specifying the statistical test whose ’p.out’ a variable must exceed to be ex-
pelled from the model (if it does not simultaneously pass the ’test.in’ when di-
rection="both"). Can be "LRT" (the default), "Rao", "Chisq" or "F".

p.in (if ’data’ is not a model object and select="p.value") threshold p-value for a
variable to enter the model. Defaults to 0.05.

p.out (if ’data’ is not a model object and select="p.value") threshold p-value for a
variable to leave the model. Defaults to 0.1.

cor.method character string to pass to cor indicating which coefficient to use for correlating
predictions at each step with those of the final model. Can be "pearson" (the
default), "kendall", or "spearman".

Details

Stepwise variable selection often includes more variables than would a model selected after ex-
amining all possible combinations of the variables (e.g. with package MuMIn or glmulti). The

82 stepByStep

’stepByStep’ function can be useful to assess if a stepwise model with just the first few variables
could already provide predictions very close to the final ones (see e.g. Fig. 3 in Munoz et al.,
2005). It can also be useful to see which variables determine the more general trends in the model
predictions, and which variables just provide additional (local) nuances.

Value

This function returns a list of the following components:

predictions a data frame with the model’s fitted values at each step of the variable selection.

correlations a numeric vector of the correlation between the predictions at each step and
those of the final model.

variables a character vector of the variables in the final model, named with the step at
which each was included.

model the resulting model object.

Author(s)

A. Marcia Barbosa, with contribution by Alba Estrada

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Munoz, A.R., Real R., Barbosa A.M. & Vargas J.M. (2005) Modelling the distribution of Bonelli’s
Eagle in Spain: Implications for conservation planning. Diversity and Distributions 11: 477-486

Murtaugh P.A. (2014) In defense of P values. Ecology, 95:611-617

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

See Also

step, glm, modelTrim

Examples

data(rotif.env)

stepByStep(data = rotif.env, sp.col = 21, var.cols = 5:17)

stepByStep(data = rotif.env, sp.col = 21, var.cols = 5:17, select = "p.value")

with a model object:

form <- reformulate(names(rotif.env)[5:17], names(rotif.env)[21])
mod <- step(glm(form, data = rotif.env))

stepwise 83

stepByStep(data = mod)

stepwise Stepwise regression

Description

This function runs a stepwise regression, selecting and/or excluding variables based on the signifi-
cance (p-value) of the statistical tests implemented in the add1 and drop1 functions of R.

Usage

stepwise(data, sp.col, var.cols, id.col = NULL, family = binomial(link="logit"),
direction = "both", test.in = "Rao", test.out = "LRT", p.in = 0.05, p.out = 0.1,
trace = 1, simplif = TRUE, preds = FALSE, Favourability = FALSE, Wald = FALSE)

Arguments

data a data frame (or an object that can be coerced with ’as.data.frame’) containing
your target and predictor variables.

sp.col name or index number of the column of ’data’ that contains the response vari-
able.

var.cols names or index numbers of the columns of ’data’ that contain the predictor vari-
ables.

id.col (optional) name or index number of column containing the row identifiers (if
defined, it will be included in the output ’predictions’ data frame).

family argument to be passed to glm indicating the error distribution (and optionally
the link function) to be used in the model. The default is binomial distribution
with logit link (i.e. logistic regression, for binary response variables), and it is
the only one that has been tested so far. If you try other options, please carefully
check your results and let me know if you find a bug.

direction the mode of stepwise search. Can be either "forward", "backward", or "both"
(the default).

test.in argument to pass to add1 specifying the statistical test whose ’p.in’ a variable
must pass to enter the model. Can be "Rao" (the default), "LRT", "Chisq" or
"F".

test.out argument to pass to drop1 specifying the statistical test whose ’p.out’ a variable
must exceed to be expelled from the model (if it does not simultaneously pass
the ’test.in’ when direction="both"). Can be "LRT" (the default), "Rao", "Chisq"
or "F".

p.in threshold p-value for a variable to enter the model. Defaults to 0.05.

p.out threshold p-value for a variable to leave the model. Defaults to 0.1.

84 stepwise

trace if positive, information is printed to the console at each step. The default is 1, for
naming each variable that was added or removed. With trace=2, the summary of
the model at each step is also printed.

simplif logical, whether to return a simpler output containing only the model object (the
default), or a list with, additionally, a data frame with the variable included or
excluded at each step.

preds logical, whether to return also the predictions given by the model at each step.
This argument is ignored if simplif=TRUE.

Favourability logical, whether to convert the predictions (if preds=TRUE) with the Fav func-
tion. This argument is ignored if simplif=TRUE.

Wald logical, whether to print the Wald test statistics using summaryWald, rather than
the z test normally returned by summary. Used only if trace > 1. Requires the
aod package. The default is FALSE.

Details

Stepwise variable selection is a way of selecting a subset of significant variables to get a simple
and easily interpretable model. It is more computationally efficient than best subset selection. This
function uses the R functions add1 for selecting and drop1 for excluding variables. The default
parameters mimic the "Forward Selection (Conditional)" stepwise procedure implemented in the
IBM SPSS software. This is a widely used (e.g. Munoz et al. 2005, Olivero et al. 2017, 2020,
Garcia-Carrasco et al. 2021) but also widely criticized (e.g. Harrell 2001; Whittingham et al. 2006;
Flom & Cassell, 2007; Smith 2018) method for variable selection, though its AIC-based counterpart
(implemented in the step R function) is equally flawed (e.g. Murtaugh 2014; Coelho et al. 2019).

Value

If simplif=TRUE (the default), this function returns the model object obtained after the variable
selection procedure. If simplif=FALSE, it returns a list with the following components:

model the model object obtained after the variable selection procedure.

steps a data frame where each row shows the variable included or excluded at each
step.

predictions (if preds=TRUE) a data frame where each column contains the predictions of
the model obtained at each step. These predictions are probabilities by default,
or favourabilities if Favourability=TRUE.

Author(s)

A. Marcia Barbosa

References

Coelho M.T.P., Diniz-Filho J.A. & Rangel T.F. (2019) A parsimonious view of the parsimony prin-
ciple in ecology and evolution. Ecography, 42:968-976

Flom P.L. & Cassell D.L. (2007) Stopping stepwise: Why stepwise and similar selection methods
are bad, and what you should use. NESUG 2007

summaryWald 85

Garcia-Carrasco J.M., Munoz A.R., Olivero J., Segura M. & Real R. (2021) Predicting the spatio-
temporal spread of West Nile virus in Europe. PLoS Neglected Tropical Diseases 15(1):e0009022

Harrell F.E. (2001) Regression modeling strategies: With applications to linear models, logistic
regression, and survival analysis. Springer-Verlag, New York

Munoz, A.R., Real R., Barbosa A.M. & Vargas J.M. (2005) Modelling the distribution of Bonelli’s
Eagle in Spain: Implications for conservation planning. Diversity and Distributions 11: 477-486

Murtaugh P.A. (2014) In defense of P values. Ecology, 95:611-617

Olivero J., Fa J.E., Real R., Marquez A.L., Farfan M.A., Vargas J.M, Gaveau D., Salim M.A., Park
D., Suter J., King S., Leendertz S.A., Sheil D. & Nasi R. (2017) Recent loss of closed forests is
associated with Ebola virus disease outbreaks. Scientific Reports 7: 14291

Olivero J., Fa J.E., Farfan M.A., Marquez A.L., Real R., Juste F.J., Leendertz S.A. & Nasi R. (2020)
Human activities link fruit bat presence to Ebola virus disease outbreaks. Mammal Review 50:1-10

Smith G. (2018) Step away from stepwise. Journal of Big Data 32 (https://doi.org/10.1186/s40537-
018-0143-6)

Whittingham M.J., Stephens P.A., Bradbury R.B. & Freckleton R.P. (2006) Why do we still use
stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75:1182-1189

See Also

step, stepByStep, modelTrim

Examples

data(rotif.env)

stepwise(data = rotif.env, sp.col = 21, var.cols = 5:17)

sw <- stepwise(data = rotif.env, sp.col = 21, var.cols = 5:17, simplif = FALSE)
sw

summaryWald Model summary with Wald (instead of z) test statistics

Description

This function produces a summary of a generalized linear model, with the Wald test (instead of the
z test) and associated statistics.

Usage

summaryWald(model, interceptLast = TRUE)

Arguments

model a model object of class "glm".
interceptLast logical, whether to place the intercept in the last (rasther than the first) row of

the output. Defaults to TRUE.

86 timer

Details

This function requires the aod package, whose wald.test function is used for computing the Wald
test.

Value

This function returns a data frame with the model summary statistics.

Author(s)

A. Marcia Barbosa

See Also

summary

Examples

load sample data:

data(rotif.env)
names(rotif.env)

build a model of a species' occurrence based on
some of the variables:

model <- glm(Abrigh ~ Area + Altitude + AltitudeRange + HabitatDiversity +
HumanPopulation, family = binomial, data = rotif.env)

get the Wald-based model summary:

summaryWald(model)

timer Timer

Description

Reporting of time elapsed since a given start time. This function is used internally by other functions
in the package.

Usage

timer(start.time)

Arguments

start.time A date-time object of class POSIXct, e.g. as given by Sys.time.

transpose 87

Value

The function returns a message informing of the time elapsed since the input ’start.time’.

Author(s)

A. Marcia Barbosa

See Also

Sys.time, proc.time, difftime

Examples

get starting time:
start <- Sys.time()

do some random analysis:
sapply(rnorm(50000), function(x) x*5)

see how long it took:
timer(start)

transpose Transpose (part of) a matrix or dataframe

Description

This function transposes (a specified part of) a matrix or data frame, optionally using one of its
columns as column names for the transposed result. It can be useful for turning a species presence-
absence table into a regional species composition table.

Usage

transpose(data, sp.cols = 1:ncol(data), reg.names = NULL)

Arguments

data a matrix or data frame containing the species occurrence data to transpose.

sp.cols names or index numbers of the columns containing the species occurrences in
’data’ which are meant to be transposed.

reg.names name or index number of the column in ’data’ containing the region names, to
be used as column names in the transposed result.

Value

This function returns the transposed ’sp.cols’ of ’data’, with the column specified in ’reg.names’ as
column names.

88 triMatInd

Author(s)

A. Marcia Barbosa

See Also

t

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

rotif.reg <- transpose(rotif.env, sp.cols = 18:47, reg.names = 1)

head(rotif.reg)

triMatInd Triangular matrix indices

Description

This function outputs the indices of one triangle (the lower one by default) of an input square matrix.
It is used by simMat and, for large matrices, makes it faster than e.g. with lower.tri or upper.tri.

Usage

triMatInd(mat, lower = TRUE, list = FALSE)

Arguments

mat a square matrix.

lower logical indicating whether the indices should correspond to the lower triangle.
The default is TRUE; FALSE produces the upper triangle indices.

list logical indicating whether the results should be output as a list instead of a ma-
trix. The default is FALSE.

Value

The indices (row, column) of the elements of the matrix that belong to the requested triangle.

Author(s)

A. Marcia Barbosa

vulnerability 89

References

http://stackoverflow.com/questions/20898684/how-to-efficiently-generate-lower-triangle-indices-of-
a-symmetric-matrix

See Also

lower.tri, upper.tri

Examples

mat <- matrix(nrow = 4, ncol = 4)
mat
triMatInd(mat)
triMatInd(mat, list = TRUE)

vulnerability (Fuzzy) vulnerability

Description

This function computes the index of species vulnerability of Estrada et al. (2011), using either crisp
(presence/absence, i.e. ones and zeros) or fuzzy (Favourability, between zero and one) values, tak-
ing into account the conservation status of each species. Vulnerability is like a (potential) richness
index in which more vulnerable species (i.e., those with a more threatened conservation status) have
higher weight.

Usage

vulnerability(data, sp.cols = 1:ncol(data), categories, na.rm = TRUE)

Arguments

data a numeric vector, matrix or data frame containing the presence/absence (ones
and zeros) or the Favourability (fuzzy presence, between zero and one) values
for the target species.

sp.cols names or index numbers of the columns of ’data’ that contain the species values
for which to compute vulnerability. The default is to use all columns.

categories numeric vector of the same length as ’sp.cols’ (or of length 1 if ’data’ is a vector)
indicating the IUCN Red List category of each species. This vector should be
provided in the same order as the columns in data[, sp.cols]. See Details.

na.rm logical value indicating whether NA values should be removed before the com-
putation.

90 vulnerability

Details

The numeric values for the ’categories’ argument are suggested by Estrada et al. (2011) to be as fol-
lows for each species, according to its IUCN Red List category (available at https://www.iucnredlist.org):

Critically endangered (CR): 16

Endangered (EN): 8

Vulnerable (VU): 4

Near Threatened (NT): 2

Least Concern (LC): 1

Data Deficient (DD): 1

Not evaluated (NE): 0

These values follow an exponential scale, because a critically endangered species is generally con-
sidered more important than two endangered species, an endangered species more important than
two vulnerable species, and so on (Estrada et al. 2011).

Value

This function returns a numeric vulnerability value for each value or each row in ’data’.

Author(s)

A. Marcia Barbosa

References

Estrada A., Real R. & Vargas J.M. (2011) Assessing coincidence between priority conservation
areas for vertebrate groups in a Mediterranean hotspot. Biological Conservation, 144: 1120-1129

See Also

rarity

Examples

data(rotif.env)

note the 'categories' below are made up, as rotifers are not on yet redlisted
see Details above for how to get actual values for your species

vulnerability(rotif.env[, 18], categories = 8)

vulnerability(rotif.env, sp.cols = "Abrigh", categories = 8)

vulnerability(rotif.env, sp.cols = c("Apriod", "Burceo", "Kcochl"), categories = c(8, 16, 2))

fuzzy vulnerability (from favourability values):

pred <- multGLM(rotif.env, sp.cols = c("Apriod", "Burceo", "Kcochl"), var.cols = 5:17)$predictions

vulnerability 91

head(pred)

vulnerability(pred, sp.cols = "Apriod_F", categories = 8)

vulnerability(pred, sp.cols = c("Apriod_F", "Burceo_F", "Kcochl_F"), categories = c(8, 16, 2))

Index

∗ character
spCodes, 77

∗ classes
integerCols, 44
multConvert, 48

∗ datasets
rotif.env, 65
rotifers, 67

∗ manip
integerCols, 44
multConvert, 48
splist2presabs, 79
transpose, 87

∗ models
distPres, 15
Fav, 20
modelTrim, 45
multGLM, 50
multTSA, 56
percentTestData, 60

∗ model
getPreds, 37

∗ multivariate
corSelect, 11
FDR, 24
multGLM, 50
multicol, 54
multTSA, 56

∗ package
fuzzySim-package, 3

∗ prediction
getPreds, 37

∗ regression
multGLM, 50
multTSA, 56

∗ spatial
distPres, 15
multTSA, 56

add1, 81, 83, 84

anova, 12, 24, 51
appendData, 5
as.character, 49
as.factor, 49
as.integer, 44, 49

barplot, 71
bioThreat, 6, 23, 72, 73
biplot, 30

cleanCoords, 8, 42
cor, 12–14, 81
corSelect, 11, 51

detectCores, 59
difftime, 87
dist, 15, 16
distPres, 15, 27, 57, 69, 70, 75
dms2dec, 17
drop1, 81, 83, 84

entropy, 18

family, 12, 25
Fav, 6–8, 18, 19, 20, 23, 24, 29, 33, 37, 52, 57,

61, 64, 71, 73, 81, 84, 89
favClass, 7, 8, 22
FDR, 12–14, 24, 50–52
fuzSim, 16, 26, 33, 36, 48, 74–76
fuzzyConsensus, 29
fuzzyOverlay, 31, 35, 36, 48
fuzzyRangeChange, 33, 34
fuzzySim (fuzzySim-package), 3
fuzzySim-package, 3

getPreds, 37
getRegion, 38
glm, 12, 13, 21, 25, 37, 50, 53, 81–83
gridRecords, 11, 41, 70

image, 75

92

INDEX 93

integerCols, 44
is.integer, 44

lower.tri, 88, 89

modelTrim, 45, 51, 52, 57, 82, 85
modOverlap, 28, 33, 36, 47
multConvert, 44, 48
multGLM, 7, 22–24, 27, 37, 50, 57, 60, 71, 75,

81
multicol, 13, 14, 52, 54
multTSA, 27, 52, 56, 75

p.adjust, 25, 26, 51
p.adjust.methods, 25
pairwiseRangemaps, 58, 63, 64
parallel, 59
percentTestData, 60
plot, 75
poly, 57
POSIXct, 86
prcomp, 30
predict, 37
predict.glm, 51
prevalence, 61
proc.time, 87

rangemapSim, 60, 62
rarity, 64, 90
rotif.env, 65
rotifers, 67

sample, 70
selectAbsences, 42, 68
set.seed, 69
sharedFav, 8, 71
simFromSetOps, 64, 73
simMat, 16, 28, 64, 74, 75, 79, 88
spCodes, 53, 66, 77
splist2presabs, 50, 65, 79
stats::cutree(), 39
stats::hclust(), 39
step, 45, 46, 51–53, 56, 57, 81, 82, 84, 85
stepByStep, 80, 85
stepwise, 46, 51–53, 81, 83
strsplit, 78
substr, 78
summary, 84, 86
summaryWald, 84, 85

Sys.time, 86, 87

t, 88
table, 80
terra::buffer(), 39, 40
terra::crs(), 15, 40, 69
terra::distance(), 15, 39, 69
terra::width(), 39, 40
timer, 86
transpose, 75, 87
triMatInd, 88

upper.tri, 88, 89

vulnerability, 65, 89

weighted.mean, 31

	fuzzySim-package
	appendData
	bioThreat
	cleanCoords
	corSelect
	distPres
	dms2dec
	entropy
	Fav
	favClass
	FDR
	fuzSim
	fuzzyConsensus
	fuzzyOverlay
	fuzzyRangeChange
	getPreds
	getRegion
	gridRecords
	integerCols
	modelTrim
	modOverlap
	multConvert
	multGLM
	multicol
	multTSA
	pairwiseRangemaps
	percentTestData
	prevalence
	rangemapSim
	rarity
	rotif.env
	rotifers
	selectAbsences
	sharedFav
	simFromSetOps
	simMat
	spCodes
	splist2presabs
	stepByStep
	stepwise
	summaryWald
	timer
	transpose
	triMatInd
	vulnerability
	Index

