
Package ‘coin’
September 27, 2023

Version 1.4-3

Date 2023-09-26

Title Conditional Inference Procedures in a Permutation Test Framework

Description Conditional inference procedures for the general independence
problem including two-sample, K-sample (non-parametric ANOVA),
correlation, censored, ordered and multivariate problems described
in <doi:10.18637/jss.v028.i08>.

Depends R (>= 3.6.0), survival

Imports methods, parallel, stats, stats4, utils, libcoin (>= 1.0-9),
matrixStats (>= 0.54.0), modeltools (>= 0.2-9), mvtnorm (>=
1.0-5), multcomp

Suggests xtable, e1071, vcd, TH.data (>= 1.0-7)

LinkingTo libcoin (>= 1.0-9)

LazyData yes

NeedsCompilation yes

ByteCompile yes

Encoding UTF-8

License GPL-2

URL http://coin.r-forge.r-project.org

Author Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>),
Henric Winell [aut] (<https://orcid.org/0000-0001-7995-3047>),
Kurt Hornik [aut] (<https://orcid.org/0000-0003-4198-9911>),
Mark A. van de Wiel [aut] (<https://orcid.org/0000-0003-4780-8472>),
Achim Zeileis [aut] (<https://orcid.org/0000-0003-0918-3766>)

Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>

Repository CRAN

Date/Publication 2023-09-27 16:10:02 UTC

1

https://doi.org/10.18637/jss.v028.i08
http://coin.r-forge.r-project.org
https://orcid.org/0000-0001-8301-0471
https://orcid.org/0000-0001-7995-3047
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0003-4780-8472
https://orcid.org/0000-0003-0918-3766

2 R topics documented:

R topics documented:
coin-package . 3
alpha . 4
alzheimer . 5
asat . 6
ContingencyTests . 7
CorrelationTests . 12
CWD . 14
expectation-methods . 16
glioma . 18
GTSG . 19
hohnloser . 21
IndependenceLinearStatistic-class . 22
IndependenceProblem-class . 23
IndependenceTest . 24
IndependenceTest-class . 28
IndependenceTestProblem-class . 30
IndependenceTestStatistic-class . 31
jobsatisfaction . 34
LocationTests . 35
malformations . 40
MarginalHomogeneityTests . 41
MaximallySelectedStatisticsTests . 45
mercuryfish . 48
neuropathy . 50
NullDistribution . 52
NullDistribution-class . 54
NullDistribution-methods . 56
ocarcinoma . 57
PermutationDistribution-methods . 59
photocar . 61
PValue-class . 62
pvalue-methods . 63
rotarod . 67
ScaleTests . 68
statistic-methods . 71
SurvivalTests . 73
SymmetryProblem-class . 79
SymmetryTest . 80
SymmetryTests . 83
Transformations . 88
treepipit . 92
VarCovar-class . 93
vision . 94

Index 96

coin-package 3

coin-package General Information on the coin Package

Description

The coin package provides an implementation of a general framework for conditional inference
procedures commonly known as permutation tests. The framework was developed by Strasser
and Weber (1999) and is based on a multivariate linear statistic and its conditional expectation,
covariance and limiting distribution. These results are utilized to construct tests of independence
between two sets of variables.

The package does not only provide a flexible implementation of the abstract framework, but also
provides a large set of convenience functions implementing well-known as well as lesser-known
classical and non-classical test procedures within the framework. Many of the tests presented in
prominent text books, such as Hollander and Wolfe (1999) or Agresti (2002), are immediately
available or can be implemented without much effort. Examples include linear rank statistics for the
two- andK-sample location and scale problem against ordered and unordered alternatives including
post-hoc tests for arbitrary contrasts, tests of independence for contingency tables, two- and K-
sample tests for censored data, tests of independence between two continuous variables as well as
tests of marginal homogeneity and symmetry. Approximations of the exact null distribution via the
limiting distribution or conditional Monte Carlo resampling are available for every test procedure,
while the exact null distribution is currently available for univariate two-sample problems only.

The salient parts of the Strasser-Weber framework are elucidated by Hothorn et al. (2006) and a
thorough description of the software implementation is given by Hothorn et al. (2008).

Author(s)

This package is authored by
Torsten Hothorn <Torsten.Hothorn@R-project.org>,
Kurt Hornik <Kurt.Hornik@R-project.org>,
Mark A. van de Wiel <Mark.vdWiel@vumc.nl>,
Henric Winell <Henric.Winell@statistics.uu.se> and
Achim Zeileis <Achim.Zeileis@R-project.org>.

References

Agresti, A. (2002). Categorical Data Analysis, Second Edition. Hoboken, New Jersey: John Wiley
& Sons.

Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Methods, Second Edition. New
York: John Wiley & Sons.

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2008). Implementing a class of
permutation tests: The coin package. Journal of Statistical Software 28(8), 1–23. doi:10.18637/
jss.v028.i08

Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical
Methods of Statistics 8(2), 220–250.

https://doi.org/10.1198/000313006X118430
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.18637/jss.v028.i08

4 alpha

Examples

Not run:
Generate doxygen documentation if you are interested in the internals:
Download source package into a temporary directory
tmpdir <- tempdir()
tgz <- download.packages("coin", destdir = tmpdir, type = "source")[2]
Extract contents
untar(tgz, exdir = tmpdir)
Run doxygen (assuming it is installed)
wd <- setwd(file.path(tmpdir, "coin"))
system("doxygen inst/doxygen.cfg")
setwd(wd)
Have fun!
browseURL(file.path(tmpdir, "coin", "inst",

"documentation", "html", "index.html"))
End(Not run)

alpha Genetic Components of Alcoholism

Description

Levels of expressed alpha synuclein mRNA in three groups of allele lengths of NACP-REP1.

Usage

alpha

Format

A data frame with 97 observations on 2 variables.

alength allele length, a factor with levels "short", "intermediate" and "long".

elevel expression levels of alpha synuclein mRNA.

Details

Various studies have linked alcohol dependence phenotypes to chromosome 4. One candidate gene
is NACP (non-amyloid component of plaques), coding for alpha synuclein. Bönsch et al. (2005)
found longer alleles of NACP-REP1 in alcohol-dependent patients compared with healthy controls
and reported that the allele lengths show some association with levels of expressed alpha synuclein
mRNA.

Source

Bönsch, D., Lederer, T., Reulbach, U., Hothorn, T., Kornhuber, J. and Bleich, S. (2005). Joint
analysis of the NACP-REP1 marker within the alpha synuclein gene concludes association with
alcohol dependence. Human Molecular Genetics 14(7), 967–971. doi:10.1093/hmg/ddi090

https://doi.org/10.1093/hmg/ddi090

alzheimer 5

References

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

Winell, H. and Lindbäck, J. (2018). A general score-independent test for order-restricted inference.
Statistics in Medicine 37(21), 3078–3090. doi:10.1002/sim.7690

Examples

Boxplots
boxplot(elevel ~ alength, data = alpha)

Asymptotic Kruskal-Wallis test
kruskal_test(elevel ~ alength, data = alpha)

Asymptotic Kruskal-Wallis test using midpoint scores
kruskal_test(elevel ~ alength, data = alpha,

scores = list(alength = c(2, 7, 11)))

Asymptotic score-independent test
Winell and Lindbaeck (2018)
(it <- independence_test(elevel ~ alength, data = alpha,

ytrafo = function(data)
trafo(data, numeric_trafo = rank_trafo),

xtrafo = function(data)
trafo(data, factor_trafo = function(x)

zheng_trafo(as.ordered(x)))))

Extract the "best" set of scores
ss <- statistic(it, type = "standardized")
idx <- which(abs(ss) == max(abs(ss)), arr.ind = TRUE)
ss[idx[1], idx[2], drop = FALSE]

alzheimer Smoking and Alzheimer’s Disease

Description

A case-control study of smoking and Alzheimer’s disease.

Usage

alzheimer

Format

A data frame with 538 observations on 3 variables.

smoking a factor with levels "None", "<10", "10-20" and ">20" (cigarettes per day).
disease a factor with levels "Alzheimer", "Other dementias" and "Other diagnoses".
gender a factor with levels "Female" and "Male".

https://doi.org/10.1198/000313006X118430
https://doi.org/10.1002/sim.7690

6 asat

Details

Subjects with Alzheimer’s disease are compared to two different control groups with respect to
smoking history. The data are given in Salib and Hillier (1997, Tab. 4).

Source

Salib, E. and Hillier, V. (1997). A case-control study of smoking and Alzheimer’s disease. Interna-
tional Journal of Geriatric Psychiatry 12(3), 295–300. doi:10.1002/(SICI)10991166(199703)12:3<295::AID-
GPS476>3.0.CO;23

References

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

Examples

Spineplots
op <- par(no.readonly = TRUE) # save current settings
layout(matrix(1:2, ncol = 2))
spineplot(disease ~ smoking, data = alzheimer,

subset = gender == "Male", main = "Male")
spineplot(disease ~ smoking, data = alzheimer,

subset = gender == "Female", main = "Female")
par(op) # reset

Asymptotic Cochran-Mantel-Haenszel test
cmh_test(disease ~ smoking | gender, data = alzheimer)

asat Toxicological Study on Female Wistar Rats

Description

Measurements of the liver enzyme aspartate aminotransferase (ASAT) for a new compound and a
control group of 34 female Wistar rats.

Usage

asat

Format

A data frame with 34 observations on 2 variables.

asat ASAT values.

group a factor with levels "Compound" and "Control".

https://doi.org/10.1002/%28SICI%291099-1166%28199703%2912%3A3%3C295%3A%3AAID-GPS476%3E3.0.CO%3B2-3
https://doi.org/10.1002/%28SICI%291099-1166%28199703%2912%3A3%3C295%3A%3AAID-GPS476%3E3.0.CO%3B2-3
https://doi.org/10.1198/000313006X118430

ContingencyTests 7

Details

The aim of this toxicological study is the proof of safety for the new compound. The data were
originally given in Hothorn (1992) and later reproduced by Hauschke, Kieser and Hothorn (1999).

Source

Hauschke, D., Kieser, M. and Hothorn, L. A. (1999). Proof of safety in toxicology based on the
ratio of two means for normally distributed data. Biometrical Journal 41(3), 295–304. doi:10.1002/
(SICI)15214036(199906)41:3<295::AIDBIMJ295>3.0.CO;22

Hothorn, L. A. (1992). Biometrische analyse toxikologischer untersuchungen. In J. Adam (Ed.),
Statistisches Know-How in der Medizinischen Forschung, pp. 475–590. Berlin: Ullstein Mosby.

References

Pflüger, R. and Hothorn, T. (2002). Assessing equivalence tests with respect to their expected p-
value. Biometrical Journal 44(8), 1015–1027. doi:10.1002/bimj.200290001

Examples

Proof-of-safety based on ratio of medians (Pflueger and Hothorn, 2002)
One-sided exact Wilcoxon-Mann-Whitney test
wt <- wilcox_test(I(log(asat)) ~ group, data = asat,

distribution = "exact", alternative = "less",
conf.int = TRUE)

One-sided confidence set
Note: Safety cannot be concluded since the effect of the compound
exceeds 20 % of the control median
exp(confint(wt)$conf.int)

ContingencyTests Tests of Independence in Two- or Three-Way Contingency Tables

Description

Testing the independence of two nominal or ordered factors.

Usage

S3 method for class 'formula'
chisq_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'table'
chisq_test(object, ...)
S3 method for class 'IndependenceProblem'
chisq_test(object, ...)

S3 method for class 'formula'

https://doi.org/10.1002/%28SICI%291521-4036%28199906%2941%3A3%3C295%3A%3AAID-BIMJ295%3E3.0.CO%3B2-2
https://doi.org/10.1002/%28SICI%291521-4036%28199906%2941%3A3%3C295%3A%3AAID-BIMJ295%3E3.0.CO%3B2-2
https://doi.org/10.1002/bimj.200290001

8 ContingencyTests

cmh_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'table'
cmh_test(object, ...)
S3 method for class 'IndependenceProblem'
cmh_test(object, ...)

S3 method for class 'formula'
lbl_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'table'
lbl_test(object, ...)
S3 method for class 'IndependenceProblem'
lbl_test(object, ...)

Arguments

formula a formula of the form y ~ x | block where y and x are factors and block is an
optional factor for stratification.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations.

object an object inheriting from classes "table" or "IndependenceProblem".

... further arguments to be passed to independence_test().

Details

chisq_test(), cmh_test() and lbl_test() provide the Pearson chi-squared test, the generalized
Cochran-Mantel-Haenszel test and the linear-by-linear association test. A general description of
these methods is given by Agresti (2002).

The null hypothesis of independence, or conditional independence given block, between y and x is
tested.

If y and/or x are ordered factors, the default scores, 1:nlevels(y) and 1:nlevels(x), respectively,
can be altered using the scores argument (see independence_test()); this argument can also
be used to coerce nominal factors to class "ordered". (lbl_test() coerces to class "ordered"
under any circumstances.) If both y and x are ordered factors, a linear-by-linear association test is
computed and the direction of the alternative hypothesis can be specified using the alternative
argument. For the Pearson chi-squared test, this extension was given by Yates (1948) who also
discussed the situation when either the response or the covariate is an ordered factor; see also
Cochran (1954) and Armitage (1955) for the particular case when y is a binary factor and x is
ordered. The Mantel-Haenszel statistic (Mantel and Haenszel, 1959) was similarly extended by
Mantel (1963) and Landis, Heyman and Koch (1978).

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

ContingencyTests 9

Value

An object inheriting from class "IndependenceTest".

Note

The exact versions of the Pearson chi-squared test and the generalized Cochran-Mantel-Haenszel
test do not necessarily result in the same p-value as Fisher’s exact test (Davis, 1986).

References

Agresti, A. (2002). Categorical Data Analysis, Second Edition. Hoboken, New Jersey: John Wiley
& Sons.

Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics 11(3), 375–
386. doi:10.2307/3001775

Cochran, W.G. (1954). Some methods for strengthening the common χ2 tests. Biometrics 10(4),
417–451. doi:10.2307/3001616

Davis, L. J. (1986). Exact tests for 2 × 2 contingency tables. The American Statistician 40(2),
139–141. doi:10.1080/00031305.1986.10475377

Landis, J. R., Heyman, E. R. and Koch, G. G. (1978). Average partial association in three-way
contingency tables: a review and discussion of alternative tests. International Statistical Review
46(3), 237–254. doi:10.2307/1402373

Mantel, N. and Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective
studies of disease. Journal of the National Cancer Institute 22(4), 719–748. doi:10.1093/jnci/
22.4.719

Mantel, N. (1963). Chi-square tests with one degree of freedom: extensions of the Mantel-Haenszel
procedure. Journal of the American Statistical Association 58(303), 690–700. doi:10.1080/01621459.1963.10500879

Yates, F. (1948). The analysis of contingency tables with groupings based on quantitative characters.
Biometrika 35(1/2), 176–181. doi:10.1093/biomet/35.12.176

Examples

Example data
Davis (1986, p. 140)
davis <- matrix(

c(3, 6,
2, 19),

nrow = 2, byrow = TRUE
)
davis <- as.table(davis)

Asymptotic Pearson chi-squared test
chisq_test(davis)
chisq.test(davis, correct = FALSE) # same as above

Approximative (Monte Carlo) Pearson chi-squared test
ct <- chisq_test(davis,

distribution = approximate(nresample = 10000))
pvalue(ct) # standard p-value

https://doi.org/10.2307/3001775
https://doi.org/10.2307/3001616
https://doi.org/10.1080/00031305.1986.10475377
https://doi.org/10.2307/1402373
https://doi.org/10.1093/jnci/22.4.719
https://doi.org/10.1093/jnci/22.4.719
https://doi.org/10.1080/01621459.1963.10500879
https://doi.org/10.1093/biomet/35.1-2.176

10 ContingencyTests

midpvalue(ct) # mid-p-value
pvalue_interval(ct) # p-value interval
size(ct, alpha = 0.05) # test size at alpha = 0.05 using the p-value

Exact Pearson chi-squared test (Davis, 1986)
Note: disagrees with Fisher's exact test
ct <- chisq_test(davis,

distribution = "exact")
pvalue(ct) # standard p-value
midpvalue(ct) # mid-p-value
pvalue_interval(ct) # p-value interval
size(ct, alpha = 0.05) # test size at alpha = 0.05 using the p-value
fisher.test(davis)

Laryngeal cancer data
Agresti (2002, p. 107, Tab. 3.13)
cancer <- matrix(

c(21, 2,
15, 3),

nrow = 2, byrow = TRUE,
dimnames = list(

"Treatment" = c("Surgery", "Radiation"),
"Cancer" = c("Controlled", "Not Controlled")

)
)
cancer <- as.table(cancer)

Exact Pearson chi-squared test (Agresti, 2002, p. 108, Tab. 3.14)
Note: agrees with Fishers's exact test
(ct <- chisq_test(cancer,

distribution = "exact"))
midpvalue(ct) # mid-p-value
pvalue_interval(ct) # p-value interval
size(ct, alpha = 0.05) # test size at alpha = 0.05 using the p-value
fisher.test(cancer)

Homework conditions and teacher's rating
Yates (1948, Tab. 1)
yates <- matrix(

c(141, 67, 114, 79, 39,
131, 66, 143, 72, 35,
36, 14, 38, 28, 16),

byrow = TRUE, ncol = 5,
dimnames = list(

"Rating" = c("A", "B", "C"),
"Condition" = c("A", "B", "C", "D", "E")

)
)
yates <- as.table(yates)

Asymptotic Pearson chi-squared test (Yates, 1948, p. 176)

ContingencyTests 11

chisq_test(yates)

Asymptotic Pearson-Yates chi-squared test (Yates, 1948, pp. 180-181)
Note: 'Rating' and 'Condition' as ordinal
(ct <- chisq_test(yates,

alternative = "less",
scores = list("Rating" = c(-1, 0, 1),

"Condition" = c(2, 1, 0, -1, -2))))
statistic(ct)^2 # chi^2 = 2.332

Asymptotic Pearson-Yates chi-squared test (Yates, 1948, p. 181)
Note: 'Rating' as ordinal
chisq_test(yates,

scores = list("Rating" = c(-1, 0, 1))) # Q = 3.825

Change in clinical condition and degree of infiltration
Cochran (1954, Tab. 6)
cochran <- matrix(

c(11, 7,
27, 15,
42, 16,
53, 13,
11, 1),

byrow = TRUE, ncol = 2,
dimnames = list(

"Change" = c("Marked", "Moderate", "Slight",
"Stationary", "Worse"),

"Infiltration" = c("0-7", "8-15")
)

)
cochran <- as.table(cochran)

Asymptotic Pearson chi-squared test (Cochran, 1954, p. 435)
chisq_test(cochran) # X^2 = 6.88

Asymptotic Cochran-Armitage test (Cochran, 1954, p. 436)
Note: 'Change' as ordinal
(ct <- chisq_test(cochran,

scores = list("Change" = c(3, 2, 1, 0, -1))))
statistic(ct)^2 # X^2 = 6.66

Change in size of ulcer crater for two treatment groups
Armitage (1955, Tab. 2)
armitage <- matrix(

c(6, 4, 10, 12,
11, 8, 8, 5),

byrow = TRUE, ncol = 4,
dimnames = list(

"Treatment" = c("A", "B"),
"Crater" = c("Larger", "< 2/3 healed",

">= 2/3 healed", "Healed")

12 CorrelationTests

)
)
armitage <- as.table(armitage)

Approximative (Monte Carlo) Pearson chi-squared test (Armitage, 1955, p. 379)
chisq_test(armitage,

distribution = approximate(nresample = 10000)) # chi^2 = 5.91

Approximative (Monte Carlo) Cochran-Armitage test (Armitage, 1955, p. 379)
(ct <- chisq_test(armitage,

distribution = approximate(nresample = 10000),
scores = list("Crater" = c(-1.5, -0.5, 0.5, 1.5))))

statistic(ct)^2 # chi_0^2 = 5.26

Relationship between job satisfaction and income stratified by gender
Agresti (2002, p. 288, Tab. 7.8)

Asymptotic generalized Cochran-Mantel-Haenszel test (Agresti, p. 297)
(ct <- cmh_test(jobsatisfaction)) # CMH = 10.2001

The standardized linear statistic
statistic(ct, type = "standardized")

The standardized linear statistic for each block
statistic(ct, type = "standardized", partial = TRUE)

Asymptotic generalized Cochran-Mantel-Haenszel test (Agresti, p. 297)
Note: 'Job.Satisfaction' as ordinal
cmh_test(jobsatisfaction,

scores = list("Job.Satisfaction" = c(1, 3, 4, 5))) # L^2 = 9.0342

Asymptotic linear-by-linear association test (Agresti, p. 297)
Note: 'Job.Satisfaction' and 'Income' as ordinal
(lt <- lbl_test(jobsatisfaction,

scores = list("Job.Satisfaction" = c(1, 3, 4, 5),
"Income" = c(3, 10, 20, 35))))

statistic(lt)^2 # M^2 = 6.1563

The standardized linear statistic
statistic(lt, type = "standardized")

The standardized linear statistic for each block
statistic(lt, type = "standardized", partial = TRUE)

CorrelationTests Correlation Tests

Description

Testing the independence of two numeric variables.

CorrelationTests 13

Usage

S3 method for class 'formula'
spearman_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
spearman_test(object, distribution = c("asymptotic", "approximate", "none"), ...)

S3 method for class 'formula'
fisyat_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
fisyat_test(object, distribution = c("asymptotic", "approximate", "none"),

ties.method = c("mid-ranks", "average-scores"), ...)

S3 method for class 'formula'
quadrant_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
quadrant_test(object, distribution = c("asymptotic", "approximate", "none"),

mid.score = c("0", "0.5", "1"), ...)

S3 method for class 'formula'
koziol_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
koziol_test(object, distribution = c("asymptotic", "approximate", "none"),

ties.method = c("mid-ranks", "average-scores"), ...)

Arguments

formula a formula of the form y ~ x | block where y and x are numeric variables and
block is an optional factor for stratification.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations.

object an object inheriting from class "IndependenceProblem".

distribution a character, the conditional null distribution of the test statistic can be approx-
imated by its asymptotic distribution ("asymptotic", default) or via Monte
Carlo resampling ("approximate"). Alternatively, the functions asymptotic
or approximate can be used. Computation of the null distribution can be sup-
pressed by specifying "none".

ties.method a character, the method used to handle ties: the score generating function ei-
ther uses mid-ranks ("mid-ranks", default) or averages the scores of randomly
broken ties ("average-scores").

mid.score a character, the score assigned to observations exactly equal to the median: ei-
ther 0 ("0", default), 0.5 ("0.5") or 1 ("1"); see median_test().

... further arguments to be passed to independence_test().

14 CWD

Details

spearman_test(), fisyat_test(), quadrant_test() and koziol_test() provide the Spear-
man correlation test, the Fisher-Yates correlation test using van der Waerden scores, the quadrant
test and the Koziol-Nemec test. A general description of these methods is given by Hájek, Šidák
and Sen (1999, Sec. 4.6). The Koziol-Nemec test was suggested by Koziol and Nemec (1979). For
the adjustment of scores for tied values see Hájek, Šidák and Sen (1999, pp. 133–135).

The null hypothesis of independence, or conditional independence given block, between y and x is
tested.

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling by setting distribution
to "approximate". See asymptotic() and approximate() for details.

Value

An object inheriting from class "IndependenceTest".

References

Hájek, J., Šidák, Z. and Sen, P. K. (1999). Theory of Rank Tests, Second Edition. San Diego:
Academic Press.

Koziol, J. A. and Nemec, A. F. (1979). On a Cramér-von Mises type statistic for testing bivariate
independence. The Canadian Journal of Statistics 7(1), 43–52. doi:10.2307/3315014

Examples

Asymptotic Spearman test
spearman_test(CONT ~ INTG, data = USJudgeRatings)

Asymptotic Fisher-Yates test
fisyat_test(CONT ~ INTG, data = USJudgeRatings)

Asymptotic quadrant test
quadrant_test(CONT ~ INTG, data = USJudgeRatings)

Asymptotic Koziol-Nemec test
koziol_test(CONT ~ INTG, data = USJudgeRatings)

CWD Coarse Woody Debris

Description

Carbon flux on six pieces of wood.

Usage

CWD

https://doi.org/10.2307/3315014

CWD 15

Format

A data frame with 13 observations on 8 variables.

sample2 carbon flux measurement for 2nd piece of wood.
sample3 carbon flux measurement for 3rd piece of wood.
sample4 carbon flux measurement for 4th piece of wood.
sample6 carbon flux measurement for 6th piece of wood.
sample7 carbon flux measurement for 7th piece of wood.
sample8 carbon flux measurement for 8th piece of wood.
trend measurement day (in days from beginning).
time date of measurement.

Details

Coarse woody debris (CWD, dead wood greater than 10 cm in diameter) is a large stock of carbon in
tropical forests, yet the flux of carbon out of this pool, via respiration, is poorly resolved (Chambers,
Schimel and Nobre, 2001). The heterotrophic process involved in CWD respiration should respond
to reductions in moisture availability, which occurs during dry season (Chambers, Schimel and
Nobre, 2001).

CWD respiration measurements were taken in a tropical forest in west French Guiana, which ex-
periences extreme contrasts in wet and dry season (Bonal et al., 2008). An infrared gas analyzer
and a clear chamber sealed to the wood surface were used to measure the flux of carbon out of the
wood (Stahl et al., 2011). Measurements were repeated 13 times, from July to November 2011,
on six pieces of wood during the transition into and out of the dry season. The aim is to assess if
there were shifts in the CWD respiration of any of the pieces in response to the transition into (early
August) and out of (late October) the dry season.

Zeileis and Hothorn (2013) investigated the six-variate series of CO2 reflux, aiming to find out
whether the reflux had changed over the sampling period in at least one of the six wood pieces.

Source

The coarse woody debris respiration data were kindly provided by Lucy Rowland (School of Geo-
Sciences, University of Edinburgh).

References

Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Elbers, J.,
Longdoz, B., Epron, D., Guehl, J.-M. and Granier, A. (2008). Impact of severe dry season on net
ecosystem exchange in the Neotropical rainforest of French Guiana. Global Change Biology 14(8),
1917–1933. doi:10.1111/j.13652486.2008.01610.x

Chambers, J. Q., Schimel, J. P. and Nobre, A. D. (2001). Respiration from coarse wood litter in
central Amazon forests. Biogeochemistry 52(2), 115–131. doi:10.1023/A:1006473530673

Stahl, C., Burban, B., Goret, J.-Y. and Bonal, D. (2011). Seasonal variations in stem CO2 efflux in
the Neotropical rainforest of French Guiana. Annals of Forest Science 68(4), 771–782. doi:10.1007/
s1359501100742

Zeileis, A. and Hothorn, T. (2013). A toolbox of permutation tests for structural change. Statistical
Papers 54(4), 931–954. doi:10.1007/s0036201305034

https://doi.org/10.1111/j.1365-2486.2008.01610.x
https://doi.org/10.1023/A%3A1006473530673
https://doi.org/10.1007/s13595-011-0074-2
https://doi.org/10.1007/s13595-011-0074-2
https://doi.org/10.1007/s00362-013-0503-4

16 expectation-methods

Examples

Zeileis and Hothorn (2013, pp. 942-944)
Approximative (Monte Carlo) maximally selected statistics
CWD[1:6] <- 100 * CWD[1:6] # scaling (to avoid harmless warning)
mt <- maxstat_test(sample2 + sample3 + sample4 +

sample6 + sample7 + sample8 ~ trend, data = CWD,
distribution = approximate(nresample = 100000))

Absolute maximum of standardized statistics (t = 3.08)
statistic(mt)

5% critical value (t_0.05 = 2.86)
(c <- qperm(mt, 0.95))

Only 'sample8' exceeds the 5% critical value
sts <- statistic(mt, type = "standardized")
idx <- which(sts > c, arr.ind = TRUE)
sts[unique(idx[, 1]), unique(idx[, 2]), drop = FALSE]

expectation-methods Extraction of the Expectation, Variance and Covariance of the Linear
Statistic

Description

Methods for extraction of the expectation, variance and covariance of the linear statistic.

Usage

S4 method for signature 'IndependenceLinearStatistic'
expectation(object, partial = FALSE, ...)
S4 method for signature 'IndependenceTest'
expectation(object, partial = FALSE, ...)

S4 method for signature 'Variance'
variance(object, ...)
S4 method for signature 'CovarianceMatrix'
variance(object, ...)
S4 method for signature 'IndependenceLinearStatistic'
variance(object, partial = FALSE, ...)
S4 method for signature 'IndependenceTest'
variance(object, partial = FALSE, ...)

S4 method for signature 'CovarianceMatrix'
covariance(object, ...)
S4 method for signature 'IndependenceLinearStatistic'
covariance(object, invert = FALSE, partial = FALSE, ...)
S4 method for signature 'QuadTypeIndependenceTestStatistic'

expectation-methods 17

covariance(object, invert = FALSE, partial = FALSE, ...)
S4 method for signature 'IndependenceTest'
covariance(object, invert = FALSE, partial = FALSE, ...)

Arguments

object an object from which the expectation, variance or covariance of the linear statis-
tic can be extracted.

partial a logical indicating that the partial result for each block should be extracted.
Defaults to FALSE.

invert a logical indicating that the Moore-Penrose inverse of the covariance should be
extracted. Defaults to FALSE.

... further arguments (currently ignored).

Details

The methods expectation, variance and covariance extract the expectation, variance and co-
variance, respectively, of the linear statistic.

For tests of conditional independence within blocks, the partial result for each block is obtained by
setting partial = TRUE.

Value

The expectation, variance or covariance of the linear statistic extracted from object. A matrix or
array.

Examples

Example data
dta <- data.frame(

y = gl(3, 2),
x = sample(gl(3, 2))

)

Asymptotic Cochran-Mantel-Haenszel Test
ct <- cmh_test(y ~ x, data = dta)

The linear statistic, i.e., the contingency table...
(T <- statistic(ct, type = "linear"))

...and its expectation...
(mu <- expectation(ct))

...and variance...
(sigma <- variance(ct))

...and covariance...
(Sigma <- covariance(ct))

...and its inverse

18 glioma

(SigmaPlus <- covariance(ct, invert = TRUE))

The standardized contingency table...
(T - mu) / sqrt(sigma)

...is identical to the standardized linear statistic
statistic(ct, type = "standardized")

The quadratic form...
U <- as.vector(T - mu)
U %*% SigmaPlus %*% U

...is identical to the test statistic
statistic(ct, type = "test")

glioma Malignant Glioma Pilot Study

Description

A non-randomized pilot study on malignant glioma patients with pretargeted adjuvant radioim-
munotherapy using yttrium-90-biotin.

Usage

glioma

Format

A data frame with 37 observations on 7 variables.

no. patient number.

age patient age (years).

sex a factor with levels "F" (Female) and "M" (Male).

histology a factor with levels "GBM" (grade IV) and "Grade3" (grade III).

group a factor with levels "Control" and "RIT".

event status indicator for time: FALSE for right-censored observations and TRUE otherwise.

time survival time (months).

Details

The primary endpoint of this small pilot study is survival. Since the survival times are tied, the
classical asymptotic logrank test may be inadequate in this setup. Therefore, a permutation test
using Monte Carlo resampling was computed in the original paper. The data are taken from Tables
1 and 2 of Grana et al. (2002).

GTSG 19

Source

Grana, C., Chinol, M., Robertson, C., Mazzetta, C., Bartolomei, M., De Cicco, C., Fiorenza, M.,
Gatti, M., Caliceti, P. and Paganelli, G. (2002). Pretargeted adjuvant radioimmunotherapy with
Yttrium-90-biotin in malignant glioma patients: A pilot study. British Journal of Cancer 86(2),
207–212. doi:10.1038/sj.bjc.6600047

Examples

Grade III glioma
g3 <- subset(glioma, histology == "Grade3")

Plot Kaplan-Meier estimates
op <- par(no.readonly = TRUE) # save current settings
layout(matrix(1:2, ncol = 2))
plot(survfit(Surv(time, event) ~ group, data = g3),

main = "Grade III Glioma", lty = 2:1,
ylab = "Probability", xlab = "Survival Time in Month",
xlim = c(-2, 72))

legend("bottomleft", lty = 2:1, c("Control", "Treated"), bty = "n")

Exact logrank test
logrank_test(Surv(time, event) ~ group, data = g3,

distribution = "exact")

Grade IV glioma
gbm <- subset(glioma, histology == "GBM")

Plot Kaplan-Meier estimates
plot(survfit(Surv(time, event) ~ group, data = gbm),

main = "Grade IV Glioma", lty = 2:1,
ylab = "Probability", xlab = "Survival Time in Month",
xlim = c(-2, 72))

legend("topright", lty = 2:1, c("Control", "Treated"), bty = "n")
par(op) # reset

Exact logrank test
logrank_test(Surv(time, event) ~ group, data = gbm,

distribution = "exact")

Stratified approximative (Monte Carlo) logrank test
logrank_test(Surv(time, event) ~ group | histology, data = glioma,

distribution = approximate(nresample = 10000))

GTSG Gastrointestinal Tumor Study Group

https://doi.org/10.1038/sj.bjc.6600047

20 GTSG

Description

A randomized clinical trial in gastric cancer.

Usage

GTSG

Format

A data frame with 90 observations on 3 variables.

time survival time (days).

event status indicator for time: 0 for right-censored observations and 1 otherwise.

group a factor with levels "Chemotherapy+Radiation" and "Chemotherapy".

Details

A clinical trial comparing chemotherapy alone versus a combination of chemotherapy and radiation
therapy in the treatment of locally advanced, nonresectable gastric carcinoma.

Note

There is substantial separation between the estimated survival distributions at 8 to 10 months, but
by month 26 the distributions intersect.

Source

Stablein, D. M., Carter, W. H., Jr. and Novak, J. W. (1981). Analysis of survival data with
nonproportional hazard functions. Controlled Clinical Trials 2(2), 149–159. doi:10.1016/0197-
2456(81)900052

References

Moreau, T., Maccario, J., Lellouch, J. and Huber, C. (1992). Weighted log rank statistics for com-
paring two distributions. Biometrika 79(1), 195–198. doi:10.1093/biomet/79.1.195

Shen, W. and Le, C. T. (2000). Linear rank tests for censored survival data. Communications in
Statistics – Simulation and Computation 29(1), 21–36. doi:10.1080/03610910008813599

Tubert-Bitter, P., Kramar, A., Chalé, J. J. and Moureau, T. (1994). Linear rank tests for comparing
survival in two groups with crossing hazards. Computational Statistics & Data Analysis 18(5),
547–559. doi:10.1016/01679473(94)900841

Examples

Plot Kaplan-Meier estimates
plot(survfit(Surv(time / (365.25 / 12), event) ~ group, data = GTSG),

lty = 1:2, ylab = "% Survival", xlab = "Survival Time in Months")
legend("topright", lty = 1:2,

c("Chemotherapy+Radiation", "Chemotherapy"), bty = "n")

https://doi.org/10.1016/0197-2456%2881%2990005-2
https://doi.org/10.1016/0197-2456%2881%2990005-2
https://doi.org/10.1093/biomet/79.1.195
https://doi.org/10.1080/03610910008813599
https://doi.org/10.1016/0167-9473%2894%2990084-1

hohnloser 21

Asymptotic logrank test
logrank_test(Surv(time, event) ~ group, data = GTSG)

Asymptotic Prentice test
logrank_test(Surv(time, event) ~ group, data = GTSG, type = "Prentice")

Asymptotic test against Weibull-type alternatives (Moreau et al., 1992)
moreau_weight <- function(time, n.risk, n.event)

1 + log(-log(cumprod(n.risk / (n.risk + n.event))))

independence_test(Surv(time, event) ~ group, data = GTSG,
ytrafo = function(data)

trafo(data, surv_trafo = function(y)
logrank_trafo(y, weight = moreau_weight)))

Asymptotic test against crossing-curve alternatives (Shen and Le, 2000)
shen_trafo <- function(x)

ansari_trafo(logrank_trafo(x, type = "Prentice"))

independence_test(Surv(time, event) ~ group, data = GTSG,
ytrafo = function(data)

trafo(data, surv_trafo = shen_trafo))

hohnloser Left Ventricular Ejection Fraction

Description

Left ventricular ejection fraction in patients with malignant ventricular tachyarrhythmias including
recurrence-free month and censoring.

Usage

hohnloser

Format

A data frame with 94 observations on 3 variables.

EF ejection fraction (%).

time recurrence-free month.

event status indicator for time: 0 for right-censored observations and 1 otherwise.

Details

The data was used by Lausen and Schumacher (1992) to illustrate the use of maximally selected
statistics.

22 IndependenceLinearStatistic-class

Source

Hohnloser, S. H., Raeder, E. A., Podrid, P. J., Graboys, T. B. and Lown, B. (1987). Predictors
of antiarrhythmic drug efficacy in patients with malignant ventricular tachyarrhythmias. American
Heart Journal 114(1 Pt 1), 1–7. doi:10.1016/00028703(87)902997

References

Lausen, B. and Schumacher, M. (1992). Maximally selected rank statistics. Biometrics 48(1),
73–85. doi:10.2307/2532740

Examples

Asymptotic maximally selected logrank statistics
maxstat_test(Surv(time, event) ~ EF, data = hohnloser)

IndependenceLinearStatistic-class

Class "IndependenceLinearStatistic"

Description

Objects of class "IndependenceLinearStatistic" represent the linear statistic and the trans-
formed and original data structures corresponding to an independence problem.

Objects from the Class

Objects can be created by calls of the form

new("IndependenceLinearStatistic", object, ...)

where object is an object of class "IndependenceTestProblem".

Slots

linearstatistic: Object of class "matrix". The linear statistic for each block.
expectation: Object of class "matrix". The expectation of the linear statistic for each block.
covariance: Object of class "matrix". The lower triangular elements of the covariance of the

linear statistic for each block.
xtrans: Object of class "matrix". The transformed x.
ytrans: Object of class "matrix". The transformed y.
xtrafo: Object of class "function". The regression function for x.
ytrafo: Object of class "function". The influence function for y.
x: Object of class "data.frame". The variables x.
y: Object of class "data.frame". The variables y.
block: Object of class "factor". The block structure.
weights: Object of class "numeric". The case weights.

https://doi.org/10.1016/0002-8703%2887%2990299-7
https://doi.org/10.2307/2532740

IndependenceProblem-class 23

Extends

Class "IndependenceTestProblem", directly.
Class "IndependenceProblem", by class "IndependenceTestProblem", distance 2.

Known Subclasses

Class "IndependenceTestStatistic", directly.
Class "MaxTypeIndependenceTestStatistic", by class "IndependenceTestStatistic", dis-
tance 2.
Class "QuadTypeIndependenceTestStatistic", by class "IndependenceTestStatistic", dis-
tance 2.
Class "ScalarIndependenceTestStatistic", by class "IndependenceTestStatistic", distance
2.

Methods

covariance signature(object = "IndependenceLinearStatistic"): See the documentation
for covariance() for details.

expectation signature(object = "IndependenceLinearStatistic"): See the documentation
for expectation() for details.

initialize signature(.Object = "IndependenceLinearStatistic"): See the documentation for
initialize() (in package methods) for details.

statistic signature(object = "IndependenceLinearStatistic"): See the documentation for
statistic() for details.

variance signature(object = "IndependenceLinearStatistic"): See the documentation for
variance() for details.

IndependenceProblem-class

Class "IndependenceProblem"

Description

Objects of class "IndependenceProblem" represent the data structure corresponding to an inde-
pendence problem.

Objects from the Class

Objects can be created by calls of the form

new("IndependenceProblem", x, y, block = NULL, weights = NULL, ...)

where x and y are data frames containing the variables X and Y, respectively, block is an optional
factor representing the block structure b and weights is an optional integer vector corresponding to
the case weights w.

24 IndependenceTest

Slots

x: Object of class "data.frame". The variables x.

y: Object of class "data.frame". The variables y.

block: Object of class "factor". The block structure.

weights: Object of class "numeric". The case weights.

Known Subclasses

Class "IndependenceTestProblem", directly.
Class "SymmetryProblem", directly.
Class "IndependenceLinearStatistic", by class "IndependenceTestProblem", distance 2.
Class "IndependenceTestStatistic", by class "IndependenceTestProblem", distance 3.
Class "MaxTypeIndependenceTestStatistic", by class "IndependenceTestProblem", distance
4.
Class "QuadTypeIndependenceTestStatistic", by class "IndependenceTestProblem", distance
4.
Class "ScalarIndependenceTestStatistic", by class "IndependenceTestProblem", distance
4.

Methods

initialize signature(.Object = "IndependenceProblem"): See the documentation for initialize()
(in package methods) for details.

IndependenceTest General Independence Test

Description

Testing the independence of two sets of variables measured on arbitrary scales.

Usage

S3 method for class 'formula'
independence_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'table'
independence_test(object, ...)
S3 method for class 'IndependenceProblem'
independence_test(object, teststat = c("maximum", "quadratic", "scalar"),

distribution = c("asymptotic", "approximate",
"exact", "none"),

alternative = c("two.sided", "less", "greater"),
xtrafo = trafo, ytrafo = trafo, scores = NULL,
check = NULL, ...)

IndependenceTest 25

Arguments

formula a formula of the form y1 + ... + yq ~ x1 + ... + xp | block where y1, . . . , yq
and x1, . . . , xp are measured on arbitrary scales (nominal, ordinal or continuous
with or without censoring) and block is an optional factor for stratification.

data an optional data frame containing the variables in the model formula.
subset an optional vector specifying a subset of observations to be used. Defaults to

NULL.
weights an optional formula of the form ~ w defining integer valued case weights for each

observation. Defaults to NULL, implying equal weight for all observations.
object an object inheriting from classes "table" or "IndependenceProblem".
teststat a character, the type of test statistic to be applied: either a maximum statistic

("maximum", default), a quadratic form ("quadratic") or a standardized scalar
test statistic ("scalar").

distribution a character, the conditional null distribution of the test statistic can be approx-
imated by its asymptotic distribution ("asymptotic", default) or via Monte
Carlo resampling ("approximate"). Alternatively, the functions asymptotic
or approximate can be used. For univariate two-sample problems, "exact"
or use of the function exact computes the exact distribution. Computation
of the null distribution can be suppressed by specifying "none". It is also
possible to specify a function with one argument (an object inheriting from
"IndependenceTestStatistic") that returns an object of class "NullDistribution".

alternative a character, the alternative hypothesis: either "two.sided" (default), "greater"
or "less".

xtrafo a function of transformations to be applied to the variables x1, . . . , xp supplied
in formula; see ‘Details’. Defaults to trafo().

ytrafo a function of transformations to be applied to the variables y1, . . . , yq supplied
in formula; see ‘Details’. Defaults to trafo().

scores a named list of scores to be attached to ordered factors; see ‘Details’. Defaults
to NULL, implying equally spaced scores.

check a function to be applied to objects of class "IndependenceTest" in order to
check for specific properties of the data. Defaults to NULL.

... further arguments to be passed to or from other methods (currently ignored).

Details

independence_test() provides a general independence test for two sets of variables measured on
arbitrary scales. This function is based on the general framework for conditional inference proce-
dures proposed by Strasser and Weber (1999). The salient parts of the Strasser-Weber framework
are elucidated by Hothorn et al. (2006) and a thorough description of the software implementation
is given by Hothorn et al. (2008).

The null hypothesis of independence, or conditional independence given block, between y1, . . . ,
yq and x1, . . . , xp is tested.

A vector of case weights, e.g., observation counts, can be supplied through the weights argument
and the type of test statistic is specified by the teststat argument. Influence and regression func-
tions, i.e., transformations of y1, . . . , yq and x1, . . . , xp, are specified by the ytrafo and xtrafo

26 IndependenceTest

arguments, respectively; see trafo() for the collection of transformation functions currently avail-
able. This allows for implementation of both novel and familiar test statistics, e.g., the Pearson
χ2 test, the generalized Cochran-Mantel-Haenszel test, the Spearman correlation test, the Fisher-
Pitman permutation test, the Wilcoxon-Mann-Whitney test, the Kruskal-Wallis test and the family
of weighted logrank tests for censored data. Furthermore, multivariate extensions such as the mul-
tivariate Kruskal-Wallis test (Puri and Sen, 1966, 1971) can be implemented without much effort
(see ‘Examples’).

If, say, y1 and/or x1 are ordered factors, the default scores, 1:nlevels(y1) and 1:nlevels(x1),
respectively, can be altered using the scores argument; this argument can also be used to coerce
nominal factors to class "ordered". For example, when y1 is an ordered factor with four levels and
x1 is a nominal factor with three levels, scores = list(y1 = c(1, 3:5), x1 = c(1:2, 4)) supplies
the scores to be used. For ordered alternatives the scores must be monotonic, but non-monotonic
scores are also allowed for testing against, e.g., umbrella alternatives. The length of the score vector
must be equal to the number of factor levels.

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

Value

An object inheriting from class "IndependenceTest".

Note

Starting with coin version 1.1-0, maximum statistics and quadratic forms can no longer be specified
using teststat = "maxtype" and teststat = "quadtype", respectively (as was used in versions
prior to 0.4-5).

References

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2008). Implementing a class of
permutation tests: The coin package. Journal of Statistical Software 28(8), 1–23. doi:10.18637/
jss.v028.i08

Johnson, W. D., Mercante, D. E. and May, W. L. (1993). A computer package for the multivariate
nonparametric rank test in completely randomized experimental designs. Computer Methods and
Programs in Biomedicine 40(3), 217–225. doi:10.1016/01692607(93)90059T

Puri, M. L. and Sen, P. K. (1966). On a class of multivariate multisample rank order tests. Sankhya
A 28(4), 353–376.

Puri, M. L. and Sen, P. K. (1971). Nonparametric Methods in Multivariate Analysis. New York:
John Wiley & Sons.

Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical
Methods of Statistics 8(2), 220–250.

https://doi.org/10.1198/000313006X118430
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.1016/0169-2607%2893%2990059-T

IndependenceTest 27

Examples

One-sided exact van der Waerden (normal scores) test...
independence_test(asat ~ group, data = asat,

exact null distribution
distribution = "exact",
one-sided test
alternative = "greater",
apply normal scores to asat$asat
ytrafo = function(data)

trafo(data, numeric_trafo = normal_trafo),
indicator matrix of 1st level of asat$group
xtrafo = function(data)

trafo(data, factor_trafo = function(x)
matrix(x == levels(x)[1], ncol = 1)))

...or more conveniently
normal_test(asat ~ group, data = asat,

exact null distribution
distribution = "exact",
one-sided test
alternative = "greater")

Receptor binding assay of benzodiazepines
Johnson, Mercante and May (1993, Tab. 1)
benzos <- data.frame(

cerebellum = c(3.41, 3.50, 2.85, 4.43,
4.04, 7.40, 5.63, 12.86,
6.03, 6.08, 5.75, 8.09, 7.56),

brainstem = c(3.46, 2.73, 2.22, 3.16,
2.59, 4.18, 3.10, 4.49,
6.78, 7.54, 5.29, 4.57, 5.39),

cortex = c(10.52, 7.52, 4.57, 5.48,
7.16, 12.00, 9.36, 9.35,

11.54, 11.05, 9.92, 13.59, 13.21),
hypothalamus = c(19.51, 10.00, 8.27, 10.26,

11.43, 19.13, 14.03, 15.59,
24.87, 14.16, 22.68, 19.93, 29.32),

striatum = c(6.98, 5.07, 3.57, 5.34,
4.57, 8.82, 5.76, 11.72,
6.98, 7.54, 7.66, 9.69, 8.09),

hippocampus = c(20.31, 13.20, 8.58, 11.42,
13.79, 23.71, 18.35, 38.52,
21.56, 18.66, 19.24, 27.39, 26.55),

treatment = factor(rep(c("Lorazepam", "Alprazolam", "Saline"),
c(4, 4, 5)))

)

Approximative (Monte Carlo) multivariate Kruskal-Wallis test
Johnson, Mercante and May (1993, Tab. 2)
independence_test(cerebellum + brainstem + cortex +

hypothalamus + striatum + hippocampus ~ treatment,

28 IndependenceTest-class

data = benzos,
teststat = "quadratic",
distribution = approximate(nresample = 10000),
ytrafo = function(data)

trafo(data, numeric_trafo = rank_trafo)) # Q = 16.129

IndependenceTest-class

Class "IndependenceTest" and Its Subclasses

Description

Objects of class "IndependenceTest" and its subclasses "MaxTypeIndependenceTest", "QuadTypeIndependenceTest",
"ScalarIndependenceTest" and "ScalarIndependenceTestConfint" represent an independence
test including its original and transformed data structure, linear statistic, test statistic and reference
distribution.

Objects from the Class

Objects can be created by calls of the form

new("IndependenceTest", ...),

new("MaxTypeIndependenceTest", ...),

new("QuadTypeIndependenceTest", ...),

new("ScalarIndependenceTest", ...)

and

new("ScalarIndependenceTestConfint", ...).

Slots

For objects of classes "IndependenceTest", "MaxTypeIndependenceTest", "QuadTypeIndependenceTest",
"ScalarIndependenceTest" or "ScalarIndependenceTestConfint":

distribution: Object of class "PValue". The reference distribution.

statistic: Object of class "IndependenceTestStatistic". The test statistic, the linear statistic,
and the transformed and original data structures.

estimates: Object of class "list". The estimated parameters.

method: Object of class "character". The test method.

call: Object of class "call". The matched call.

Additionally, for objects of classes "ScalarIndependenceTest" or "ScalarIndependenceTestConfint":

IndependenceTest-class 29

parameter: Object of class "character". The tested parameter.

nullvalue: Object of class "numeric". The hypothesized value of the null hypothesis.

Additionally, for objects of class "ScalarIndependenceTestConfint":

confint: Object of class "function". The confidence interval function.

conf.level: Object of class "numeric". The confidence level.

Extends

For objects of classes "MaxTypeIndependenceTest", "QuadTypeIndependenceTest" or "ScalarIndependenceTest":
Class "IndependenceTest", directly.

For objects of class "ScalarIndependenceTestConfint":
Class "ScalarIndependenceTest", directly.
Class "IndependenceTest", by class "ScalarIndependenceTest", distance 2.

Known Subclasses

For objects of class "IndependenceTest":
Class "MaxTypeIndependenceTest", directly.
Class "QuadTypeIndependenceTest", directly.
Class "ScalarIndependenceTest", directly.
Class "ScalarIndependenceTestConfint", by class "ScalarIndependenceTest", distance 2.

For objects of class "ScalarIndependenceTest":
Class "ScalarIndependenceTestConfint", directly.

Methods

confint signature(object = "IndependenceTest"): See the documentation for confint-methods
(in package stats4) for details.

confint signature(object = "ScalarIndependenceTestConfint"): See the documentation for
confint-methods (in package stats4) for details.

covariance signature(object = "IndependenceTest"): See the documentation for covariance()
for details.

dperm signature(object = "IndependenceTest"): See the documentation for dperm() for de-
tails.

expectation signature(object = "IndependenceTest"): See the documentation for expectation()
for details.

midpvalue signature(object = "IndependenceTest"): See the documentation for midpvalue()
for details.

pperm signature(object = "IndependenceTest"): See the documentation for pperm() for de-
tails.

pvalue signature(object = "IndependenceTest"): See the documentation for pvalue() for
details.

pvalue signature(object = "MaxTypeIndependenceTest"): See the documentation for pvalue()
for details.

30 IndependenceTestProblem-class

pvalue_interval signature(object = "IndependenceTest"): See the documentation for pvalue_interval()
for details.

qperm signature(object = "IndependenceTest"): See the documentation for qperm() for de-
tails.

rperm signature(object = "IndependenceTest"): See the documentation for rperm() for de-
tails.

show signature(object = "IndependenceTest"): See the documentation for show() (in pack-
age methods) for details.

show signature(object = "MaxTypeIndependenceTest"): See the documentation for show()
(in package methods) for details.

show signature(object = "QuadTypeIndependenceTest"): See the documentation for show()
(in package methods) for details.

show signature(object = "ScalarIndependenceTest"): See the documentation for show()
(in package methods) for details.

show signature(object = "ScalarIndependenceTestConfint"): See the documentation for
show() (in package methods) for details.

size signature(object = "IndependenceTest"): See the documentation for size() for details.

statistic signature(object = "IndependenceTest"): See the documentation for statistic()
for details.

support signature(object = "IndependenceTest"): See the documentation for support() for
details.

variance signature(object = "IndependenceTest"): See the documentation for variance()
for details.

IndependenceTestProblem-class

Class "IndependenceTestProblem"

Description

Objects of class "IndependenceTestProblem" represent the transformed and original data struc-
tures corresponding to an independence problem.

Objects from the Class

Objects can be created by calls of the form

new("IndependenceTestProblem", object, xtrafo = trafo, ytrafo = trafo, ...)

where object is an object of class "IndependenceProblem", xtrafo is the regression function
g(X) and ytrafo is the influence function h(Y).

IndependenceTestStatistic-class 31

Slots

xtrans: Object of class "matrix". The transformed x.

ytrans: Object of class "matrix". The transformed y.

xtrafo: Object of class "function". The regression function for x.

ytrafo: Object of class "function". The influence function for y.

x: Object of class "data.frame". The variables x.

y: Object of class "data.frame". The variables y.

block: Object of class "factor". The block structure.

weights: Object of class "numeric". The case weights.

Extends

Class "IndependenceProblem", directly.

Known Subclasses

Class "IndependenceLinearStatistic", directly.
Class "IndependenceTestStatistic", by class "IndependenceLinearStatistic", distance 2.
Class "MaxTypeIndependenceTestStatistic", by class "IndependenceTestStatistic", dis-
tance 3.
Class "QuadTypeIndependenceTestStatistic", by class "IndependenceTestStatistic", dis-
tance 3.
Class "ScalarIndependenceTestStatistic", by class "IndependenceTestStatistic", distance
3.

Methods

initialize signature(.Object = "IndependenceTestProblem"): See the documentation for initialize()
(in package methods) for details.

IndependenceTestStatistic-class

Class "IndependenceTestStatistic" and Its Subclasses

Description

Objects of class "IndependenceTestStatistic" and its subclasses "MaxTypeIndependenceTestStatistic",
"QuadTypeIndependenceTestStatistic" and "ScalarIndependenceTestStatistic" represent
the test statistic, the linear statistic, and the transformed and original data structures corresponding
to an independence problem.

32 IndependenceTestStatistic-class

Objects from the Class

Class "IndependenceTestStatistic" is a virtual class, so objects cannot be created from it di-
rectly.

Objects can be created by calls of the form

new("MaxTypeIndependenceTestStatistic", object,
alternative = c("two.sided", "less", "greater"), ...),

new("QuadTypeIndependenceTestStatistic", object, paired = FALSE, ...)

and

new("ScalarIndependenceTestStatistic", object,
alternative = c("two.sided", "less", "greater"), paired = FALSE, ...)

where object is an object of class "IndependenceLinearStatistic", alternative is a character
specifying the direction of the alternative hypothesis and paired is a logical indicating that paired
data have been transformed in such a way that the (unstandardized) linear statistic is the sum of the
absolute values of the positive differences between the paired observations.

Slots

For objects of classes "IndependenceTestStatistic", "MaxTypeIndependenceTestStatistic",
"QuadTypeIndependenceTestStatistic" or "ScalarIndependenceTestStatistic":

teststatistic: Object of class "numeric". The test statistic.

standardizedlinearstatistic: Object of class "numeric". The standardized linear statistic.

linearstatistic: Object of class "matrix". The linear statistic for each block.

expectation: Object of class "matrix". The expectation of the linear statistic for each block.

covariance: Object of class "matrix". The lower triangular elements of the covariance of the
linear statistic for each block.

xtrans: Object of class "matrix". The transformed x.

ytrans: Object of class "matrix". The transformed y.

xtrafo: Object of class "function". The regression function for x.

ytrafo: Object of class "function". The influence function for y.

x: Object of class "data.frame". The variables x.

y: Object of class "data.frame". The variables y.

block: Object of class "factor". The block structure.

weights: Object of class "numeric". The case weights.

Additionally, for objects of classes "MaxTypeIndependenceTest" or "ScalarIndependenceTest":

alternative: Object of class "character". The direction of the alternative hypothesis.

Additionally, for objects of class "QuadTypeIndependenceTest":

IndependenceTestStatistic-class 33

covarianceplus: Object of class "numeric". The lower triangular elements of the Moore-Penrose
inverse of the covariance of the linear statistic.

df: Object of class "numeric". The rank of the covariance matrix.

Additionally, for objects of classes "QuadTypeIndependenceTest" or "ScalarIndependenceTest":

paired: Object of class "logical". The indicator for paired test statistics.

Extends

For objects of class "IndependenceTestStatistic":
Class "IndependenceLinearStatistic", directly.
Class "IndependenceTestProblem", by class "IndependenceLinearStatistic", distance 2.
Class "IndependenceProblem", by class "IndependenceLinearStatistic", distance 3.

For objects of classes "MaxTypeIndependenceTestStatistic", "QuadTypeIndependenceTestStatistic"
or "ScalarIndependenceTestStatistic":
Class "IndependenceTestStatistic", directly.
Class "IndependenceLinearStatistic", by class "IndependenceTestStatistic", distance 2.
Class "IndependenceTestProblem", by class "IndependenceTestStatistic", distance 3.
Class "IndependenceProblem", by class "IndependenceTestStatistic", distance 4.

Known Subclasses

For objects of class "IndependenceTestStatistic":
Class "MaxTypeIndependenceTestStatistic", directly.
Class "QuadTypeIndependenceTestStatistic", directly.
Class "ScalarIndependenceTestStatistic", directly.

Methods

ApproxNullDistribution signature(object = "MaxTypeIndependenceTestStatistic"): See
the documentation for ApproxNullDistribution() for details.

ApproxNullDistribution signature(object = "QuadTypeIndependenceTestStatistic"): See
the documentation for ApproxNullDistribution() for details.

ApproxNullDistribution signature(object = "ScalarIndependenceTestStatistic"): See the
documentation for ApproxNullDistribution() for details.

AsymptNullDistribution signature(object = "MaxTypeIndependenceTestStatistic"): See
the documentation for AsymptNullDistribution() for details.

AsymptNullDistribution signature(object = "QuadTypeIndependenceTestStatistic"): See
the documentation for AsymptNullDistribution() for details.

AsymptNullDistribution signature(object = "ScalarIndependenceTestStatistic"): See the
documentation for AsymptNullDistribution() for details.

ExactNullDistribution signature(object = "QuadTypeIndependenceTestStatistic"): See the
documentation for ExactNullDistribution() for details.

ExactNullDistribution signature(object = "ScalarIndependenceTestStatistic"): See the
documentation for ExactNullDistribution() for details.

34 jobsatisfaction

covariance signature(object = "QuadTypeIndependenceTestStatistic"): See the documen-
tation for covariance() for details.

initialize signature(.Object = "IndependenceTestStatistic"): See the documentation for
initialize() (in package methods) for details.

initialize signature(.Object = "MaxTypeIndependenceTestStatistic"): See the documenta-
tion for initialize() (in package methods) for details.

initialize signature(.Object = "QuadTypeIndependenceTestStatistic"): See the documen-
tation for initialize() (in package methods) for details.

initialize signature(.Object = "ScalarIndependenceTestStatistic"): See the documenta-
tion for initialize() (in package methods) for details.

statistic signature(object = "IndependenceTestStatistic"): See the documentation for statistic()
for details.

jobsatisfaction Income and Job Satisfaction

Description

Income and job satisfaction by gender.

Usage

jobsatisfaction

Format

A contingency table with 104 observations on 3 variables.

Income a factor with levels "<5000", "5000-15000", "15000-25000" and ">25000".

Job.Satisfaction a factor with levels "Very Dissatisfied", "A Little Satisfied", "Moderately
Satisfied" and "Very Satisfied".

Gender a factor with levels "Female" and "Male".

Details

This data set was given in Agresti (2002, p. 288, Tab. 7.8). Winell and Lindbäck (2018) used the
data to demonstrate a score-independent test for ordered categorical data.

Source

Agresti, A. (2002). Categorical Data Analysis, Second Edition. Hoboken, New Jersey: John Wiley
& Sons.

References

Winell, H. and Lindbäck, J. (2018). A general score-independent test for order-restricted inference.
Statistics in Medicine 37(21), 3078–3090. doi:10.1002/sim.7690

https://doi.org/10.1002/sim.7690

LocationTests 35

Examples

Approximative (Monte Carlo) linear-by-linear association test
lbl_test(jobsatisfaction, distribution = approximate(nresample = 10000))

Not run:
Approximative (Monte Carlo) score-independent test
Winell and Lindbaeck (2018)
(it <- independence_test(jobsatisfaction,

distribution = approximate(nresample = 10000),
xtrafo = function(data)

trafo(data, factor_trafo = function(x)
zheng_trafo(as.ordered(x))),

ytrafo = function(data)
trafo(data, factor_trafo = function(y)

zheng_trafo(as.ordered(y)))))

Extract the "best" set of scores
ss <- statistic(it, type = "standardized")
idx <- which(abs(ss) == max(abs(ss)), arr.ind = TRUE)
ss[idx[1], idx[2], drop = FALSE]
End(Not run)

LocationTests Two- and K-Sample Location Tests

Description

Testing the equality of the distributions of a numeric response variable in two or more independent
groups against shift alternatives.

Usage

S3 method for class 'formula'
oneway_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
oneway_test(object, ...)

S3 method for class 'formula'
wilcox_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
wilcox_test(object, conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
kruskal_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
kruskal_test(object, ...)

S3 method for class 'formula'

36 LocationTests

normal_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
normal_test(object, ties.method = c("mid-ranks", "average-scores"),

conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
median_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
median_test(object, mid.score = c("0", "0.5", "1"),

conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
savage_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
savage_test(object, ties.method = c("mid-ranks", "average-scores"),

conf.int = FALSE, conf.level = 0.95, ...)

Arguments

formula a formula of the form y ~ x | block where y is a numeric variable, x is a factor
and block is an optional factor for stratification.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations.

object an object inheriting from class "IndependenceProblem".

conf.int a logical indicating whether a confidence interval for the difference in location
should be computed. Defaults to FALSE.

conf.level a numeric, confidence level of the interval. Defaults to 0.95.

ties.method a character, the method used to handle ties: the score generating function ei-
ther uses mid-ranks ("mid-ranks", default) or averages the scores of randomly
broken ties ("average-scores").

mid.score a character, the score assigned to observations exactly equal to the median: ei-
ther 0 ("0", default), 0.5 ("0.5") or 1 ("1"); see ‘Details’.

... further arguments to be passed to independence_test().

Details

oneway_test(), wilcox_test(), kruskal_test(), normal_test(), median_test() and savage_test()
provide the Fisher-Pitman permutation test, the Wilcoxon-Mann-Whitney test, the Kruskal-Wallis
test, the van der Waerden test, the Brown-Mood median test and the Savage test. A general descrip-
tion of these methods is given by Hollander and Wolfe (1999). For the adjustment of scores for tied
values see Hájek, Šidák and Sen (1999, pp. 133–135).

The null hypothesis of equality, or conditional equality given block, of the distribution of y in the
groups defined by x is tested against shift alternatives. In the two-sample case, the two-sided null

LocationTests 37

hypothesis is H0 : µ = 0, where µ = Y1 − Y2 and Ys is the median of the responses in the sth
sample. In case alternative = "less", the null hypothesis is H0 : µ ≥ 0. When alternative =
"greater", the null hypothesis is H0 : µ ≤ 0. Confidence intervals for the difference in location
are available (except for oneway_test()) and computed according to Bauer (1972).

If x is an ordered factor, the default scores, 1:nlevels(x), can be altered using the scores ar-
gument (see independence_test()); this argument can also be used to coerce nominal factors to
class "ordered". In this case, a linear-by-linear association test is computed and the direction of
the alternative hypothesis can be specified using the alternative argument.

The Brown-Mood median test offers a choice of mid-score, i.e., the score assigned to observations
exactly equal to the median. In the two-sample case, mid-score = "0" implies that the linear test
statistic is simply the number of subjects in the second sample with observations greater than the
median of the pooled sample. Similarly, the linear test statistic for the last alternative, mid-score
= "1", is the number of subjects in the second sample with observations greater than or equal to the
median of the pooled sample. If mid-score = "0.5" is selected, the linear test statistic is the mean
of the test statistics corresponding to the first and last alternatives and has a symmetric distribution,
or at least approximately so, under the null hypothesis (see Hájek, Šidák and Sen, 1999, pp. 97–98).

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

Value

An object inheriting from class "IndependenceTest". Confidence intervals can be extracted by
confint().

Note

Starting with coin version 1.1-0, oneway_test() no longer allows the test statistic to be specified;
a quadratic form is now used in the K-sample case. Please use independence_test() if more
control is desired.

References

Bauer, D. F. (1972). Constructing confidence sets using rank statistics. Journal of the American
Statistical Association 67(339), 687–690. doi:10.1080/01621459.1972.10481279

Hájek, J., Šidák, Z. and Sen, P. K. (1999). Theory of Rank Tests, Second Edition. San Diego:
Academic Press.

Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Methods, Second Edition. New
York: John Wiley & Sons.

Examples

Tritiated Water Diffusion Across Human Chorioamnion
Hollander and Wolfe (1999, p. 110, Tab. 4.1)
diffusion <- data.frame(

https://doi.org/10.1080/01621459.1972.10481279

38 LocationTests

pd = c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46,
1.15, 0.88, 0.90, 0.74, 1.21),

age = factor(rep(c("At term", "12-26 Weeks"), c(10, 5)))
)

Exact Wilcoxon-Mann-Whitney test
Hollander and Wolfe (1999, p. 111)
(At term - 12-26 Weeks)
(wt <- wilcox_test(pd ~ age, data = diffusion,

distribution = "exact", conf.int = TRUE))

Extract observed Wilcoxon statistic
Note: this is the sum of the ranks for age = "12-26 Weeks"
statistic(wt, type = "linear")

Expectation, variance, two-sided pvalue and confidence interval
expectation(wt)
covariance(wt)
pvalue(wt)
confint(wt)

For two samples, the Kruskal-Wallis test is equivalent to the W-M-W test
kruskal_test(pd ~ age, data = diffusion,

distribution = "exact")

Asymptotic Fisher-Pitman test
oneway_test(pd ~ age, data = diffusion)

Approximative (Monte Carlo) Fisher-Pitman test
pvalue(oneway_test(pd ~ age, data = diffusion,

distribution = approximate(nresample = 10000)))

Exact Fisher-Pitman test
pvalue(ot <- oneway_test(pd ~ age, data = diffusion,

distribution = "exact"))

Plot density and distribution of the standardized test statistic
op <- par(no.readonly = TRUE) # save current settings
layout(matrix(1:2, nrow = 2))
s <- support(ot)
d <- dperm(ot, s)
p <- pperm(ot, s)
plot(s, d, type = "S", xlab = "Test Statistic", ylab = "Density")
plot(s, p, type = "S", xlab = "Test Statistic", ylab = "Cum. Probability")
par(op) # reset

Example data
ex <- data.frame(

y = c(3, 4, 8, 9, 1, 2, 5, 6, 7),
x = factor(rep(c("no", "yes"), c(4, 5)))

)

LocationTests 39

Boxplots
boxplot(y ~ x, data = ex)

Exact Brown-Mood median test with different mid-scores
(mt1 <- median_test(y ~ x, data = ex, distribution = "exact"))
(mt2 <- median_test(y ~ x, data = ex, distribution = "exact",

mid.score = "0.5"))
(mt3 <- median_test(y ~ x, data = ex, distribution = "exact",

mid.score = "1")) # sign change!

Plot density and distribution of the standardized test statistics
op <- par(no.readonly = TRUE) # save current settings
layout(matrix(1:3, nrow = 3))
s1 <- support(mt1); d1 <- dperm(mt1, s1)
plot(s1, d1, type = "h", main = "Mid-score: 0",

xlab = "Test Statistic", ylab = "Density")
s2 <- support(mt2); d2 <- dperm(mt2, s2)
plot(s2, d2, type = "h", main = "Mid-score: 0.5",

xlab = "Test Statistic", ylab = "Density")
s3 <- support(mt3); d3 <- dperm(mt3, s3)
plot(s3, d3, type = "h", main = "Mid-score: 1",

xlab = "Test Statistic", ylab = "Density")
par(op) # reset

Length of YOY Gizzard Shad
Hollander and Wolfe (1999, p. 200, Tab. 6.3)
yoy <- data.frame(

length = c(46, 28, 46, 37, 32, 41, 42, 45, 38, 44,
42, 60, 32, 42, 45, 58, 27, 51, 42, 52,
38, 33, 26, 25, 28, 28, 26, 27, 27, 27,
31, 30, 27, 29, 30, 25, 25, 24, 27, 30),

site = gl(4, 10, labels = as.roman(1:4))
)

Approximative (Monte Carlo) Kruskal-Wallis test
kruskal_test(length ~ site, data = yoy,

distribution = approximate(nresample = 10000))

Approximative (Monte Carlo) Nemenyi-Damico-Wolfe-Dunn test (joint ranking)
Hollander and Wolfe (1999, p. 244)
(where Steel-Dwass results are given)
it <- independence_test(length ~ site, data = yoy,

distribution = approximate(nresample = 50000),
ytrafo = function(data)

trafo(data, numeric_trafo = rank_trafo),
xtrafo = mcp_trafo(site = "Tukey"))

Global p-value
pvalue(it)

Sites (I = II) != (III = IV) at alpha = 0.01 (p. 244)
pvalue(it, method = "single-step") # subset pivotality is violated

40 malformations

malformations Maternal Drinking and Congenital Sex Organ Malformation

Description

A subset of data from a study on the relationship between maternal alcohol consumption and con-
genital malformations.

Usage

malformations

Format

A data frame with 32574 observations on 2 variables.

consumption alcohol consumption, an ordered factor with levels "0", "<1", "1-2", "3-5" and
">=6".

malformation congenital sex organ malformation, a factor with levels "Present" and "Absent".

Details

Data from a prospective study undertaken to determine whether moderate or light drinking during
the first trimester of pregnancy increases the risk for congenital malformations (Mills and Graubard,
1987). The subset given here concerns only sex organ malformation (Mills and Graubard, 1987,
Tab. 4).

This data set was used by Graubard and Korn (1987) to illustrate that different choices of scores for
ordinal variables can lead to conflicting conclusions. Zheng (2008) also used the data, demonstrat-
ing two different score-independent tests for ordered categorical data; see also Winell and Lindbäck
(2018).

Source

Mills, J. L. and Graubard, B. I. (1987). Is moderate drinking during pregnancy associated with an
increased risk for malformations? Pediatrics 80(3), 309–314.

References

Graubard, B. I. and Korn, E. L. (1987). Choice of column scores for testing independence in ordered
2×K contingency tables. Biometrics 43(2), 471–476. doi:10.2307/2531828

Winell, H. and Lindbäck, J. (2018). A general score-independent test for order-restricted inference.
Statistics in Medicine 37(21), 3078–3090. doi:10.1002/sim.7690

Zheng, G. (2008). Analysis of ordered categorical data: Two score-independent approaches. Bio-
metrics 64(4), 1276—1279. doi:10.1111/j.15410420.2008.00992.x

https://doi.org/10.2307/2531828
https://doi.org/10.1002/sim.7690
https://doi.org/10.1111/j.1541-0420.2008.00992.x

MarginalHomogeneityTests 41

Examples

Graubard and Korn (1987, Tab. 3)

One-sided approximative (Monte Carlo) Cochran-Armitage test
Note: midpoint scores (p < 0.05)
midpoints <- c(0, 0.5, 1.5, 4.0, 7.0)
chisq_test(malformation ~ consumption, data = malformations,

distribution = approximate(nresample = 1000),
alternative = "greater",
scores = list(consumption = midpoints))

One-sided approximative (Monte Carlo) Cochran-Armitage test
Note: midrank scores (p > 0.05)
midranks <- c(8557.5, 24375.5, 32013.0, 32473.0, 32555.5)
chisq_test(malformation ~ consumption, data = malformations,

distribution = approximate(nresample = 1000),
alternative = "greater",
scores = list(consumption = midranks))

One-sided approximative (Monte Carlo) Cochran-Armitage test
Note: equally spaced scores (p > 0.05)
chisq_test(malformation ~ consumption, data = malformations,

distribution = approximate(nresample = 1000),
alternative = "greater")

Not run:
One-sided approximative (Monte Carlo) score-independent test
Winell and Lindbaeck (2018)
(it <- independence_test(malformation ~ consumption, data = malformations,

distribution = approximate(nresample = 1000,
parallel = "snow",
ncpus = 8),

alternative = "greater",
xtrafo = function(data)

trafo(data, ordered_trafo = zheng_trafo)))

Extract the "best" set of scores
ss <- statistic(it, type = "standardized")
idx <- which(ss == max(ss), arr.ind = TRUE)
ss[idx[1], idx[2], drop = FALSE]
End(Not run)

MarginalHomogeneityTests

Marginal Homogeneity Tests

Description

Testing the marginal homogeneity of a repeated measurements factor in a complete block design.

42 MarginalHomogeneityTests

Usage

S3 method for class 'formula'
mh_test(formula, data, subset = NULL, ...)
S3 method for class 'table'
mh_test(object, ...)
S3 method for class 'SymmetryProblem'
mh_test(object, ...)

Arguments

formula a formula of the form y ~ x | block where y and x are factors and block is an
optional factor (which is generated automatically if omitted).

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

object an object inheriting from classes "table" (with identical dimnames compo-
nents) or "SymmetryProblem".

... further arguments to be passed to symmetry_test().

Details

mh_test() provides the McNemar test, the Cochran Q test, the Stuart(-Maxwell) test and the
Madansky test of interchangeability. A general description of these methods is given by Agresti
(2002).

The null hypothesis of marginal homogeneity is tested. The response variable and the measurement
conditions are given by y and x, respectively, and block is a factor where each level corresponds to
exactly one subject with repeated measurements.

This procedure is known as the McNemar test (McNemar, 1947) when both y and x are binary
factors, as the Cochran Q test (Cochran, 1950) when y is a binary factor and x is a factor with an
arbitrary number of levels, as the Stuart(-Maxwell) test (Stuart, 1955; Maxwell, 1970) when y is
a factor with an arbitrary number of levels and x is a binary factor, and as the Madansky test of
interchangeability (Madansky, 1963), which implies marginal homogeneity, when both y and x are
factors with an arbitrary number of levels.

If y and/or x are ordered factors, the default scores, 1:nlevels(y) and 1:nlevels(x), respectively,
can be altered using the scores argument (see symmetry_test()); this argument can also be used
to coerce nominal factors to class "ordered". If both y and x are ordered factors, a linear-by-linear
association test is computed and the direction of the alternative hypothesis can be specified using the
alternative argument. This extension was given by Birch (1965) who also discussed the situation
when either the response or the measurement condition is an ordered factor; see also White, Landis
and Cooper (1982).

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

MarginalHomogeneityTests 43

Value

An object inheriting from class "IndependenceTest".

Note

This function is currently computationally inefficient for data with a large number of pairs or sets.

References

Agresti, A. (2002). Categorical Data Analysis, Second Edition. Hoboken, New Jersey: John Wiley
& Sons.

Birch, M. W. (1965). The detection of partial association, II: The general case. Journal of the Royal
Statistical Society B 27(1), 111–124. doi:10.1111/j.25176161.1965.tb00593.x

Cochran, W. G. (1950). The comparison of percentages in matched samples. Biometrika 37(3/4),
256–266. doi:10.1093/biomet/37.34.256

Madansky, A. (1963). Tests of homogeneity for correlated samples. Journal of the American Sta-
tistical Association 58(301), 97–119. doi:10.1080/01621459.1963.10500835

Maxwell, A. E. (1970). Comparing the classification of subjects by two independent judges. British
Journal of Psychiatry 116(535), 651–655. doi:10.1192/bjp.116.535.651

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika 12(2), 153–157. doi:10.1007/BF02295996

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika 42(3/4), 412–416. doi:10.1093/biomet/42.34.412

White, A. A., Landis, J. R. and Cooper, M. M. (1982). A note on the equivalence of several
marginal homogeneity test criteria for categorical data. International Statistical Review 50(1), 27–
34. doi:10.2307/1402457

Examples

Performance of prime minister
Agresti (2002, p. 409)
performance <- matrix(

c(794, 150,
86, 570),

nrow = 2, byrow = TRUE,
dimnames = list(

"First" = c("Approve", "Disprove"),
"Second" = c("Approve", "Disprove")

)
)
performance <- as.table(performance)
diag(performance) <- 0 # speed-up: only off-diagonal elements contribute

Asymptotic McNemar Test
mh_test(performance)

Exact McNemar Test
mh_test(performance, distribution = "exact")

https://doi.org/10.1111/j.2517-6161.1965.tb00593.x
https://doi.org/10.1093/biomet/37.3-4.256
https://doi.org/10.1080/01621459.1963.10500835
https://doi.org/10.1192/bjp.116.535.651
https://doi.org/10.1007/BF02295996
https://doi.org/10.1093/biomet/42.3-4.412
https://doi.org/10.2307/1402457

44 MarginalHomogeneityTests

Effectiveness of different media for the growth of diphtheria
Cochran (1950, Tab. 2)
cases <- c(4, 2, 3, 1, 59)
n <- sum(cases)
cochran <- data.frame(

diphtheria = factor(
unlist(rep(list(c(1, 1, 1, 1),

c(1, 1, 0, 1),
c(0, 1, 1, 1),
c(0, 1, 0, 1),
c(0, 0, 0, 0)),

cases))
),
media = factor(rep(LETTERS[1:4], n)),
case = factor(rep(seq_len(n), each = 4))

)

Asymptotic Cochran Q test (Cochran, 1950, p. 260)
mh_test(diphtheria ~ media | case, data = cochran) # Q = 8.05

Approximative Cochran Q test
mt <- mh_test(diphtheria ~ media | case, data = cochran,

distribution = approximate(nresample = 10000))
pvalue(mt) # standard p-value
midpvalue(mt) # mid-p-value
pvalue_interval(mt) # p-value interval
size(mt, alpha = 0.05) # test size at alpha = 0.05 using the p-value

Opinions on Pre- and Extramarital Sex
Agresti (2002, p. 421)
opinions <- c("Always wrong", "Almost always wrong",

"Wrong only sometimes", "Not wrong at all")
PreExSex <- matrix(

c(144, 33, 84, 126,
2, 4, 14, 29,
0, 2, 6, 25,
0, 0, 1, 5),

nrow = 4,
dimnames = list(

"Premarital Sex" = opinions,
"Extramarital Sex" = opinions

)
)
PreExSex <- as.table(PreExSex)

Asymptotic Stuart test
mh_test(PreExSex)

Asymptotic Stuart-Birch test
Note: response as ordinal

MaximallySelectedStatisticsTests 45

mh_test(PreExSex, scores = list(response = 1:length(opinions)))

Vote intention
Madansky (1963, pp. 107-108)
vote <- array(

c(120, 1, 8, 2, 2, 1, 2, 1, 7,
6, 2, 1, 1, 103, 5, 1, 4, 8,
20, 3, 31, 1, 6, 30, 2, 1, 81),

dim = c(3, 3, 3),
dimnames = list(

"July" = c("Republican", "Democratic", "Uncertain"),
"August" = c("Republican", "Democratic", "Uncertain"),

"June" = c("Republican", "Democratic", "Uncertain")
)

)
vote <- as.table(vote)

Asymptotic Madansky test (Q = 70.77)
mh_test(vote)

Cross-over study
http://www.nesug.org/proceedings/nesug00/st/st9005.pdf
dysmenorrhea <- array(

c(6, 2, 1, 3, 1, 0, 1, 2, 1,
4, 3, 0, 13, 3, 0, 8, 1, 1,
5, 2, 2, 10, 1, 0, 14, 2, 0),

dim = c(3, 3, 3),
dimnames = list(

"Placebo" = c("None", "Moderate", "Complete"),
"Low dose" = c("None", "Moderate", "Complete"),
"High dose" = c("None", "Moderate", "Complete")

)
)
dysmenorrhea <- as.table(dysmenorrhea)

Asymptotic Madansky-Birch test (Q = 53.76)
Note: response as ordinal
mh_test(dysmenorrhea, scores = list(response = 1:3))

Asymptotic Madansky-Birch test (Q = 47.29)
Note: response and measurement conditions as ordinal
mh_test(dysmenorrhea, scores = list(response = 1:3,

conditions = 1:3))

MaximallySelectedStatisticsTests

Generalized Maximally Selected Statistics

46 MaximallySelectedStatisticsTests

Description

Testing the independence of two sets of variables measured on arbitrary scales against cutpoint
alternatives.

Usage

S3 method for class 'formula'
maxstat_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'table'
maxstat_test(object, ...)
S3 method for class 'IndependenceProblem'
maxstat_test(object, teststat = c("maximum", "quadratic"),

distribution = c("asymptotic", "approximate", "none"),
minprob = 0.1, maxprob = 1 - minprob, ...)

Arguments

formula a formula of the form y1 + ... + yq ~ x1 + ... + xp | block where y1, . . . , yq
and x1, . . . , xp are measured on arbitrary scales (nominal, ordinal or continuous
with or without censoring) and block is an optional factor for stratification.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations.

object an object inheriting from classes "table" or "IndependenceProblem".

teststat a character, the type of test statistic to be applied: either a maximum statistic
("maximum", default) or a quadratic form ("quadratic").

distribution a character, the conditional null distribution of the test statistic can be approx-
imated by its asymptotic distribution ("asymptotic", default) or via Monte
Carlo resampling ("approximate"). Alternatively, the functions asymptotic
or approximate can be used. Computation of the null distribution can be sup-
pressed by specifying "none".

minprob a numeric, a fraction between 0 and 0.5 specifying that cutpoints only greater
than the minprob · 100% quantile of x1, . . . , xp are considered. Defaults to 0.1.

maxprob a numeric, a fraction between 0.5 and 1 specifying that cutpoints only smaller
than the maxprob · 100% quantile of x1, . . . , xp are considered. Defaults to 1 -
minprob.

... further arguments to be passed to independence_test().

Details

maxstat_test() provides generalized maximally selected statistics. The family of maximally se-
lected statistics encompasses a large collection of procedures used for the estimation of simple
cutpoint models including, but not limited to, maximally selected χ2 statistics, maximally selected

MaximallySelectedStatisticsTests 47

Cochran-Armitage statistics, maximally selected rank statistics and maximally selected statistics for
multiple covariates. A general description of these methods is given by Hothorn and Zeileis (2008).

The null hypothesis of independence, or conditional independence given block, between y1, . . . ,
yq and x1, . . . , xp is tested against cutpoint alternatives. All possible partitions into two groups are
evaluated for each unordered covariate x1, . . . , xp, whereas only order-preserving binary partitions
are evaluated for ordered or numeric covariates. The cutpoint is then a set of levels defining one of
the two groups.

If both response and covariate is univariable, say y1 and x1, this procedure is known as maximally
selected χ2 statistics (Miller and Siegmund, 1982) when y1 is a binary factor and x1 is a numeric
variable, and as maximally selected rank statistics when y1 is a rank transformed numeric variable
and x1 is a numeric variable (Lausen and Schumacher, 1992). Lausen et al. (2004) introduced
maximally selected statistics for a univariable numeric response and multiple numeric covariates
x1, . . . , xp.

If, say, y1 and/or x1 are ordered factors, the default scores, 1:nlevels(y1) and 1:nlevels(x1),
respectively, can be altered using the scores argument (see independence_test()); this argument
can also be used to coerce nominal factors to class "ordered". If both, say, y1 and x1 are ordered
factors, a linear-by-linear association test is computed and the direction of the alternative hypothesis
can be specified using the alternative argument. The particular extension to the case of a univari-
able ordered response and a univariable numeric covariate was given by Betensky and Rabinowitz
(1999) and is known as maximally selected Cochran-Armitage statistics.

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling by setting distribution
to "approximate". See asymptotic() and approximate() for details.

Value

An object inheriting from class "IndependenceTest".

Note

Starting with coin version 1.1-0, maximum statistics and quadratic forms can no longer be specified
using teststat = "maxtype" and teststat = "quadtype", respectively (as was used in versions
prior to 0.4-5).

References

Betensky, R. A. and Rabinowitz, D. (1999). Maximally selected χ2 statistics for k × 2 tables.
Biometrics 55(1), 317–320. doi:10.1111/j.0006341X.1999.00317.x

Hothorn, T. and Lausen, B. (2003). On the exact distribution of maximally selected rank statistics.
Computational Statistics & Data Analysis 43(2), 121–137. doi:10.1016/S01679473(02)002256

Hothorn, T. and Zeileis, A. (2008). Generalized maximally selected statistics. Biometrics 64(4),
1263–1269. doi:10.1111/j.15410420.2008.00995.x

Lausen, B., Hothorn, T., Bretz, F. and Schumacher, M. (2004). Assessment of optimal selected
prognostic factors. Biometrical Journal 46(3), 364–374. doi:10.1002/bimj.200310030

Lausen, B. and Schumacher, M. (1992). Maximally selected rank statistics. Biometrics 48(1),
73–85. doi:10.2307/2532740

https://doi.org/10.1111/j.0006-341X.1999.00317.x
https://doi.org/10.1016/S0167-9473%2802%2900225-6
https://doi.org/10.1111/j.1541-0420.2008.00995.x
https://doi.org/10.1002/bimj.200310030
https://doi.org/10.2307/2532740

48 mercuryfish

Miller, R. and Siegmund, D. (1982). Maximally selected chi square statistics. Biometrics 38(4),
1011–1016. doi:10.2307/2529881

Müller, J. and Hothorn, T. (2004). Maximally selected two-sample statistics as a new tool for the
identification and assessment of habitat factors with an application to breeding bird communities in
oak forests. European Journal of Forest Research 123(3), 219–228. doi:10.1007/s1034200400355

Examples

Tree pipit data (Mueller and Hothorn, 2004)
Asymptotic maximally selected statistics
maxstat_test(counts ~ coverstorey, data = treepipit)

Asymptotic maximally selected statistics
Note: all covariates simultaneously
mt <- maxstat_test(counts ~ ., data = treepipit)
mt@estimates$estimate

Malignant arrythmias data (Hothorn and Lausen, 2003, Sec. 7.2)
Asymptotic maximally selected statistics
maxstat_test(Surv(time, event) ~ EF, data = hohnloser,

ytrafo = function(data)
trafo(data, surv_trafo = function(y)

logrank_trafo(y, ties.method = "Hothorn-Lausen")))

Breast cancer data (Hothorn and Lausen, 2003, Sec. 7.3)
Asymptotic maximally selected statistics
data("sphase", package = "TH.data")
maxstat_test(Surv(RFS, event) ~ SPF, data = sphase,

ytrafo = function(data)
trafo(data, surv_trafo = function(y)

logrank_trafo(y, ties.method = "Hothorn-Lausen")))

Job satisfaction data (Agresti, 2002, p. 288, Tab. 7.8)
Asymptotic maximally selected statistics
maxstat_test(jobsatisfaction)

Asymptotic maximally selected statistics
Note: 'Job.Satisfaction' and 'Income' as ordinal
maxstat_test(jobsatisfaction,

scores = list("Job.Satisfaction" = 1:4,
"Income" = 1:4))

mercuryfish Chromosomal Effects of Mercury-Contaminated Fish Consumption

https://doi.org/10.2307/2529881
https://doi.org/10.1007/s10342-004-0035-5

mercuryfish 49

Description

The mercury level in blood, the proportion of cells with abnormalities, and the proportion of cells
with chromosome aberrations in consumers of mercury-contaminated fish and a control group.

Usage

mercuryfish

Format

A data frame with 39 observations on 4 variables.

group a factor with levels "control" and "exposed".

mercury mercury level in blood.

abnormal the proportion of cells with structural abnormalities.

ccells the proportion of Cu cells, i.e., cells with asymmetrical or incomplete-symmetrical chro-
mosome aberrations.

Details

Control subjects ("control") and subjects who ate contaminated fish for more than three years
("exposed") are under study.

Rosenbaum (1994) proposed a coherence criterion defining a partial ordering, i.e., an observation is
smaller than another when all responses are smaller, and a score reflecting the “ranking” is attached
to each observation. The corresponding partially ordered set (POSET) test can be used to test if the
distribution of the scores differ between the groups. Alternatively, a multivariate test can be applied.

Source

Skerfving, S., Hansson, K., Mangs, C., Lindsten, J. and Ryman, N. (1974). Methylmercury-
induced chromosome damage in men. Environmental Research 7(1), 83–98. doi:10.1016/0013-
9351(74)900784

References

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

Rosenbaum, P. R. (1994). Coherence in observational studies. Biometrics 50(2), 368–374. doi:10.2307/
2533380

Examples

Coherence criterion
coherence <- function(data) {

x <- as.matrix(data)
matrix(apply(x, 1, function(y)

sum(colSums(t(x) < y) == ncol(x)) -
sum(colSums(t(x) > y) == ncol(x))), ncol = 1)

}

https://doi.org/10.1016/0013-9351%2874%2990078-4
https://doi.org/10.1016/0013-9351%2874%2990078-4
https://doi.org/10.1198/000313006X118430
https://doi.org/10.2307/2533380
https://doi.org/10.2307/2533380

50 neuropathy

Asymptotic POSET test
poset <- independence_test(mercury + abnormal + ccells ~ group,

data = mercuryfish, ytrafo = coherence)

Linear statistic (T in the notation of Rosenbaum, 1994)
statistic(poset, type = "linear")

Expectation
expectation(poset)

Variance
Note: typo in Rosenbaum (1994, p. 371, Sec. 2, last paragraph)
variance(poset)

Standardized statistic
statistic(poset)

P-value
pvalue(poset)

Exact POSET test
independence_test(mercury + abnormal + ccells ~ group,

data = mercuryfish, ytrafo = coherence,
distribution = "exact")

Asymptotic multivariate test
mvtest <- independence_test(mercury + abnormal + ccells ~ group,

data = mercuryfish)

Global p-value
pvalue(mvtest)

Single-step adjusted p-values
pvalue(mvtest, method = "single-step")

Step-down adjusted p-values
pvalue(mvtest, method = "step-down")

neuropathy Acute Painful Diabetic Neuropathy

Description

The logarithm of the ratio of pain scores measured at baseline and after four weeks in a control
group and a treatment group.

Usage

neuropathy

neuropathy 51

Format

A data frame with 58 observations on 2 variables.

pain pain scores: ln(baseline / final).

group a factor with levels "control" and "treat".

Details

Data from Conover and Salsburg (1988, Tab. 1).

Source

Conover, W. J. and Salsburg, D. S. (1988). Locally most powerful tests for detecting treatment
effects when only a subset of patients can be expected to “respond” to treatment. Biometrics 44(1),
189–196. doi:10.2307/2531906

Examples

Conover and Salsburg (1988, Tab. 2)

One-sided approximative Fisher-Pitman test
oneway_test(pain ~ group, data = neuropathy,

alternative = "less",
distribution = approximate(nresample = 10000))

One-sided approximative Wilcoxon-Mann-Whitney test
wilcox_test(pain ~ group, data = neuropathy,

alternative = "less",
distribution = approximate(nresample = 10000))

One-sided approximative Conover-Salsburg test
oneway_test(pain ~ group, data = neuropathy,

alternative = "less",
distribution = approximate(nresample = 10000),
ytrafo = function(data)

trafo(data, numeric_trafo = consal_trafo))

One-sided approximative maximum test for a range of 'a' values
it <- independence_test(pain ~ group, data = neuropathy,

alternative = "less",
distribution = approximate(nresample = 10000),
ytrafo = function(data)

trafo(data, numeric_trafo = function(y)
consal_trafo(y, a = 2:7)))

pvalue(it, method = "single-step")

https://doi.org/10.2307/2531906

52 NullDistribution

NullDistribution Specification of the Reference Distribution

Description

Specification of the asymptotic, approximative (Monte Carlo) and exact reference distribution.

Usage

asymptotic(maxpts = 25000, abseps = 0.001, releps = 0)
approximate(nresample = 10000L, parallel = c("no", "multicore", "snow"),

ncpus = 1L, cl = NULL, B)
exact(algorithm = c("auto", "shift", "split-up"), fact = NULL)

Arguments

maxpts an integer, the maximum number of function values. Defaults to 25000.

abseps a numeric, the absolute error tolerance. Defaults to 0.001.

releps a numeric, the relative error tolerance. Defaults to 0.

nresample a positive integer, the number of Monte Carlo replicates used for the computa-
tion of the approximative reference distribution. Defaults to 10000L.

parallel a character, the type of parallel operation: either "no" (default), "multicore"
or "snow".

ncpus an integer, the number of processes to be used in parallel operation. Defaults to
1L.

cl an object inheriting from class "cluster", specifying an optional parallel or
snow cluster if parallel = "snow". Defaults to NULL.

B deprecated, use nresample instead.

algorithm a character, the algorithm used for the computation of the exact reference distri-
bution: either "auto" (default), "shift" or "split-up".

fact an integer to multiply the response values with. Defaults to NULL.

Details

asymptotic(), approximate() and exact() can be supplied to the distribution argument of,
e.g., independence_test() to provide control of the specification of the asymptotic, approximative
(Monte Carlo) and exact reference distribution, respectively.

The asymptotic reference distribution is computed using a randomised quasi-Monte Carlo method
(Genz and Bretz, 2009) and is applicable to arbitrary covariance structures with dimensions up to
1000. See GenzBretz() in package mvtnorm for details on maxpts, abseps and releps.

The approximative (Monte Carlo) reference distribution is obtained by a conditional Monte Carlo
procedure, i.e., by computing the test statistic for nresample random samples from all admissible
permutations of the response Y within each block (Hothorn et al., 2008). By default, the distribution
is computed using serial operation (parallel = "no"). The use of parallel operation is specified by

NullDistribution 53

setting parallel to either "multicore" (not available for MS Windows) or "snow". In the latter
case, if cl = NULL (default) a cluster with ncpus processes is created on the local machine unless a
default cluster has been registered (see setDefaultCluster() in package parallel) in which case
that gets used instead. Alternatively, the use of an optional parallel or snow cluster can be specified
by cl. See ‘Examples’ and package parallel for details on parallel operation.

The exact reference distribution, currently available for univariate two-sample problems only, is
computed using either the shift algorithm (Streitberg and Röhmel, 1984, 1986, 1987) or the split-
up algorithm (van de Wiel, 2001). The shift algorithm handles blocks pertaining to, e.g., pre- and
post-stratification, but can only be used with positive integer-valued scores h(Y). The split-up
algorithm can be used with non-integer scores, but does not handle blocks. By default, an auto-
matic choice is made (algorithm = "auto") but the shift and split-up algorithms can be selected
by setting algorithm to "shift" or "split-up", respectively.

Note

Starting with coin version 1.1-0, the default for algorithm is "auto", having identical behaviour
to "shift" in previous versions. In earlier versions of the package, algorithm = "shift" silently
switched to the split-up algorithm if non-integer scores were detected, whereas the current version
exits with a warning.

In versions of coin prior to 1.3-0, the number of Monte Carlo replicates in approximate() was
specified using the now deprecated B argument. This will be made defunct and removed in a
future release. It has been replaced by the nresample argument (for conformity with the libcoin,
party and partykit packages).

References

Genz, A. and Bretz, F. (2009). Computation of Multivariate Normal and t Probabilities. Heidelberg:
Springer-Verlag.

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2008). Implementing a class of
permutation tests: The coin package. Journal of Statistical Software 28(8), 1–23. doi:10.18637/
jss.v028.i08

Streitberg, B. and Röhmel, J. (1984). Exact nonparametrics in APL. APL Quote Quad 14(4), 313–
325. doi:10.1145/384283.801115

Streitberg, B. and Röhmel, J. (1986). Exact distributions for permutations and rank tests: an intro-
duction to some recently published algorithms. Statistical Software Newsletter 12(1), 10–17.

Streitberg, B. and Röhmel, J. (1987). Exakte verteilungen für rang- und randomisierungstests im
allgemeinen c-stichprobenfall. EDV in Medizin und Biologie 18(1), 12–19.

van de Wiel, M. A. (2001). The split-up algorithm: a fast symbolic method for computing p-values
of distribution-free statistics. Computational Statistics 16(4), 519–538. doi:10.1007/s18000183286

Examples

Approximative (Monte Carlo) Cochran-Mantel-Haenszel test

Serial operation
set.seed(123)
cmh_test(disease ~ smoking | gender, data = alzheimer,

https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.1145/384283.801115
https://doi.org/10.1007/s180-001-8328-6

54 NullDistribution-class

distribution = approximate(nresample = 100000))

Not run:
Multicore with 8 processes (not for MS Windows)
set.seed(123, kind = "L'Ecuyer-CMRG")
cmh_test(disease ~ smoking | gender, data = alzheimer,

distribution = approximate(nresample = 100000,
parallel = "multicore", ncpus = 8))

Automatic PSOCK cluster with 4 processes
set.seed(123, kind = "L'Ecuyer-CMRG")
cmh_test(disease ~ smoking | gender, data = alzheimer,

distribution = approximate(nresample = 100000,
parallel = "snow", ncpus = 4))

Registered FORK cluster with 12 processes (not for MS Windows)
fork12 <- parallel::makeCluster(12, "FORK") # set-up cluster
parallel::setDefaultCluster(fork12) # register default cluster
set.seed(123, kind = "L'Ecuyer-CMRG")
cmh_test(disease ~ smoking | gender, data = alzheimer,

distribution = approximate(nresample = 100000,
parallel = "snow"))

parallel::stopCluster(fork12) # clean-up

User-specified PSOCK cluster with 8 processes
psock8 <- parallel::makeCluster(8, "PSOCK") # set-up cluster
set.seed(123, kind = "L'Ecuyer-CMRG")
cmh_test(disease ~ smoking | gender, data = alzheimer,

distribution = approximate(nresample = 100000,
parallel = "snow", cl = psock8))

parallel::stopCluster(psock8) # clean-up
End(Not run)

NullDistribution-class

Class "NullDistribution" and Its Subclasses

Description

Objects of class "NullDistribution" and its subclasses "ApproxNullDistribution", "AsymptNullDistribution"
and "ExactNullDistribution" represent the reference distribution.

Objects from the Class

Objects can be created by calls of the form

new("NullDistribution", ...),

new("ApproxNullDistribution", ...),

new("AsymptNullDistribution", ...)

NullDistribution-class 55

and

new("ExactNullDistribution", ...).

Slots

For objects of classes "NullDistribution", "ApproxNullDistribution", "AsymptNullDistribution"
or "ExactNullDistribution":

name: Object of class "character". The name of the reference distribution.

p: Object of class "function". The distribution function of the reference distribution.

pvalue: Object of class "function". The p-value function of the reference distribution.

parameters: Object of class "list". Additional parameters.

support: Object of class "function". The support of the reference distribution.

d: Object of class "function". The density function of the reference distribution.

q: Object of class "function". The quantile function of the reference distribution.

midpvalue: Object of class "function". The mid-p-value function of the reference distribution.

pvalueinterval: Object of class "function". The p-value interval function of the reference
distribution.

size: Object of class "function". The size function of the reference distribution.

Additionally, for objects of classes "ApproxNullDistribution" or "AsymptNullDistribution":

seed: Object of class "integer". The random number generator state (i.e., the value of .Random.seed).

Additionally, for objects of class "ApproxNullDistribution":

nresample: Object of class "numeric". The number of Monte Carlo replicates.

Extends

For objects of class "NullDistribution":
Class "PValue", directly.

For objects of classes "ApproxNullDistribution", "AsymptNullDistribution" or "ExactNullDistribution":
Class "NullDistribution", directly.
Class "PValue", by class "NullDistribution", distance 2.

Known Subclasses

For objects of class "NullDistribution":
Class "ApproxNullDistribution", directly.
Class "AsymptNullDistribution", directly.
Class "ExactNullDistribution", directly.

56 NullDistribution-methods

Methods

dperm signature(object = "NullDistribution"): See the documentation for dperm() for de-
tails.

midpvalue signature(object = "NullDistribution"): See the documentation for midpvalue()
for details.

midpvalue signature(object = "ApproxNullDistribution"): See the documentation for midpvalue()
for details.

pperm signature(object = "NullDistribution"): See the documentation for pperm() for de-
tails.

pvalue signature(object = "NullDistribution"): See the documentation for pvalue() for
details.

pvalue signature(object = "ApproxNullDistribution"): See the documentation for pvalue()
for details.

pvalue_interval signature(object = "NullDistribution"): See the documentation for pvalue_interval()
for details.

qperm signature(object = "NullDistribution"): See the documentation for qperm() for de-
tails.

rperm signature(object = "NullDistribution"): See the documentation for rperm() for de-
tails.

size signature(object = "NullDistribution"): See the documentation for size() for details.

support signature(object = "NullDistribution"): See the documentation for support() for
details.

NullDistribution-methods

Computation of the Reference Distribution

Description

Methods for computation of the asymptotic, approximative (Monte Carlo) and exact reference dis-
tribution.

Usage

S4 method for signature 'MaxTypeIndependenceTestStatistic'
AsymptNullDistribution(object, ...)
S4 method for signature 'QuadTypeIndependenceTestStatistic'
AsymptNullDistribution(object, ...)
S4 method for signature 'ScalarIndependenceTestStatistic'
AsymptNullDistribution(object, ...)

S4 method for signature 'MaxTypeIndependenceTestStatistic'
ApproxNullDistribution(object, nresample = 10000L, B, ...)

ocarcinoma 57

S4 method for signature 'QuadTypeIndependenceTestStatistic'
ApproxNullDistribution(object, nresample = 10000L, B, ...)
S4 method for signature 'ScalarIndependenceTestStatistic'
ApproxNullDistribution(object, nresample = 10000L, B, ...)

S4 method for signature 'QuadTypeIndependenceTestStatistic'
ExactNullDistribution(object, algorithm = c("auto", "shift", "split-up"), ...)
S4 method for signature 'ScalarIndependenceTestStatistic'
ExactNullDistribution(object, algorithm = c("auto", "shift", "split-up"), ...)

Arguments

object an object from which the asymptotic, approximative (Monte Carlo) or exact
reference distribution can be computed.

nresample a positive integer, the number of Monte Carlo replicates used for the computa-
tion of the approximative reference distribution. Defaults to 10000L.

B deprecated, use nresample instead.

algorithm a character, the algorithm used for the computation of the exact reference distri-
bution: either "auto" (default), "shift" or "split-up".

... further arguments to be passed to or from methods.

Details

The methods AsymptNullDistribution, ApproxNullDistribution and ExactNullDistribution
compute the asymptotic, approximative (Monte Carlo) and exact reference distribution, respec-
tively.

Value

An object of class "AsymptNullDistribution", "ApproxNullDistribution" or "ExactNullDistribution".

Note

In versions of coin prior to 1.3-0, the number of Monte Carlo replicates in ApproxNullDistribution()
was specified using the now deprecated B argument. This will be made defunct and removed in a
future release. It has been replaced by the nresample argument (for conformity with the libcoin,
party and partykit packages).

ocarcinoma Ovarian Carcinoma

Description

Survival times of 35 women suffering from ovarian carcinoma at stadium II and IIA.

58 ocarcinoma

Usage

ocarcinoma

Format

A data frame with 35 observations on 3 variables.

time time (days).

stadium a factor with levels "II" and "IIA".

event status indicator for time: FALSE for right-censored observations and TRUE otherwise.

Details

Data from Fleming et al. (1980) and Fleming, Green and Harrington (1984). Reanalysed in Schu-
macher and Schulgen (2002).

Source

Fleming, T. R., Green, S. J. and Harrington, D. P. (1984). Considerations for monitoring and eval-
uating treatment effects in clinical trials. Controlled Clinical Trials 5(1), 55–66. doi:10.1016/
01972456(84)901508

Fleming, T. R., O’Fallon, J. R., O’Brien, P. C. and Harrington, D. P. (1980). Modified Kolmogorov-
Smirnov test procedures with application to arbitrarily right-censored data. Biometrics 36(4), 607–
625. doi:10.2307/2556114

References

Schumacher, M. and Schulgen, G. (2002). Methodik Klinischer Studien: Methodische Grundlagen
der Planung, Durchführung und Auswertung. Heidelberg: Springer.

Examples

Exact logrank test
lt <- logrank_test(Surv(time, event) ~ stadium, data = ocarcinoma,

distribution = "exact")

Test statistic
statistic(lt)

P-value
pvalue(lt)

https://doi.org/10.1016/0197-2456%2884%2990150-8
https://doi.org/10.1016/0197-2456%2884%2990150-8
https://doi.org/10.2307/2556114

PermutationDistribution-methods 59

PermutationDistribution-methods

Computation of the Permutation Distribution

Description

Methods for computation of the density function, distribution function, quantile function, random
numbers and support of the permutation distribution.

Usage

S4 method for signature 'NullDistribution'
dperm(object, x, ...)
S4 method for signature 'IndependenceTest'
dperm(object, x, ...)

S4 method for signature 'NullDistribution'
pperm(object, q, ...)
S4 method for signature 'IndependenceTest'
pperm(object, q, ...)

S4 method for signature 'NullDistribution'
qperm(object, p, ...)
S4 method for signature 'IndependenceTest'
qperm(object, p, ...)

S4 method for signature 'NullDistribution'
rperm(object, n, ...)
S4 method for signature 'IndependenceTest'
rperm(object, n, ...)

S4 method for signature 'NullDistribution'
support(object, ...)
S4 method for signature 'IndependenceTest'
support(object, ...)

Arguments

object an object from which the density function, distribution function, quantile func-
tion, random numbers or support of the permutation distribution can be com-
puted.

x, q a numeric vector, the quantiles for which the density function or distribution
function is computed.

p a numeric vector, the probabilities for which the quantile function is computed.
n a numeric vector, the number of observations. If length(n) > 1, the length is

taken to be the number required.
... further arguments to be passed to methods.

60 PermutationDistribution-methods

Details

The methods dperm, pperm, qperm, rperm and support compute the density function, distribution
function, quantile function, random deviates and support, respectively, of the permutation distribu-
tion.

Value

The density function, distribution function, quantile function, random deviates or support of the
permutation distribution computed from object. A numeric vector.

Note

The density of asymptotic permutation distributions for maximum-type tests or exact permutation
distributions obtained by the split-up algorithm is reported as NA. The quantile function of asymp-
totic permutation distributions for maximum-type tests cannot be computed for p less than 0.5, due
to limitations in the mvtnorm package. The support of exact permutation distributions obtained by
the split-up algorithm is reported as NA.

In versions of coin prior to 1.1-0, the support of asymptotic permutation distributions was given as
an interval containing 99.999 % of the probability mass. It is now reported as NA.

Examples

Two-sample problem
dta <- data.frame(

y = rnorm(20),
x = gl(2, 10)

)

Exact Ansari-Bradley test
at <- ansari_test(y ~ x, data = dta, distribution = "exact")

Support of the exact distribution of the Ansari-Bradley statistic
supp <- support(at)

Density of the exact distribution of the Ansari-Bradley statistic
dens <- dperm(at, x = supp)

Plotting the density
plot(supp, dens, type = "s")

95% quantile
qperm(at, p = 0.95)

One-sided p-value
pperm(at, q = statistic(at))

Random number generation
rperm(at, n = 5)

photocar 61

photocar Multiple Dosing Photococarcinogenicity Experiment

Description

Survival time, time to first tumor, and total number of tumors in three groups of animals in a photo-
cocarcinogenicity study.

Usage

photocar

Format

A data frame with 108 observations on 6 variables.

group a factor with levels "A", "B", and "C".

ntumor total number of tumors.

time survival time.

event status indicator for time: FALSE for right-censored observations and TRUE otherwise.

dmin time to first tumor.

tumor status indicator for dmin: FALSE when no tumor was observed and TRUE otherwise.

Details

The animals were exposed to different levels of ultraviolet radiation (UVR) exposure (group A:
topical vehicle and 600 Robertson–Berger units of UVR, group B: no topical vehicle and 600
Robertson–Berger units of UVR and group C: no topical vehicle and 1200 Robertson–Berger units
of UVR). The data are taken from Tables 1 to 3 in Molefe et al. (2005).

The main interest is testing the global null hypothesis of no treatment effect with respect to survival
time, time to first tumor and number of tumors. (Molefe et al., 2005, also analyzed the detection
time of tumors, but that data is not given here.) In case the global null hypothesis can be rejected,
the deviations from the partial null hypotheses are of special interest.

Source

Molefe, D. F., Chen, J. J., Howard, P. C., Miller, B. J., Sambuco, C. P., Forbes, P. D. and Kodell,
R. L. (2005). Tests for effects on tumor frequency and latency in multiple dosing photococarcino-
genicity experiments. Journal of Statistical Planning and Inference 129(1–2), 39–58. doi:10.1016/
j.jspi.2004.06.038

References

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

https://doi.org/10.1016/j.jspi.2004.06.038
https://doi.org/10.1016/j.jspi.2004.06.038
https://doi.org/10.1198/000313006X118430

62 PValue-class

Examples

Plotting data
op <- par(no.readonly = TRUE) # save current settings
layout(matrix(1:3, ncol = 3))
with(photocar, {

plot(survfit(Surv(time, event) ~ group),
lty = 1:3, xmax = 50, main = "Survival Time")

legend("bottomleft", lty = 1:3, levels(group), bty = "n")
plot(survfit(Surv(dmin, tumor) ~ group),

lty = 1:3, xmax = 50, main = "Time to First Tumor")
legend("bottomleft", lty = 1:3, levels(group), bty = "n")
boxplot(ntumor ~ group, main = "Number of Tumors")

})
par(op) # reset

Approximative multivariate (all three responses) test
it <- independence_test(Surv(time, event) + Surv(dmin, tumor) + ntumor ~ group,

data = photocar,
distribution = approximate(nresample = 10000))

Global p-value
pvalue(it)

Why was the global null hypothesis rejected?
statistic(it, type = "standardized")
pvalue(it, method = "single-step")

PValue-class Class "PValue"

Description

Objects of class "PValue" represent the p-value, mid-p-value and p-value interval of the reference
distribution.

Objects from the Class

Objects can be created by calls of the form

new("PValue", \dots).

Slots

name: Object of class "character". The name of the reference distribution.

p: Object of class "function". The distribution function of the reference distribution.

pvalue: Object of class "function". The p-value function of the reference distribution.

pvalue-methods 63

Methods

pvalue signature(object = "PValue"): See the documentation for pvalue for details.

Note

Starting with coin version 1.3-0, this class is deprecated and will be replaced by class "NullDistribution".
It will be made defunct and removed in a future release.

pvalue-methods Computation of the p-Value, Mid-p-Value, p-Value Interval and Test
Size

Description

Methods for computation of the p-value, mid-p-value, p-value interval and test size.

Usage

S4 method for signature 'PValue'
pvalue(object, q, ...)
S4 method for signature 'NullDistribution'
pvalue(object, q, ...)
S4 method for signature 'ApproxNullDistribution'
pvalue(object, q, ...)
S4 method for signature 'IndependenceTest'
pvalue(object, ...)
S4 method for signature 'MaxTypeIndependenceTest'
pvalue(object, method = c("global", "single-step",

"step-down", "unadjusted"),
distribution = c("joint", "marginal"),
type = c("Bonferroni", "Sidak"), ...)

S4 method for signature 'NullDistribution'
midpvalue(object, q, ...)
S4 method for signature 'ApproxNullDistribution'
midpvalue(object, q, ...)
S4 method for signature 'IndependenceTest'
midpvalue(object, ...)

S4 method for signature 'NullDistribution'
pvalue_interval(object, q, ...)
S4 method for signature 'IndependenceTest'
pvalue_interval(object, ...)

S4 method for signature 'NullDistribution'
size(object, alpha, type = c("p-value", "mid-p-value"), ...)
S4 method for signature 'IndependenceTest'
size(object, alpha, type = c("p-value", "mid-p-value"), ...)

64 pvalue-methods

Arguments

object an object from which the p-value, mid-p-value, p-value interval or test size can
be computed.

q a numeric, the quantile for which the p-value, mid-p-value or p-value interval is
computed.

method a character, the method used for the p-value computation: either "global" (de-
fault), "single-step", "step-down" or "unadjusted".

distribution a character, the distribution used for the computation of adjusted p-values: either
"joint" (default) or "marginal".

type pvalue(): a character, the type of p-value adjustment when the marginal distri-
butions are used: either "Bonferroni" (default) or "Sidak".
size(): a character, the type of rejection region used when computing the test
size: either "p-value" (default) or "mid-p-value".

alpha a numeric, the nominal significance level α at which the test size is computed.
... further arguments (currently ignored).

Details

The methods pvalue, midpvalue, pvalue_interval and size compute the p-value, mid-p-value,
p-value interval and test size, respectively.

For pvalue(), the global p-value (method = "global") is returned by default and is given with
an associated 99% confidence interval when resampling is used to determine the null distribution
(which for maximum statistics may be true even in the asymptotic case).

The familywise error rate (FWER) is always controlled under the global null hypothesis, i.e., in
the weak sense, implying that the smallest adjusted p-value is valid without further assumptions.
Control of the FWER under any partial configuration of the null hypotheses, i.e., in the strong
sense, as is typically desired for multiple tests and comparisons, requires that the subset pivotality
condition holds (Westfall and Young, 1993, pp. 42–43; Bretz, Hothorn and Westfall, 2011, pp.
136–137). In addition, for methods based on the joint distribution of the test statistics, failure of the
joint exchangeability assumption (Westfall and Troendle, 2008; Bretz, Hothorn and Westfall, 2011,
pp. 129–130) may cause excess Type I errors.

Assuming subset pivotality, single-step or free step-down adjusted p-values using max-T proce-
dures are obtained by setting method to "single-step" or "step-down", respectively. In both
cases, the distribution argument specifies whether the adjustment is based on the joint distri-
bution ("joint") or the marginal distributions ("marginal") of the test statistics. For procedures
based on the marginal distributions, Bonferroni- or Šidák-type adjustment can be specified through
the type argument by setting it to "Bonferroni" or "Sidak", respectively.

The p-value adjustment procedures based on the joint distribution of the test statistics fully utilizes
distributional characteristics, such as discreteness and dependence structure, whereas procedures
using the marginal distributions only incorporate discreteness. Hence, the joint distribution-based
procedures are typically more powerful. Details regarding the single-step and free step-down pro-
cedures based on the joint distribution can be found in Westfall and Young (1993); in particular, this
implementation uses Equation 2.8 with Algorithm 2.5 and 2.8, respectively. Westfall and Wolfinger
(1997) provide details of the marginal distributions-based single-step and free step-down proce-
dures. The generalization of Westfall and Wolfinger (1997) to arbitrary test statistics, as imple-
mented here, is given by Westfall and Troendle (2008).

pvalue-methods 65

Unadjusted p-values are obtained using method = "unadjusted".

For midpvalue(), the global mid-p-value is given with an associated 99% mid-p confidence interval
when resampling is used to determine the null distribution. The two-sided mid-p-value is computed
according to the minimum likelihood method (Hirji et al., 1991).

The p-value interval (p0, p1] obtained by pvalue_interval() was proposed by Berger (2000,
2001), where the upper endpoint p1 is the conventional p-value and the mid-point, i.e., p0.5, is the
mid-p-value. The lower endpoint p0 is the smallest p-value attainable if no conservatism attributable
to the discreteness of the null distribution is present. The length of the p-value interval is the null
probability of the observed outcome and provides a data-dependent measure of conservatism that is
completely independent of the nominal significance level.

For size(), the test size, i.e., the actual significance level, at the nominal significance level α is
computed using either the rejection region corresponding to the p-value (type = "p-value", de-
fault) or the mid-p-value (type = "mid-p-value"). The test size is, in contrast to the p-value inter-
val, a data-independent measure of conservatism that depends on the nominal significance level. A
test size smaller or larger than the nominal significance level indicates that the test procedure is con-
servative or anti-conservative, respectively, at that particular nominal significance level. However,
as pointed out by Berger (2001), even when the actual and nominal significance levels are identical,
conservatism may still affect the p-value.

Value

The p-value, mid-p-value, p-value interval or test size computed from object. A numeric vector or
matrix.

Note

The mid-p-value, p-value interval and test size of asymptotic permutation distributions or exact
permutation distributions obtained by the split-up algorithm is reported as NA.

In versions of coin prior to 1.1-0, a min-P procedure computing Šidák single-step adjusted p-values
accounting for discreteness was available when specifying method = "discrete". This was made
defunct in version 1.2-0 due to the introduction of a more general max-T version of the same
algorithm.

References

Berger, V. W. (2000). Pros and cons of permutation tests in clinical trials. Statistics in Medicine
19(10), 1319–1328. doi:10.1002/(SICI)10970258(20000530)19:10<1319::AIDSIM490>3.0.CO;2-
0

Berger, V. W. (2001). The p-value interval as an inferential tool. The Statistician 50(1), 79–85.
doi:10.1111/14679884.00262

Bretz, F., Hothorn, T. and Westfall, P. (2011). Multiple Comparisons Using R. Boca Raton: CRC
Press.

Hirji, K. F., Tan, S.-J. and Elashoff, R. M. (1991). A quasi-exact test for comparing two binomial
proportions. Statistics in Medicine 10(7), 1137–1153. doi:10.1002/sim.4780100713

Westfall, P. H. and Troendle, J. F. (2008). Multiple testing with minimal assumptions. Biometrical
Journal 50(5), 745–755. doi:10.1002/bimj.200710456

https://doi.org/10.1002/%28SICI%291097-0258%2820000530%2919%3A10%3C1319%3A%3AAID-SIM490%3E3.0.CO%3B2-0
https://doi.org/10.1002/%28SICI%291097-0258%2820000530%2919%3A10%3C1319%3A%3AAID-SIM490%3E3.0.CO%3B2-0
https://doi.org/10.1111/1467-9884.00262
https://doi.org/10.1002/sim.4780100713
https://doi.org/10.1002/bimj.200710456

66 pvalue-methods

Westfall, P. H. and Wolfinger, R. D. (1997). Multiple tests with discrete distributions. The American
Statistician 51(1), 3–8. doi:10.1080/00031305.1997.10473577

Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing: Examples and Meth-
ods for p-Value Adjustment. New York: John Wiley & Sons.

Examples

Two-sample problem
dta <- data.frame(

y = rnorm(20),
x = gl(2, 10)

)

Exact Ansari-Bradley test
(at <- ansari_test(y ~ x, data = dta, distribution = "exact"))
pvalue(at)
midpvalue(at)
pvalue_interval(at)
size(at, alpha = 0.05)
size(at, alpha = 0.05, type = "mid-p-value")

Bivariate two-sample problem
dta2 <- data.frame(

y1 = rnorm(20) + rep(0:1, each = 10),
y2 = rnorm(20),
x = gl(2, 10)

)

Approximative (Monte Carlo) bivariate Fisher-Pitman test
(it <- independence_test(y1 + y2 ~ x, data = dta2,

distribution = approximate(nresample = 10000)))

Global p-value
pvalue(it)

Joint distribution single-step p-values
pvalue(it, method = "single-step")

Joint distribution step-down p-values
pvalue(it, method = "step-down")

Sidak step-down p-values
pvalue(it, method = "step-down", distribution = "marginal", type = "Sidak")

Unadjusted p-values
pvalue(it, method = "unadjusted")

Length of YOY Gizzard Shad (Hollander and Wolfe, 1999, p. 200, Tab. 6.3)
yoy <- data.frame(

length = c(46, 28, 46, 37, 32, 41, 42, 45, 38, 44,

https://doi.org/10.1080/00031305.1997.10473577

rotarod 67

42, 60, 32, 42, 45, 58, 27, 51, 42, 52,
38, 33, 26, 25, 28, 28, 26, 27, 27, 27,
31, 30, 27, 29, 30, 25, 25, 24, 27, 30),

site = gl(4, 10, labels = as.roman(1:4))
)

Approximative (Monte Carlo) Fisher-Pitman test with contrasts
Note: all pairwise comparisons
(it <- independence_test(length ~ site, data = yoy,

distribution = approximate(nresample = 10000),
xtrafo = mcp_trafo(site = "Tukey")))

Joint distribution step-down p-values
pvalue(it, method = "step-down") # subset pivotality is violated

rotarod Rotating Rats

Description

The endurance time of 24 rats in two groups on a rotating cylinder.

Usage

rotarod

Format

A data frame with 24 observations on 2 variables.

time endurance time (seconds).

group a factor with levels "control" and "treatment".

Details

The rats were randomly assigned to receive a fixed oral dose of a centrally acting muscle relaxant
("treatment") or a saline solvent ("control"). The animals were placed on a rotating cylinder
and the endurance time of each rat, i.e., the length of time each rat remained on the cylinder, was
measured up to a maximum of 300 seconds.

This dataset is the basis of a comparison of 11 different software implementations of the Wilcoxon-
Mann-Whitney test presented in Bergmann, Ludbrook and Spooren (2000).

Note

The empirical variance in the control group is 0 and the group medians are identical. The exact
conditional p-values are 0.0373 (two-sided) and 0.0186 (one-sided). The asymptotic two-sided
p-value (corrected for ties) is 0.0147.

68 ScaleTests

Source

Bergmann, R., Ludbrook, J. and Spooren, W. P. J. M. (2000). Different outcomes of the Wilcoxon-
Mann-Whitney test from different statistics packages. The American Statistician 54(1), 72–77.
doi:10.1080/00031305.2000.10474513

Examples

One-sided exact Wilcoxon-Mann-Whitney test (p = 0.0186)
wilcox_test(time ~ group, data = rotarod, distribution = "exact",

alternative = "greater")

Two-sided exact Wilcoxon-Mann-Whitney test (p = 0.0373)
wilcox_test(time ~ group, data = rotarod, distribution = "exact")

Two-sided asymptotic Wilcoxon-Mann-Whitney test (p = 0.0147)
wilcox_test(time ~ group, data = rotarod)

ScaleTests Two- and K-Sample Scale Tests

Description

Testing the equality of the distributions of a numeric response variable in two or more independent
groups against scale alternatives.

Usage

S3 method for class 'formula'
taha_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
taha_test(object, conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
klotz_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
klotz_test(object, ties.method = c("mid-ranks", "average-scores"),

conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
mood_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
mood_test(object, ties.method = c("mid-ranks", "average-scores"),

conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
ansari_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'

https://doi.org/10.1080/00031305.2000.10474513

ScaleTests 69

ansari_test(object, ties.method = c("mid-ranks", "average-scores"),
conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
fligner_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
fligner_test(object, ties.method = c("mid-ranks", "average-scores"),

conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
conover_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
conover_test(object, conf.int = FALSE, conf.level = 0.95, ...)

Arguments

formula a formula of the form y ~ x | block where y is a numeric variable, x is a factor
and block is an optional factor for stratification.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations.

object an object inheriting from class "IndependenceProblem".

conf.int a logical indicating whether a confidence interval for the ratio of scales should
be computed. Defaults to FALSE.

conf.level a numeric, confidence level of the interval. Defaults to 0.95.

ties.method a character, the method used to handle ties: the score generating function ei-
ther uses mid-ranks ("mid-ranks", default) or averages the scores of randomly
broken ties ("average-scores").

... further arguments to be passed to independence_test().

Details

taha_test(), klotz_test(), mood_test(), ansari_test(), fligner_test() and conover_test()
provide the Taha test, the Klotz test, the Mood test, the Ansari-Bradley test, the Fligner-Killeen test
and the Conover-Iman test. A general description of these methods is given by Hollander and Wolfe
(1999). For the adjustment of scores for tied values see Hájek, Šidák and Sen (1999, pp. 133–135).

The null hypothesis of equality, or conditional equality given block, of the distribution of y in the
groups defined by x is tested against scale alternatives. In the two-sample case, the two-sided null
hypothesis is H0 : V (Y1)/V (Y2) = 1, where V (Ys) is the variance of the responses in the sth
sample. In case alternative = "less", the null hypothesis is H0 : V (Y1)/V (Y2) ≥ 1. When
alternative = "greater", the null hypothesis is H0 : V (Y1)/V (Y2) ≤ 1. Confidence intervals
for the ratio of scales are available and computed according to Bauer (1972).

70 ScaleTests

The Fligner-Killeen test uses median centering in each of the samples, as suggested by Conover,
Johnson and Johnson (1981), whereas the Conover-Iman test, following Conover and Iman (1978),
uses mean centering in each of the samples.

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

Value

An object inheriting from class "IndependenceTest". Confidence intervals can be extracted by
confint().

Note

In the two-sample case, a large value of the Ansari-Bradley statistic indicates that sample 1 is less
variable than sample 2, whereas a large value of the statistics due to Taha, Klotz, Mood, Fligner-
Killeen, and Conover-Iman indicate that sample 1 is more variable than sample 2.

References

Bauer, D. F. (1972). Constructing confidence sets using rank statistics. Journal of the American
Statistical Association 67(339), 687–690. doi:10.1080/01621459.1972.10481279

Conover, W. J. and Iman, R. L. (1978). Some exact tables for the squared ranks test. Communica-
tions in Statistics – Simulation and Computation 7(5), 491–513. doi:10.1080/03610917808812093

Conover, W. J., Johnson, M. E. and Johnson, M. M. (1981). A comparative study of tests for homo-
geneity of variances, with applications to the outer continental shelf bidding data. Technometrics
23(4), 351–361. doi:10.1080/00401706.1981.10487680

Hájek, J., Šidák, Z. and Sen, P. K. (1999). Theory of Rank Tests, Second Edition. San Diego:
Academic Press.

Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Methods, Second Edition. York:
John Wiley & Sons.

Examples

Serum Iron Determination Using Hyland Control Sera
Hollander and Wolfe (1999, p. 147, Tab 5.1)
sid <- data.frame(

serum = c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
101, 96, 97, 102, 107, 113, 116, 113, 110, 98,
107, 108, 106, 98, 105, 103, 110, 105, 104,
100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99),

method = gl(2, 20, labels = c("Ramsay", "Jung-Parekh"))
)

Asymptotic Ansari-Bradley test
ansari_test(serum ~ method, data = sid)

https://doi.org/10.1080/01621459.1972.10481279
https://doi.org/10.1080/03610917808812093
https://doi.org/10.1080/00401706.1981.10487680

statistic-methods 71

Exact Ansari-Bradley test
pvalue(ansari_test(serum ~ method, data = sid,

distribution = "exact"))

Platelet Counts of Newborn Infants
Hollander and Wolfe (1999, p. 171, Tab. 5.4)
platelet <- data.frame(

counts = c(120, 124, 215, 90, 67, 95, 190, 180, 135, 399,
12, 20, 112, 32, 60, 40),

treatment = factor(rep(c("Prednisone", "Control"), c(10, 6)))
)

Approximative (Monte Carlo) Lepage test
Hollander and Wolfe (1999, p. 172)
lepage_trafo <- function(y)

cbind("Location" = rank_trafo(y), "Scale" = ansari_trafo(y))

independence_test(counts ~ treatment, data = platelet,
distribution = approximate(nresample = 10000),
ytrafo = function(data)

trafo(data, numeric_trafo = lepage_trafo),
teststat = "quadratic")

Why was the null hypothesis rejected?
Note: maximum statistic instead of quadratic form
ltm <- independence_test(counts ~ treatment, data = platelet,

distribution = approximate(nresample = 10000),
ytrafo = function(data)

trafo(data, numeric_trafo = lepage_trafo))

Step-down adjustment suggests a difference in location
pvalue(ltm, method = "step-down")

The same results are obtained from the simple Sidak-Holm procedure since the
correlation between Wilcoxon and Ansari-Bradley test statistics is zero
cov2cor(covariance(ltm))
pvalue(ltm, method = "step-down", distribution = "marginal", type = "Sidak")

statistic-methods Extraction of the Test Statistic and the Linear Statistic

Description

Methods for extraction of the test statistic and the linear statistic.

Usage

S4 method for signature 'IndependenceLinearStatistic'
statistic(object, type = c("test", "linear", "centered", "standardized"),

72 statistic-methods

partial = FALSE, ...)
S4 method for signature 'IndependenceTestStatistic'
statistic(object, type = c("test", "linear", "centered", "standardized"),

partial = FALSE, ...)
S4 method for signature 'IndependenceTest'
statistic(object, type = c("test", "linear", "centered", "standardized"),

partial = FALSE, ...)

Arguments

object an object from which the test statistic or the linear statistic can be extracted.

type a character string indicating the type of statistic: either "test" (default) for
the test statistic, "linear" for the unstandardized linear statistic, "centered"
for the centered linear statistic or "standardized" for the standardized linear
statistic.

partial a logical indicating that the partial linear statistic for each block should be ex-
tracted. Defaults to FALSE.

... further arguments (currently ignored).

Details

The method statistic extracts the univariate test statistic or the, possibly multivariate, linear
statistic in its unstandardized, centered or standardized form.

The test statistic (type = "test") is returned by default. The unstandardized, centered or stan-
dardized linear statistic is obtained by setting type to "linear", "centered" or "standardized",
respectively. For tests of conditional independence within blocks, the partial linear statistic for each
block is obtained by setting partial = TRUE.

Value

The test statistic or the unstandardized, centered or standardized linear statistic extracted from
object. A numeric vector, matrix or array.

Examples

Example data
dta <- data.frame(

y = gl(4, 5),
x = gl(5, 4)

)

Asymptotic Cochran-Mantel-Haenszel Test
ct <- cmh_test(y ~ x, data = dta)

Test statistic
statistic(ct)

The unstandardized linear statistic...
statistic(ct, type = "linear")

SurvivalTests 73

...is identical to the contingency table
xtabs(~ x + y, data = dta)

The centered linear statistic...
statistic(ct, type = "centered")

...is identical to
statistic(ct, type = "linear") - expectation(ct)

The standardized linear statistic, illustrating departures from the null
hypothesis of independence...
statistic(ct, type = "standardized")

...is identical to
(statistic(ct, type = "linear") - expectation(ct)) / sqrt(variance(ct))

SurvivalTests Two- and K-Sample Tests for Censored Data

Description

Testing the equality of the survival distributions in two or more independent groups.

Usage

S3 method for class 'formula'
logrank_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'IndependenceProblem'
logrank_test(object, ties.method = c("mid-ranks", "Hothorn-Lausen",

"average-scores"),
type = c("logrank", "Gehan-Breslow", "Tarone-Ware",

"Peto-Peto", "Prentice", "Prentice-Marek",
"Andersen-Borgan-Gill-Keiding",
"Fleming-Harrington", "Gaugler-Kim-Liao", "Self"),

rho = NULL, gamma = NULL, ...)

Arguments

formula a formula of the form y ~ x | block where y is a survival object (see Surv in
package survival), x is a factor and block is an optional factor for stratification.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations.

object an object inheriting from class "IndependenceProblem".

74 SurvivalTests

ties.method a character, the method used to handle ties: the score generating function either
uses mid-ranks ("mid-ranks", default), the Hothorn-Lausen method ("Hothorn-Lausen")
or averages the scores of randomly broken ties ("average-scores"); see ‘De-
tails’.

type a character, the type of test: either "logrank" (default), "Gehan-Breslow",
"Tarone-Ware", "Peto-Peto", "Prentice", "Prentice-Marek", "Andersen-Borgan-Gill-Keiding",
"Fleming-Harrington", "Gaugler-Kim-Liao" or "Self"; see ‘Details’.

rho a numeric, the ρ constant when type is "Tarone-Ware", "Fleming-Harrington",
"Gaugler-Kim-Liao" or "Self"; see ‘Details’. Defaults to NULL, implying 0.5
for type = "Tarone-Ware" and 0 otherwise.

gamma a numeric, the γ constant when type is "Fleming-Harrington", "Gaugler-Kim-Liao"
or "Self"; see ‘Details’. Defaults to NULL, implying 0.

... further arguments to be passed to independence_test().

Details

logrank_test() provides the weighted logrank test reformulated as a linear rank test. The family
of weighted logrank tests encompasses a large collection of tests commonly used in the analysis
of survival data including, but not limited to, the standard (unweighted) logrank test, the Gehan-
Breslow test, the Tarone-Ware class of tests, the Peto-Peto test, the Prentice test, the Prentice-Marek
test, the Andersen-Borgan-Gill-Keiding test, the Fleming-Harrington class of tests, the Gaugler-
Kim-Liao class of tests and the Self class of tests. A general description of these methods is given
by Klein and Moeschberger (2003, Ch. 7). See Letón and Zuluaga (2001) for the linear rank test
formulation.

The null hypothesis of equality, or conditional equality given block, of the survival distribution
of y in the groups defined by x is tested. In the two-sample case, the two-sided null hypothesis is
H0 : θ = 1, where θ = λ2/λ1 and λs is the hazard rate in the sth sample. In case alternative =
"less", the null hypothesis is H0 : θ ≥ 1, i.e., the survival is lower in sample 1 than in sample 2.
When alternative = "greater", the null hypothesis is H0 : θ ≤ 1, i.e., the survival is higher in
sample 1 than in sample 2.

If x is an ordered factor, the default scores, 1:nlevels(x), can be altered using the scores ar-
gument (see independence_test()); this argument can also be used to coerce nominal factors to
class "ordered". In this case, a linear-by-linear association test is computed and the direction of
the alternative hypothesis can be specified using the alternative argument. This type of extension
of the standard logrank test was given by Tarone (1975) and later generalized to general weights by
Tarone and Ware (1977).

Let (ti, δi), i = 1, 2, . . . , n, represent a right-censored random sample of size n, where ti is the
observed survival time and δi is the status indicator (δi is 0 for right-censored observations and 1
otherwise). To allow for ties in the data, let t(1) < t(2) < · · · < t(m) represent the m, m ≤ n,
ordered distinct event times. At time t(k), k = 1, 2, . . . ,m, the number of events and the number of
subjects at risk are given by dk =

∑n
i=1 I

(
ti = t(k) | δi = 1

)
and nk = n− rk, respectively, where

rk depends on the ties handling method.

Three different methods of handling ties are available using ties.method: mid-ranks ("mid-ranks",
default), the Hothorn-Lausen method ("Hothorn-Lausen") and average-scores ("average-scores").
The first and last method are discussed and contrasted by Callaert (2003), whereas the second

SurvivalTests 75

method is defined in Hothorn and Lausen (2003). The mid-ranks method leads to

rk =

n∑
i=1

I
(
ti < t(k)

)
whereas the Hothorn-Lausen method uses

rk =

n∑
i=1

I
(
ti ≤ t(k)

)
− 1.

The scores assigned to right-censored and uncensored observations at the kth event time are given
by

Ck =

k∑
j=1

wj
dj
nj

and ck = Ck − wk,

respectively, where w is the logrank weight. For the average-scores method, used by, e.g., the
software package StatXact, the dk events observed at the kth event time are arbitrarily ordered by
assigning them distinct values t(kl), l = 1, 2, . . . , dk, infinitesimally to the left of t(k). Then scores
Ckl and ckl are computed as indicated above, effectively assuming that no event times are tied. The
scores Ck and ck are assigned the average of the scores Ckl and ckl , respectively. It then follows
that the score for the ith subject is

ai =

{
Ck′ if δi = 0
ck′ otherwise

where k′ = max{k : ti ≥ t(k)}.
The type argument allows for a choice between some of the most well-known members of the
family of weighted logrank tests, each corresponding to a particular weight function. The standard
logrank test ("logrank", default) was suggested by Mantel (1966), Peto and Peto (1972) and Cox
(1972) and has wk = 1. The Gehan-Breslow test ("Gehan-Breslow") proposed by Gehan (1965)
and later extended to K samples by Breslow (1970) is a generalization of the Wilcoxon rank-sum
test, where wk = nk. The Tarone-Ware class of tests ("Tarone-Ware") discussed by Tarone and
Ware (1977) has wk = nρk, where ρ is a constant; ρ = 0.5 (default) was suggested by Tarone and
Ware (1977), but note that ρ = 0 and ρ = 1 lead to the standard logrank test and Gehan-Breslow
test, respectively. The Peto-Peto test ("Peto-Peto") suggested by Peto and Peto (1972) is another
generalization of the Wilcoxon rank-sum test, where

wk = Ŝk =

k−1∏
j=0

nj − dj
nj

is the left-continuous Kaplan-Meier estimator of the survival function, n0 ≡ n and d0 ≡ 0. The
Prentice test ("Prentice") is also a generalization of the Wilcoxon rank-sum test proposed by
Prentice (1978), where

wk =

k∏
j=1

nj
nj + dj

.

The Prentice-Marek test ("Prentice-Marek") is yet another generalization of the Wilcoxon rank-
sum test discussed by Prentice and Marek (1979), with

wk = S̃k =

k∏
j=1

nj + 1− dj
nj + 1

.

76 SurvivalTests

The Andersen-Borgan-Gill-Keiding test ("Andersen-Borgan-Gill-Keiding") suggested by An-
dersen et al. (1982) is a modified version of the Prentice-Marek test using

wk =
nk

nk + 1

k−1∏
j=0

nj + 1− dj
nj + 1

,

where, again, n0 ≡ n and d0 ≡ 0. The Fleming-Harrington class of tests ("Fleming-Harrington")
proposed by Fleming and Harrington (1991) uses wk = Ŝρk(1− Ŝk)γ , where ρ and γ are constants;
ρ = 0 and γ = 0 lead to the standard logrank test, while ρ = 1 and γ = 0 result in the Peto-
Peto test. The Gaugler-Kim-Liao class of tests ("Gaugler-Kim-Liao") discussed by Gaugler et al.
(2007) is a modified version of the Fleming-Harrington class of tests, replacing Ŝk with S̃k so that
wk = S̃ρk(1 − S̃k)γ , where ρ and γ are constants; ρ = 0 and γ = 0 lead to the standard logrank
test, whereas ρ = 1 and γ = 0 result in the Prentice-Marek test. The Self class of tests ("Self")
suggested by Self (1991) has wk = vρk(1− vk)γ , where

vk =
1

2

t(k−1) + t(k)

t(m)
, t(0) ≡ 0

is the standardized mid-point between the (k − 1)th and the kth event time. (This is a slight gen-
eralization of Self’s original proposal in order to allow for non-integer follow-up times.) Again, ρ
and γ are constants and ρ = 0 and γ = 0 lead to the standard logrank test.
The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

Value

An object inheriting from class "IndependenceTest".

Note

Peto and Peto (1972) proposed the test statistic implemented in logrank_test() and named it
the logrank test. However, the Mantel-Cox test (Mantel, 1966; Cox, 1972), as implemented in
survdiff() (in package survival), is also known as the logrank test. These tests are similar, but
differ in the choice of probability model: the (Peto-Peto) logrank test uses the permutational vari-
ance, whereas the Mantel-Cox test is based on the hypergeometric variance.
Combining independence_test() or symmetry_test() with logrank_trafo() offers more flex-
ibility than logrank_test() and allows for, among other things, maximum-type versatile test pro-
cedures (e.g., Lee, 1996; see ‘Examples’) and user-supplied logrank weights (see GTSG for tests
against Weibull-type or crossing-curve alternatives).
Starting with coin version 1.1-0, logrank_test() replaced surv_test() which was made defunct
in version 1.2-0. Furthermore, logrank_trafo() is now an increasing function for all choices of
ties.method, implying that the test statistic has the same sign irrespective of the ties handling
method. Consequently, the sign of the test statistic will now be the opposite of what it was in
earlier versions unless ties.method = "average-scores". (In versions of coin prior to 1.1-0,
logrank_trafo() was a decreasing function when ties.method was other than "average-scores".)
Starting with coin version 1.2-0, mid-ranks and the Hothorn-Lausen method can no longer be spec-
ified with ties.method = "logrank" and ties-method = "HL" respectively.

SurvivalTests 77

References

Andersen, P. K., Borgan, Ø., Gill, R. and Keiding, N. (1982). Linear nonparametric tests for com-
parison of counting processes, with applications to censored survival data (with discussion). Inter-
national Statistical Review 50(3), 219–258. doi:10.2307/1402489

Breslow, N. (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal
patterns of censorship. Biometrika 57(3), 579–594. doi:10.1093/biomet/57.3.579

Callaert, H. (2003). Comparing statistical software packages: The case of the logrank test in StatX-
act. The American Statistician 57(3), 214–217. doi:10.1198/0003130031900

Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal
Statistical Society B 34(2), 187–220. doi:10.1111/j.25176161.1972.tb00899.x

Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York:
John Wiley & Sons.

Gaugler, T., Kim, D. and Liao, S. (2007). Comparing two survival time distributions: An investiga-
tion of several weight functions for the weighted logrank statistic. Communications in Statistics –
Simulation and Computation 36(2), 423–435. doi:10.1080/03610910601161272

Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily single-censored sam-
ples. Biometrika 52(1–2), 203–223. doi:10.1093/biomet/52.12.203

Hothorn, T. and Lausen, B. (2003). On the exact distribution of maximally selected rank statistics.
Computational Statistics & Data Analysis 43(2), 121–137. doi:10.1016/S01679473(02)002256

Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and
Truncated Data, Second Edition. New York: Springer.

Lee, J. W. (1996). Some versatile tests based on the simultaneous use of weighted log-rank statistics.
Biometrics 52(2), 721–725. doi:10.2307/2532911

Letón, E. and Zuluaga, P. (2001). Equivalence between score and weighted tests for survival curves.
Communications in Statistics – Theory and Methods 30(4), 591–608. doi:10.1081/STA100002138

Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its
consideration. Cancer Chemotherapy Reports 50(3), 163–170.

Peto, R. and Peto, J. (1972). Asymptotic efficient rank invariant test procedures (with discussion).
Journal of the Royal Statistical Society A 135(2), 185–207. doi:10.2307/2344317

Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika 65(1), 167–179.
doi:10.1093/biomet/65.1.167

Prentice, R. L. and Marek, P. (1979). A qualitative discrepancy between censored data rank tests.
Biometrics 35(4), 861–867. doi:10.2307/2530120

Self, S. G. (1991). An adaptive weighted log-rank test with application to cancer prevention and
screening trials. Biometrics 47(3), 975–986. doi:10.2307/2532653

Tarone, R. E. (1975). Tests for trend in life table analysis. Biometrika 62(3), 679–682. doi:10.1093/
biomet/62.3.679

Tarone, R. E. and Ware, J. (1977). On distribution-free tests for equality of survival distributions.
Biometrika 64(1), 156–160. doi:10.1093/biomet/64.1.156

https://doi.org/10.2307/1402489
https://doi.org/10.1093/biomet/57.3.579
https://doi.org/10.1198/0003130031900
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1080/03610910601161272
https://doi.org/10.1093/biomet/52.1-2.203
https://doi.org/10.1016/S0167-9473%2802%2900225-6
https://doi.org/10.2307/2532911
https://doi.org/10.1081/STA-100002138
https://doi.org/10.2307/2344317
https://doi.org/10.1093/biomet/65.1.167
https://doi.org/10.2307/2530120
https://doi.org/10.2307/2532653
https://doi.org/10.1093/biomet/62.3.679
https://doi.org/10.1093/biomet/62.3.679
https://doi.org/10.1093/biomet/64.1.156

78 SurvivalTests

Examples

Example data (Callaert, 2003, Tab. 1)
callaert <- data.frame(

time = c(1, 1, 5, 6, 6, 6, 6, 2, 2, 2, 3, 4, 4, 5, 5),
group = factor(rep(0:1, c(7, 8)))

)

Logrank scores using mid-ranks (Callaert, 2003, Tab. 2)
with(callaert,

logrank_trafo(Surv(time)))

Asymptotic Mantel-Cox test (p = 0.0523)
survdiff(Surv(time) ~ group, data = callaert)

Exact logrank test using mid-ranks (p = 0.0505)
logrank_test(Surv(time) ~ group, data = callaert, distribution = "exact")

Exact logrank test using average-scores (p = 0.0468)
logrank_test(Surv(time) ~ group, data = callaert, distribution = "exact",

ties.method = "average-scores")

Lung cancer data (StatXact 9 manual, p. 213, Tab. 7.19)
lungcancer <- data.frame(

time = c(257, 476, 355, 1779, 355,
191, 563, 242, 285, 16, 16, 16, 257, 16),

event = c(0, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1),

group = factor(rep(1:2, c(5, 9)),
labels = c("newdrug", "control"))

)

Logrank scores using average-scores (StatXact 9 manual, p. 214)
with(lungcancer,

logrank_trafo(Surv(time, event), ties.method = "average-scores"))

Exact logrank test using average-scores (StatXact 9 manual, p. 215)
logrank_test(Surv(time, event) ~ group, data = lungcancer,

distribution = "exact", ties.method = "average-scores")

Exact Prentice test using average-scores (StatXact 9 manual, p. 222)
logrank_test(Surv(time, event) ~ group, data = lungcancer,

distribution = "exact", ties.method = "average-scores",
type = "Prentice")

Approximative (Monte Carlo) versatile test (Lee, 1996)
rho.gamma <- expand.grid(rho = seq(0, 2, 1), gamma = seq(0, 2, 1))
lee_trafo <- function(y)

logrank_trafo(y, ties.method = "average-scores",
type = "Fleming-Harrington",
rho = rho.gamma["rho"], gamma = rho.gamma["gamma"])

SymmetryProblem-class 79

it <- independence_test(Surv(time, event) ~ group, data = lungcancer,
distribution = approximate(nresample = 10000),
ytrafo = function(data)

trafo(data, surv_trafo = lee_trafo))
pvalue(it, method = "step-down")

SymmetryProblem-class Class "SymmetryProblem"

Description

Objects of class "SymmetryProblem" represent the data structure corresponding to a symmetry
problem.

Objects from the Class

Objects can be created by calls of the form

new("SymmetryProblem", x, y, block = NULL, weights = NULL, ...)

where x and y are data frames containing the variables X and Y, respectively, block is an optional
factor representing the block structure b and weights is an optional integer vector corresponding to
the case weights w.

Slots

x: Object of class "data.frame". The variables x.

y: Object of class "data.frame". The variables y.

block: Object of class "factor". The block structure.

weights: Object of class "numeric". The case weights. (Not yet implemented!)

Extends

Class "IndependenceProblem", directly.

Methods

initialize signature(.Object = "SymmetryProblem"): See the documentation for initialize()
(in package methods) for details.

80 SymmetryTest

SymmetryTest General Symmetry Test

Description

Testing the symmetry of set of repeated measurements variables measured on arbitrary scales in a
complete block design.

Usage

S3 method for class 'formula'
symmetry_test(formula, data, subset = NULL, weights = NULL, ...)
S3 method for class 'table'
symmetry_test(object, ...)
S3 method for class 'SymmetryProblem'
symmetry_test(object, teststat = c("maximum", "quadratic", "scalar"),

distribution = c("asymptotic", "approximate",
"exact", "none"),

alternative = c("two.sided", "less", "greater"),
xtrafo = trafo, ytrafo = trafo, scores = NULL,
check = NULL, paired = FALSE, ...)

Arguments

formula a formula of the form y1 + ... + yq ~ x | block where y1, . . . , yq are measured
on arbitrary scales (nominal, ordinal or continuous with or without censoring),
x is a factor and block is an optional factor (which is generated automatically if
omitted).

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

weights an optional formula of the form ~ w defining integer valued case weights for each
observation. Defaults to NULL, implying equal weight for all observations. (Not
yet implemented!)

object an object inheriting from classes "table" (with identical dimnames compo-
nents) or "SymmetryProblem".

teststat a character, the type of test statistic to be applied: either a maximum statistic
("maximum", default), a quadratic form ("quadratic") or a standardized scalar
test statistic ("scalar").

distribution a character, the conditional null distribution of the test statistic can be approx-
imated by its asymptotic distribution ("asymptotic", default) or via Monte
Carlo resampling ("approximate"). Alternatively, the functions asymptotic
or approximate can be used. For univariate two-sample problems, "exact"
or use of the function exact computes the exact distribution. Computation
of the null distribution can be suppressed by specifying "none". It is also

SymmetryTest 81

possible to specify a function with one argument (an object inheriting from
"IndependenceTestStatistic") that returns an object of class "NullDistribution".

alternative a character, the alternative hypothesis: either "two.sided" (default), "greater"
or "less".

xtrafo a function of transformations to be applied to the factor x supplied in formula;
see ‘Details’. Defaults to trafo().

ytrafo a function of transformations to be applied to the variables y1, . . . , yq supplied
in formula; see ‘Details’. Defaults to trafo().

scores a named list of scores to be attached to ordered factors; see ‘Details’. Defaults
to NULL, implying equally spaced scores.

check a function to be applied to objects of class "IndependenceTest" in order to
check for specific properties of the data. Defaults to NULL.

paired a logical, indicating that paired data have been transformed in such a way that the
(unstandardized) linear statistic is the sum of the absolute values of the positive
differences between the paired observations. Defaults to FALSE.

... further arguments to be passed to or from other methods (currently ignored).

Details

symmetry_test() provides a general symmetry test for a set of variables measured on arbitrary
scales. This function is based on the general framework for conditional inference procedures pro-
posed by Strasser and Weber (1999). The salient parts of the Strasser-Weber framework are eluci-
dated by Hothorn et al. (2006) and a thorough description of the software implementation is given
by Hothorn et al. (2008).

The null hypothesis of symmetry is tested. The response variables and the measurement conditions
are given by y1, . . . , yq and x, respectively, and block is a factor where each level corresponds to
exactly one subject with repeated measurements.

A vector of case weights, e.g., observation counts, can be supplied through the weights argument
and the type of test statistic is specified by the teststat argument. Influence and regression func-
tions, i.e., transformations of y1, . . . , yq and x, are specified by the ytrafo and xtrafo arguments,
respectively; see trafo() for the collection of transformation functions currently available. This
allows for implementation of both novel and familiar test statistics, e.g., the McNemar test, the
Cochran Q test, the Wilcoxon signed-rank test and the Friedman test. Furthermore, multivariate
extensions such as the multivariate Friedman test (Gerig, 1969; Puri and Sen, 1971) can be imple-
mented without much effort (see ‘Examples’).

If, say, y1 and/or x are ordered factors, the default scores, 1:nlevels(y1) and 1:nlevels(x),
respectively, can be altered using the scores argument; this argument can also be used to coerce
nominal factors to class "ordered". For example, when y1 is an ordered factor with four levels and
x is a nominal factor with three levels, scores = list(y1 = c(1, 3:5), x = c(1:2, 4)) supplies
the scores to be used. For ordered alternatives the scores must be monotonic, but non-monotonic
scores are also allowed for testing against, e.g., umbrella alternatives. The length of the score vector
must be equal to the number of factor levels.

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for

82 SymmetryTest

univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

Value

An object inheriting from class "IndependenceTest".

Note

Starting with coin version 1.1-0, maximum statistics and quadratic forms can no longer be specified
using teststat = "maxtype" and teststat = "quadtype" respectively (as was used in versions
prior to 0.4-5).

References

Gerig, T. (1969). A multivariate extension of Friedman’s χ2
r-test. Journal of the American Statisti-

cal Association 64(328), 1595–1608. doi:10.1080/01621459.1969.10501079

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for conditional
inference. The American Statistician 60(3), 257–263. doi:10.1198/000313006X118430

Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2008). Implementing a class of
permutation tests: The coin package. Journal of Statistical Software 28(8), 1–23. doi:10.18637/
jss.v028.i08

Puri, M. L. and Sen, P. K. (1971). Nonparametric Methods in Multivariate Analysis. New York:
John Wiley & Sons.

Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical
Methods of Statistics 8(2), 220–250.

Examples

One-sided exact Fisher-Pitman test for paired observations
y1 <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y2 <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
dta <- data.frame(

y = c(y1, y2),
x = gl(2, length(y1)),
block = factor(rep(seq_along(y1), 2))

)

symmetry_test(y ~ x | block, data = dta,
distribution = "exact", alternative = "greater")

Alternatively: transform data and set 'paired = TRUE'
delta <- y1 - y2
y <- as.vector(rbind(abs(delta) * (delta >= 0), abs(delta) * (delta < 0)))
x <- factor(rep(0:1, length(delta)), labels = c("pos", "neg"))
block <- gl(length(delta), 2)

symmetry_test(y ~ x | block,
distribution = "exact", alternative = "greater",
paired = TRUE)

https://doi.org/10.1080/01621459.1969.10501079
https://doi.org/10.1198/000313006X118430
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.18637/jss.v028.i08

SymmetryTests 83

Example data
Gerig (1969, p. 1597)
gerig <- data.frame(

y1 = c(0.547, 1.811, 2.561,
1.706, 2.509, 1.414,

-0.288, 2.524, 3.310,
1.417, 0.703, 0.961,
0.878, 0.094, 1.682,

-0.680, 2.077, 3.181,
0.056, 0.542, 2.983,
0.711, 0.269, 1.662,

-1.335, 1.545, 2.920,
1.635, 0.200, 2.065),

y2 = c(-0.575, 1.840, 2.399,
1.252, 1.574, 3.059,

-0.310, 1.553, 0.560,
0.932, 1.390, 3.083,
0.819, 0.045, 3.348,
0.497, 1.747, 1.355,

-0.285, 0.760, 2.332,
0.089, 1.076, 0.960,

-0.349, 1.471, 4.121,
0.845, 1.480, 3.391),

x = factor(rep(1:3, 10)),
b = factor(rep(1:10, each = 3))

)

Asymptotic multivariate Friedman test
Gerig (1969, p. 1599)
symmetry_test(y1 + y2 ~ x | b, data = gerig, teststat = "quadratic",

ytrafo = function(data)
trafo(data, numeric_trafo = rank_trafo,

block = gerig$b)) # L_n = 17.238

Asymptotic multivariate Page test
(st <- symmetry_test(y1 + y2 ~ x | b, data = gerig,

ytrafo = function(data)
trafo(data, numeric_trafo = rank_trafo,

block = gerig$b),
scores = list(x = 1:3)))

pvalue(st, method = "step-down")

SymmetryTests Symmetry Tests

Description

Testing the symmetry of a numeric repeated measurements variable in a complete block design.

84 SymmetryTests

Usage

S3 method for class 'formula'
sign_test(formula, data, subset = NULL, ...)
S3 method for class 'SymmetryProblem'
sign_test(object, ...)

S3 method for class 'formula'
wilcoxsign_test(formula, data, subset = NULL, ...)
S3 method for class 'SymmetryProblem'
wilcoxsign_test(object, zero.method = c("Pratt", "Wilcoxon"), ...)

S3 method for class 'formula'
friedman_test(formula, data, subset = NULL, ...)
S3 method for class 'SymmetryProblem'
friedman_test(object, ...)

S3 method for class 'formula'
quade_test(formula, data, subset = NULL, ...)
S3 method for class 'SymmetryProblem'
quade_test(object, ...)

Arguments

formula a formula of the form y ~ x | block where y is a numeric variable, x is a factor
with two (sign_test and wilcoxsign_test) or more levels and block is an
optional factor (which is generated automatically if omitted).

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used. Defaults to
NULL.

object an object inheriting from class "SymmetryProblem".

zero.method a character, the method used to handle zeros: either "Pratt" (default) or "Wilcoxon";
see ‘Details’.

... further arguments to be passed to symmetry_test().

Details

sign_test(), wilcoxsign_test(), friedman_test() and quade_test() provide the sign test,
the Wilcoxon signed-rank test, the Friedman test, the Page test and the Quade test. A general
description of these methods is given by Hollander and Wolfe (1999).

The null hypothesis of symmetry is tested. The response variable and the measurement conditions
are given by y and x, respectively, and block is a factor where each level corresponds to exactly
one subject with repeated measurements. For sign_test and wilcoxsign_test, formulae of the
form y ~ x | block and y ~ x are allowed. The latter form is interpreted as y is the first and x the
second measurement on the same subject.

If x is an ordered factor, the default scores, 1:nlevels(x), can be altered using the scores argu-
ment (see symmetry_test()); this argument can also be used to coerce nominal factors to class

SymmetryTests 85

"ordered". In this case, a linear-by-linear association test is computed and the direction of the
alternative hypothesis can be specified using the alternative argument. For the Friedman test,
this extension was given by Page (1963) and is known as the Page test.

For wilcoxsign_test(), the default method of handling zeros (zero.method = "Pratt"), due to
Pratt (1959), first rank-transforms the absolute differences (including zeros) and then discards the
ranks corresponding to the zero-differences. The proposal by Wilcoxon (1949, p. 6) first discards
the zero-differences and then rank-transforms the remaining absolute differences (zero.method =
"Wilcoxon").

The conditional null distribution of the test statistic is used to obtain p-values and an asymptotic
approximation of the exact distribution is used by default (distribution = "asymptotic"). Alter-
natively, the distribution can be approximated via Monte Carlo resampling or computed exactly for
univariate two-sample problems by setting distribution to "approximate" or "exact", respec-
tively. See asymptotic(), approximate() and exact() for details.

Value

An object inheriting from class "IndependenceTest".

Note

Starting with coin version 1.0-16, the zero.method argument replaced the (now removed) ties.method
argument. The current default is zero.method = "Pratt" whereas earlier versions had ties.method
= "HollanderWolfe", which is equivalent to zero.method = "Wilcoxon".

References

Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Methods, Second Edition. New
York: John Wiley & Sons.

Page, E. B. (1963). Ordered hypotheses for multiple treatments: a significance test for linear ranks.
Journal of the American Statistical Association 58(301), 216–230. doi:10.1080/01621459.1963.10500843

Pratt, J. W. (1959). Remarks on zeros and ties in the Wilcoxon signed rank procedures. Journal of
the American Statistical Association 54(287), 655–667. doi:10.1080/01621459.1959.10501526

Quade, D. (1979). Using weighted rankings in the analysis of complete blocks with additive
block effects. Journal of the American Statistical Association 74(367), 680–683. doi:10.1080/
01621459.1979.10481670

Wilcoxon, F. (1949). Some Rapid Approximate Statistical Procedures. New York: American
Cyanamid Company.

Examples

Example data from ?wilcox.test
y1 <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y2 <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

One-sided exact sign test
(st <- sign_test(y1 ~ y2, distribution = "exact",

alternative = "greater"))
midpvalue(st) # mid-p-value

https://doi.org/10.1080/01621459.1963.10500843
https://doi.org/10.1080/01621459.1959.10501526
https://doi.org/10.1080/01621459.1979.10481670
https://doi.org/10.1080/01621459.1979.10481670

86 SymmetryTests

One-sided exact Wilcoxon signed-rank test
(wt <- wilcoxsign_test(y1 ~ y2, distribution = "exact",

alternative = "greater"))
statistic(wt, type = "linear")
midpvalue(wt) # mid-p-value

Comparison with R's wilcox.test() function
wilcox.test(y1, y2, paired = TRUE, alternative = "greater")

Data with explicit group and block information
dta <- data.frame(y = c(y1, y2), x = gl(2, length(y1)),

block = factor(rep(seq_along(y1), 2)))

For two samples, the sign test is equivalent to the Friedman test...
sign_test(y ~ x | block, data = dta, distribution = "exact")
friedman_test(y ~ x | block, data = dta, distribution = "exact")

...and the signed-rank test is equivalent to the Quade test
wilcoxsign_test(y ~ x | block, data = dta, distribution = "exact")
quade_test(y ~ x | block, data = dta, distribution = "exact")

Comparison of three methods ("round out", "narrow angle", and "wide angle")
for rounding first base.
Hollander and Wolfe (1999, p. 274, Tab. 7.1)
rounding <- data.frame(

times = c(5.40, 5.50, 5.55,
5.85, 5.70, 5.75,
5.20, 5.60, 5.50,
5.55, 5.50, 5.40,
5.90, 5.85, 5.70,
5.45, 5.55, 5.60,
5.40, 5.40, 5.35,
5.45, 5.50, 5.35,
5.25, 5.15, 5.00,
5.85, 5.80, 5.70,
5.25, 5.20, 5.10,
5.65, 5.55, 5.45,
5.60, 5.35, 5.45,
5.05, 5.00, 4.95,
5.50, 5.50, 5.40,
5.45, 5.55, 5.50,
5.55, 5.55, 5.35,
5.45, 5.50, 5.55,
5.50, 5.45, 5.25,
5.65, 5.60, 5.40,
5.70, 5.65, 5.55,
6.30, 6.30, 6.25),

methods = factor(rep(1:3, 22),
labels = c("Round Out", "Narrow Angle", "Wide Angle")),

block = gl(22, 3)

SymmetryTests 87

)

Asymptotic Friedman test
friedman_test(times ~ methods | block, data = rounding)

Parallel coordinates plot
with(rounding, {

matplot(t(matrix(times, ncol = 3, byrow = TRUE)),
type = "l", lty = 1, col = 1, ylab = "Time", xlim = c(0.5, 3.5),
axes = FALSE)

axis(1, at = 1:3, labels = levels(methods))
axis(2)

})

Where do the differences come from?
Wilcoxon-Nemenyi-McDonald-Thompson test (Hollander and Wolfe, 1999, p. 295)
Note: all pairwise comparisons
(st <- symmetry_test(times ~ methods | block, data = rounding,

ytrafo = function(data)
trafo(data, numeric_trafo = rank_trafo,

block = rounding$block),
xtrafo = mcp_trafo(methods = "Tukey")))

Simultaneous test of all pairwise comparisons
Wide Angle vs. Round Out differ (Hollander and Wolfe, 1999, p. 296)
pvalue(st, method = "single-step") # subset pivotality is violated

Strength Index of Cotton
Hollander and Wolfe (1999, p. 286, Tab. 7.5)
cotton <- data.frame(

strength = c(7.46, 7.17, 7.76, 8.14, 7.63,
7.68, 7.57, 7.73, 8.15, 8.00,
7.21, 7.80, 7.74, 7.87, 7.93),

potash = ordered(rep(c(144, 108, 72, 54, 36), 3),
levels = c(144, 108, 72, 54, 36)),

block = gl(3, 5)
)

One-sided asymptotic Page test
friedman_test(strength ~ potash | block, data = cotton, alternative = "greater")

One-sided approximative (Monte Carlo) Page test
friedman_test(strength ~ potash | block, data = cotton, alternative = "greater",

distribution = approximate(nresample = 10000))

Data from Quade (1979, p. 683)
dta <- data.frame(

y = c(52, 45, 38,
63, 79, 50,
45, 57, 39,
53, 51, 43,

88 Transformations

47, 50, 56,
62, 72, 49,
49, 52, 40),

x = factor(rep(LETTERS[1:3], 7)),
b = factor(rep(1:7, each = 3))

)

Approximative (Monte Carlo) Friedman test
Quade (1979, p. 683)
friedman_test(y ~ x | b, data = dta,

distribution = approximate(nresample = 10000)) # chi^2 = 6.000

Approximative (Monte Carlo) Quade test
Quade (1979, p. 683)
(qt <- quade_test(y ~ x | b, data = dta,

distribution = approximate(nresample = 10000))) # W = 8.157

Comparison with R's quade.test() function
quade.test(y ~ x | b, data = dta)

quade.test() uses an F-statistic
b <- nlevels(qt@statistic@block)
A <- sum(qt@statistic@ytrans^2)
B <- sum(statistic(qt, type = "linear")^2) / b
(b - 1) * B / (A - B) # F = 8.3765

Transformations Functions for Data Transformation

Description

Transformations for factors and numeric variables.

Usage

id_trafo(x)
rank_trafo(x, ties.method = c("mid-ranks", "random"))
normal_trafo(x, ties.method = c("mid-ranks", "average-scores"))
median_trafo(x, mid.score = c("0", "0.5", "1"))
savage_trafo(x, ties.method = c("mid-ranks", "average-scores"))
consal_trafo(x, ties.method = c("mid-ranks", "average-scores"), a = 5)
koziol_trafo(x, ties.method = c("mid-ranks", "average-scores"), j = 1)
klotz_trafo(x, ties.method = c("mid-ranks", "average-scores"))
mood_trafo(x, ties.method = c("mid-ranks", "average-scores"))
ansari_trafo(x, ties.method = c("mid-ranks", "average-scores"))
fligner_trafo(x, ties.method = c("mid-ranks", "average-scores"))
logrank_trafo(x, ties.method = c("mid-ranks", "Hothorn-Lausen",

"average-scores"),
weight = logrank_weight, ...)

Transformations 89

logrank_weight(time, n.risk, n.event,
type = c("logrank", "Gehan-Breslow", "Tarone-Ware",

"Peto-Peto", "Prentice", "Prentice-Marek",
"Andersen-Borgan-Gill-Keiding", "Fleming-Harrington",
"Gaugler-Kim-Liao", "Self"),

rho = NULL, gamma = NULL)
f_trafo(x)
of_trafo(x, scores = NULL)
zheng_trafo(x, increment = 0.1)
maxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob)
fmaxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob)
ofmaxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob)
trafo(data, numeric_trafo = id_trafo, factor_trafo = f_trafo,

ordered_trafo = of_trafo, surv_trafo = logrank_trafo,
var_trafo = NULL, block = NULL)

mcp_trafo(...)

Arguments

x an object of class "numeric", "factor", "ordered" or "Surv".

ties.method a character, the method used to handle ties. The score generating function either
uses the mid-ranks ("mid-ranks", default) or, in the case of rank_trafo(),
randomly broken ties ("random"). Alternatively, the average of the scores re-
sulting from applying the score generating function to randomly broken ties are
used ("average-scores"). See logrank_test() for a detailed description of
the methods used in logrank_trafo().

mid.score a character, the score assigned to observations exactly equal to the median: ei-
ther 0 ("0", default), 0.5 ("0.5") or 1 ("1"); see median_test().

a a numeric vector, the values taken as the constant a in the Conover-Salsburg
scores. Defaults to 5.

j a numeric, the value taken as the constant j in the Koziol-Nemec scores. De-
faults to 1.

weight a function where the first three arguments must correspond to time, n.risk, and
n.event given below. Defaults to logrank_weight.

time a numeric vector, the ordered distinct time points.

n.risk a numeric vector, the number of subjects at risk at each time point specified in
time.

n.event a numeric vector, the number of events at each time point specified in time.

type a character, one of "logrank" (default), "Gehan-Breslow", "Tarone-Ware",
"Peto-Peto", "Prentice", "Prentice-Marek", "Andersen-Borgan-Gill-Keiding",
"Fleming-Harrington", "Gaugler-Kim-Liao" or "Self"; see logrank_test().

rho a numeric vector, the ρ constant when type is "Tarone-Ware", "Fleming-Harrington",
"Gaugler-Kim-Liao" or "Self"; see logrank_test(). Defaults to NULL, im-
plying 0.5 for type = "Tarone-Ware" and 0 otherwise.

gamma a numeric vector, the γ constant when type is "Fleming-Harrington", "Gaugler-Kim-Liao"
or "Self"; see logrank_test(). Defaults to NULL, implying 0.

90 Transformations

scores a numeric vector or list, the scores corresponding to each level of an ordered
factor. Defaults to NULL, implying 1:nlevels(x).

increment a numeric, the score increment between the order-restricted sets of scores. A
fraction greater than 0, but smaller than or equal to 1. Defaults to 0.1.

minprob a numeric, a fraction between 0 and 0.5; see maxstat_test(). Defaults to 0.1.

maxprob a numeric, a fraction between 0.5 and 1; see maxstat_test(). Defaults to 1 -
minprob.

data an object of class "data.frame".

numeric_trafo a function to be applied to elements of class "numeric" in data, returning a
matrix with nrow(data) rows and an arbitrary number of columns. Defaults to
id_trafo.

factor_trafo a function to be applied to elements of class "factor" in data, returning a
matrix with nrow(data) rows and an arbitrary number of columns. Defaults to
f_trafo.

ordered_trafo a function to be applied to elements of class "ordered" in data, returning a
matrix with nrow(data) rows and an arbitrary number of columns. Defaults to
of_trafo.

surv_trafo a function to be applied to elements of class "Surv" in data, returning a ma-
trix with nrow(data) rows and an arbitrary number of columns. Defaults to
logrank_trafo.

var_trafo an optional named list of functions to be applied to the corresponding variables
in data. Defaults to NULL.

block an optional factor whose levels are interpreted as blocks. trafo is applied to
each level of block separately. Defaults to NULL.

... logrank_trafo(): further arguments to be passed to weight.
mcp_trafo(): factor name and contrast matrix (as matrix or character) in a ‘tag
= value’ format for multiple comparisons based on a single unordered factor;
see mcp() in package multcomp.

Details

The utility functions documented here are used to define specialized test procedures.

id_trafo() is the identity transformation.

rank_trafo(), normal_trafo(), median_trafo(), savage_trafo(), consal_trafo() and koziol_trafo()
compute rank (Wilcoxon) scores, normal (van der Waerden) scores, median (Mood-Brown) scores,
Savage scores, Conover-Salsburg scores (see neuropathy) and Koziol-Nemec scores, respectively,
for location problems.

klotz_trafo(), mood_trafo(), ansari_trafo() and fligner_trafo() compute Klotz scores,
Mood scores, Ansari-Bradley scores and Fligner-Killeen scores, respectively, for scale problems.

logrank_trafo() computes weighted logrank scores for right-censored data, allowing for a user-
defined weight function through the weight argument (see GTSG).

f_trafo() computes dummy matrices for factors and of_trafo() assigns scores to ordered fac-
tors. For ordered factors with two levels, the scores are normalized to the [0, 1] range. zheng_trafo()

Transformations 91

computes a finite collection of order-restricted scores for ordered factors (see jobsatisfaction,
malformations and vision).

maxstat_trafo(), fmaxstat_trafo() and ofmaxstat_trafo() compute scores for cutpoint prob-
lems (see maxstat_test()).

trafo() applies its arguments to the elements of data according to the classes of the elements. A
trafo() function with modified default arguments is usually supplied to independence_test()
via the xtrafo or ytrafo arguments. Fine tuning, i.e., different transformations for different vari-
ables, is possible by supplying a named list of functions to the var_trafo argument.

mcp_trafo() computes contrast matrices for factors.

Value

A numeric vector or matrix with nrow(x) rows and an arbitrary number of columns. For trafo(),
a named matrix with nrow(data) rows and an arbitrary number of columns.

Note

Starting with coin version 1.1-0, all transformation functions are now passing through missing val-
ues (i.e., NAs). Furthermore, median_trafo() and logrank_trafo() are now increasing functions
(in conformity with most other transformations in this package).

Examples

Dummy matrix, two-sample problem (only one column)
f_trafo(gl(2, 3))

Dummy matrix, K-sample problem (K columns)
x <- gl(3, 2)
f_trafo(x)

Score matrix
ox <- as.ordered(x)
of_trafo(ox)
of_trafo(ox, scores = c(1, 3:4))
of_trafo(ox, scores = list(s1 = 1:3, s2 = c(1, 3:4)))
zheng_trafo(ox, increment = 1/3)

Normal scores
y <- runif(6)
normal_trafo(y)

All together now
trafo(data.frame(x = x, ox = ox, y = y), numeric_trafo = normal_trafo)

The same, but allows for fine-tuning
trafo(data.frame(x = x, ox = ox, y = y), var_trafo = list(y = normal_trafo))

Transformations for maximally selected statistics
maxstat_trafo(y)
fmaxstat_trafo(x)

92 treepipit

ofmaxstat_trafo(ox)

Apply transformation blockwise (as in the Friedman test)
trafo(data.frame(y = 1:20), numeric_trafo = rank_trafo, block = gl(4, 5))

Multiple comparisons
dta <- data.frame(x)
mcp_trafo(x = "Tukey")(dta)

The same, but useful when specific contrasts are desired
K <- rbind("2 - 1" = c(-1, 1, 0),

"3 - 1" = c(-1, 0, 1),
"3 - 2" = c(0, -1, 1))

mcp_trafo(x = K)(dta)

treepipit Tree Pipits in Franconian Oak Forests

Description

Data on the population density of tree pipits, Anthus trivialis, in Franconian oak forests including
variables describing the forest ecosystem.

Usage

treepipit

Format

A data frame with 86 observations on 10 variables.

counts the number of tree pipits observed.

age age of the overstorey oaks taken from forest data.

coverstorey cover of canopy overstorey (%). The crown cover is described relative to a fully
stocked stand. Very dense overstorey with multiple crown cover could reach values greater
than 100%.

coverregen cover of regeneration and shrubs (%).

meanregen mean height of regeneration and shrubs.

coniferous coniferous trees (% per hectare).

deadtree number of dead trees (per hectare).

cbpiles number of crowns and branch piles (per hectare). All laying crowns and branch piles were
counted. These were induced by logging and the creation of wind breaks.

ivytree number of ivied trees (per hectare).

fdist distance to the forest edge. The closest distance to the forest edge was measured from the
centre of each grid.

VarCovar-class 93

Details

This study is based on fieldwork conducted in three lowland oak forests in the Franconian region
of northern Bavaria close to Uffenheim, Germany. Diurnal breeding birds were sampled five times,
from March to June 2002, using a quantitative grid mapping. Each grid was a one-hectare square. In
total, 86 sample sites were established in 9 stands. All individuals were counted in time intervals of
7 min/grid during slow walks along the middle of the grid with a stop in the centre. Environmental
factors were measured for each grid.

References

Müller, J. and Hothorn, T. (2004). Maximally selected two-sample statistics as a new tool for the
identification and assessment of habitat factors with an application to breeding bird communities in
oak forests. European Journal of Forest Research 123(3), 219–228. doi:10.1007/s1034200400355

Examples

Asymptotic maximally selected statistics
maxstat_test(counts ~ age + coverstorey + coverregen + meanregen +

coniferous + deadtree + cbpiles + ivytree,
data = treepipit)

VarCovar-class Class "VarCovar" and its subclasses

Description

Objects of class "VarCovar" and its subclasses "CovarianceMatrix" and "Variance" represent
the covariance and variance, respectively, of the linear statistic.

Objects from the Class

Class "VarCovar" is a virtual class defined as the class union of "CovarianceMatrix" and "Variance",
so objects cannot be created from it directly.

Objects can be created by calls of the form

new("CovarianceMatrix", covariance, \dots)

and

new("Variance", variance, \dots)

where covariance is a covariance matrix and variance is numeric vector containing the diagonal
elements of the covariance matrix.

https://doi.org/10.1007/s10342-004-0035-5

94 vision

Slots

For objects of class "CovarianceMatrix":

covariance: Object of class "matrix". The covariance matrix.

For objects of class "Variance":

variance: Object of class "numeric". The diagonal elements of the covariance matrix.

Extends

For objects of classes "CovarianceMatrix" or "Variance":
Class "VarCovar", directly.

Known Subclasses

For objects of class "VarCovar":
Class "CovarianceMatrix", directly.
Class "Variance", directly.

Methods

covariance signature(object = "CovarianceMatrix"): See the documentation for covariance
for details.

initialize signature(.Object = "CovarianceMatrix"): See the documentation for initialize
(in package methods) for details.

initialize signature(.Object = "Variance"): See the documentation for initialize (in pack-
age methods) for details.

variance signature(object = "CovarianceMatrix"): See the documentation for variance for
details.

variance signature(object = "Variance"): See the documentation for variance for details.

Note

Starting with coin version 1.4-0, this class is deprecated. It will be made defunct and removed in
a future release.

vision Unaided Distance Vision

Description

Assessment of unaided distance vision of women in Britain.

Usage

vision

vision 95

Format

A contingency table with 7477 observations on 2 variables.

Right.Eye a factor with levels "Highest Grade", "Second Grade", "Third Grade" and "Lowest
Grade".

Left.Eye a factor with levels "Highest Grade", "Second Grade", "Third Grade" and "Lowest
Grade".

Details

Paired ordered categorical data from case-records of eye-testing of 7477 women aged 30–39 years
employed by Royal Ordnance Factories in Britain during 1943–46, as given by Stuart (1953).

This data set was used by Stuart (1955) to illustrate a test of marginal homogeneity. Winell and
Lindbäck (2018) also used the data, demonstrating a score-independent test for ordered categorical
data.

Source

Stuart, A. (1953). The estimation and comparison of strengths of association in contingency tables.
Biometrika 40(1/2), 105–110. doi:10.2307/2333101

References

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika 42(3/4), 412–416. doi:10.1093/biomet/42.34.412

Winell, H. and Lindbäck, J. (2018). A general score-independent test for order-restricted inference.
Statistics in Medicine 37(21), 3078–3090. doi:10.1002/sim.7690

Examples

Asymptotic Stuart test (Q = 11.96)
diag(vision) <- 0 # speed-up
mh_test(vision)

Asymptotic score-independent test
Winell and Lindbaeck (2018)
(st <- symmetry_test(vision,

ytrafo = function(data)
trafo(data, factor_trafo = function(y)

zheng_trafo(as.ordered(y)))))
ss <- statistic(st, type = "standardized")
idx <- which(abs(ss) == max(abs(ss)), arr.ind = TRUE)
ss[idx[1], idx[2], drop = FALSE]

https://doi.org/10.2307/2333101
https://doi.org/10.1093/biomet/42.3-4.412
https://doi.org/10.1002/sim.7690

Index

∗ Andersen-Borgan-Gill-Keiding test
SurvivalTests, 73

∗ Ansari-Bradley test
ScaleTests, 68

∗ Brown-Mood median test
LocationTests, 35

∗ Cochran Q test
MarginalHomogeneityTests, 41

∗ Cochran-Armitage test
ContingencyTests, 7

∗ Conover-Iman test
ScaleTests, 68

∗ Fisher-Pitman permutation test
LocationTests, 35

∗ Fisher-Yates correlation test
CorrelationTests, 12

∗ Fleming-Harrington test
SurvivalTests, 73

∗ Fligner-Killeen test
ScaleTests, 68

∗ Friedman test
SymmetryTests, 83

∗ Gaugler-Kim-Liao test
SurvivalTests, 73

∗ Gehan-Breslow test
SurvivalTests, 73

∗ Generalized Cochran-Mantel-Haenszel
test

ContingencyTests, 7
∗ Generalized maximally selected statistics

MaximallySelectedStatisticsTests,
45

∗ Klotz test
ScaleTests, 68

∗ Koziol-Nemec test
CorrelationTests, 12

∗ Kruskal-Wallis test
LocationTests, 35

∗ Linear-by-linear association test

ContingencyTests, 7
∗ Logrank test

SurvivalTests, 73
∗Madansky test of interchangeability

MarginalHomogeneityTests, 41
∗McNemar test

MarginalHomogeneityTests, 41
∗Mood test

ScaleTests, 68
∗ Page test

SymmetryTests, 83
∗ Pearson chi-squared test

ContingencyTests, 7
∗ Peto-Peto test

SurvivalTests, 73
∗ Prentice test

SurvivalTests, 73
∗ Prentice-Marek test

SurvivalTests, 73
∗ Quade test

SymmetryTests, 83
∗ Quadrant test

CorrelationTests, 12
∗ Savage test

LocationTests, 35
∗ Self test

SurvivalTests, 73
∗ Sign test

SymmetryTests, 83
∗ Spearman correlation test

CorrelationTests, 12
∗ Stuart(-Maxwell) test

MarginalHomogeneityTests, 41
∗ Taha test

ScaleTests, 68
∗ Tarone-Ware test

SurvivalTests, 73
∗Wilcoxon signed-rank test

SymmetryTests, 83

96

INDEX 97

∗Wilcoxon-Mann-Whitney test
LocationTests, 35

∗ classes
IndependenceLinearStatistic-class,

22
IndependenceProblem-class, 23
IndependenceTest-class, 28
IndependenceTestProblem-class, 30
IndependenceTestStatistic-class,

31
NullDistribution-class, 54
PValue-class, 62
SymmetryProblem-class, 79
VarCovar-class, 93

∗ datasets
alpha, 4
alzheimer, 5
asat, 6
CWD, 14
glioma, 18
GTSG, 19
hohnloser, 21
jobsatisfaction, 34
malformations, 40
mercuryfish, 48
neuropathy, 50
ocarcinoma, 57
photocar, 61
rotarod, 67
treepipit, 92
vision, 94

∗ distribution
PermutationDistribution-methods,

59
∗ htest

ContingencyTests, 7
CorrelationTests, 12
IndependenceTest, 24
LocationTests, 35
MarginalHomogeneityTests, 41
MaximallySelectedStatisticsTests,

45
NullDistribution, 52
PermutationDistribution-methods,

59
pvalue-methods, 63
ScaleTests, 68
SurvivalTests, 73

SymmetryTest, 80
SymmetryTests, 83

∗ manip
Transformations, 88

∗ methods
expectation-methods, 16
NullDistribution-methods, 56
PermutationDistribution-methods,

59
pvalue-methods, 63
statistic-methods, 71

∗ package
coin-package, 3

∗ survival
SurvivalTests, 73

∗ van der Waerden test
LocationTests, 35

alpha, 4
alzheimer, 5
ansari_test (ScaleTests), 68
ansari_trafo (Transformations), 88
approximate, 8, 13, 14, 25, 26, 37, 42, 46, 47,

70, 76, 80, 82, 85
approximate (NullDistribution), 52
ApproxNullDistribution, 33, 57
ApproxNullDistribution

(NullDistribution-methods), 56
ApproxNullDistribution,MaxTypeIndependenceTestStatistic-method

(NullDistribution-methods), 56
ApproxNullDistribution,QuadTypeIndependenceTestStatistic-method

(NullDistribution-methods), 56
ApproxNullDistribution,ScalarIndependenceTestStatistic-method

(NullDistribution-methods), 56
ApproxNullDistribution-class

(NullDistribution-class), 54
ApproxNullDistribution-methods

(NullDistribution-methods), 56
asat, 6
AsymptNullDistribution, 33, 57
AsymptNullDistribution

(NullDistribution-methods), 56
AsymptNullDistribution,MaxTypeIndependenceTestStatistic-method

(NullDistribution-methods), 56
AsymptNullDistribution,QuadTypeIndependenceTestStatistic-method

(NullDistribution-methods), 56
AsymptNullDistribution,ScalarIndependenceTestStatistic-method

(NullDistribution-methods), 56

98 INDEX

AsymptNullDistribution-class
(NullDistribution-class), 54

AsymptNullDistribution-methods
(NullDistribution-methods), 56

asymptotic, 8, 13, 14, 25, 26, 37, 42, 46, 47,
70, 76, 80, 82, 85

asymptotic (NullDistribution), 52

chisq_test (ContingencyTests), 7
cmh_test (ContingencyTests), 7
coin (coin-package), 3
coin-package, 3
confint, 37, 70
confint,IndependenceTest-method

(IndependenceTest-class), 28
confint,ScalarIndependenceTestConfint-method

(IndependenceTest-class), 28
conover_test (ScaleTests), 68
consal_trafo (Transformations), 88
ContingencyTests, 7
CorrelationTests, 12
covariance, 23, 29, 34, 94
covariance (expectation-methods), 16
covariance,CovarianceMatrix-method

(expectation-methods), 16
covariance,IndependenceLinearStatistic-method

(expectation-methods), 16
covariance,IndependenceTest-method

(expectation-methods), 16
covariance,QuadTypeIndependenceTestStatistic-method

(expectation-methods), 16
covariance-methods

(expectation-methods), 16
CovarianceMatrix-class

(VarCovar-class), 93
CWD, 14

dperm, 29, 56
dperm

(PermutationDistribution-methods),
59

dperm,IndependenceTest-method
(PermutationDistribution-methods),
59

dperm,NullDistribution-method
(PermutationDistribution-methods),
59

dperm-methods
(PermutationDistribution-methods),

59

exact, 8, 25, 26, 37, 42, 70, 76, 80, 82, 85
exact (NullDistribution), 52
ExactNullDistribution, 33, 57
ExactNullDistribution

(NullDistribution-methods), 56
ExactNullDistribution,QuadTypeIndependenceTestStatistic-method

(NullDistribution-methods), 56
ExactNullDistribution,ScalarIndependenceTestStatistic-method

(NullDistribution-methods), 56
ExactNullDistribution-class

(NullDistribution-class), 54
ExactNullDistribution-methods

(NullDistribution-methods), 56
expectation, 23, 29
expectation (expectation-methods), 16
expectation,IndependenceLinearStatistic-method

(expectation-methods), 16
expectation,IndependenceTest-method

(expectation-methods), 16
expectation-methods, 16

f_trafo (Transformations), 88
fisyat_test (CorrelationTests), 12
fligner_test (ScaleTests), 68
fligner_trafo (Transformations), 88
fmaxstat_trafo (Transformations), 88
friedman_test (SymmetryTests), 83

GenzBretz, 52
glioma, 18
GTSG, 19, 76, 90

hohnloser, 21

id_trafo (Transformations), 88
independence_test, 8, 13, 36, 37, 46, 47, 52,

69, 74, 76, 91
independence_test (IndependenceTest), 24
IndependenceLinearStatistic, 24, 31, 33
IndependenceLinearStatistic-class, 22
IndependenceProblem, 8, 13, 23, 25, 30, 31,

33, 36, 46, 69, 73, 79
IndependenceProblem-class, 23
IndependenceTest, 9, 14, 24, 25, 26, 37, 43,

47, 70, 76, 81, 82, 85
IndependenceTest-class, 28
IndependenceTestProblem, 22–24, 33

INDEX 99

IndependenceTestProblem-class, 30
IndependenceTestStatistic, 23–25, 28, 31,

33, 81
IndependenceTestStatistic-class, 31
initialize, 23, 24, 31, 34, 79, 94
initialize,CovarianceMatrix-method

(VarCovar-class), 93
initialize,IndependenceLinearStatistic-method

(IndependenceLinearStatistic-class),
22

initialize,IndependenceProblem-method
(IndependenceProblem-class), 23

initialize,IndependenceTestProblem-method
(IndependenceTestProblem-class),
30

initialize,IndependenceTestStatistic-method
(IndependenceTestStatistic-class),
31

initialize,MaxTypeIndependenceTestStatistic-method
(IndependenceTestStatistic-class),
31

initialize,QuadTypeIndependenceTestStatistic-method
(IndependenceTestStatistic-class),
31

initialize,ScalarIndependenceTestStatistic-method
(IndependenceTestStatistic-class),
31

initialize,SymmetryProblem-method
(SymmetryProblem-class), 79

initialize,Variance-method
(VarCovar-class), 93

jobsatisfaction, 34, 91

klotz_test (ScaleTests), 68
klotz_trafo (Transformations), 88
koziol_test (CorrelationTests), 12
koziol_trafo (Transformations), 88
kruskal_test (LocationTests), 35

lbl_test (ContingencyTests), 7
LocationTests, 35
logrank_test, 89
logrank_test (SurvivalTests), 73
logrank_trafo, 76
logrank_trafo (Transformations), 88
logrank_weight (Transformations), 88

malformations, 40, 91

MarginalHomogeneityTests, 41
MaximallySelectedStatisticsTests, 45
maxstat_test, 90, 91
maxstat_test

(MaximallySelectedStatisticsTests),
45

maxstat_trafo (Transformations), 88
MaxTypeIndependenceTest-class

(IndependenceTest-class), 28
MaxTypeIndependenceTestStatistic, 23,

24, 31
MaxTypeIndependenceTestStatistic-class

(IndependenceTestStatistic-class),
31

mcp, 90
mcp_trafo (Transformations), 88
median_test, 13, 89
median_test (LocationTests), 35
median_trafo (Transformations), 88
mercuryfish, 48
mh_test (MarginalHomogeneityTests), 41
midpvalue, 29, 56
midpvalue (pvalue-methods), 63
midpvalue,ApproxNullDistribution-method

(pvalue-methods), 63
midpvalue,IndependenceTest-method

(pvalue-methods), 63
midpvalue,NullDistribution-method

(pvalue-methods), 63
midpvalue-methods (pvalue-methods), 63
mood_test (ScaleTests), 68
mood_trafo (Transformations), 88

NA, 91
neuropathy, 50, 90
normal_test (LocationTests), 35
normal_trafo (Transformations), 88
NullDistribution, 25, 52, 81
NullDistribution-class, 54
NullDistribution-methods, 56

ocarcinoma, 57
of_trafo (Transformations), 88
ofmaxstat_trafo (Transformations), 88
oneway_test (LocationTests), 35

PermutationDistribution-methods, 59
photocar, 61
pperm, 29, 56

100 INDEX

pperm
(PermutationDistribution-methods),
59

pperm,IndependenceTest-method
(PermutationDistribution-methods),
59

pperm,NullDistribution-method
(PermutationDistribution-methods),
59

pperm-methods
(PermutationDistribution-methods),
59

PValue, 28, 55
pvalue, 29, 56, 63
pvalue (pvalue-methods), 63
pvalue,ApproxNullDistribution-method

(pvalue-methods), 63
pvalue,IndependenceTest-method

(pvalue-methods), 63
pvalue,MaxTypeIndependenceTest-method

(pvalue-methods), 63
pvalue,NullDistribution-method

(pvalue-methods), 63
pvalue,PValue-method (pvalue-methods),

63
PValue-class, 62
pvalue-methods, 63
pvalue_interval, 30, 56
pvalue_interval (pvalue-methods), 63
pvalue_interval,IndependenceTest-method

(pvalue-methods), 63
pvalue_interval,NullDistribution-method

(pvalue-methods), 63
pvalue_interval-methods

(pvalue-methods), 63

qperm, 30, 56
qperm

(PermutationDistribution-methods),
59

qperm,IndependenceTest-method
(PermutationDistribution-methods),
59

qperm,NullDistribution-method
(PermutationDistribution-methods),
59

qperm-methods
(PermutationDistribution-methods),
59

quade_test (SymmetryTests), 83
quadrant_test (CorrelationTests), 12
QuadTypeIndependenceTest-class

(IndependenceTest-class), 28
QuadTypeIndependenceTestStatistic, 23,

24, 31
QuadTypeIndependenceTestStatistic-class

(IndependenceTestStatistic-class),
31

rank_trafo (Transformations), 88
rotarod, 67
rperm, 30, 56
rperm

(PermutationDistribution-methods),
59

rperm,IndependenceTest-method
(PermutationDistribution-methods),
59

rperm,NullDistribution-method
(PermutationDistribution-methods),
59

rperm-methods
(PermutationDistribution-methods),
59

savage_test (LocationTests), 35
savage_trafo (Transformations), 88
ScalarIndependenceTest-class

(IndependenceTest-class), 28
ScalarIndependenceTestConfint-class

(IndependenceTest-class), 28
ScalarIndependenceTestStatistic, 23, 24,

31
ScalarIndependenceTestStatistic-class

(IndependenceTestStatistic-class),
31

ScaleTests, 68
setDefaultCluster, 53
show, 30
show,IndependenceTest-method

(IndependenceTest-class), 28
show,MaxTypeIndependenceTest-method

(IndependenceTest-class), 28
show,QuadTypeIndependenceTest-method

(IndependenceTest-class), 28
show,ScalarIndependenceTest-method

(IndependenceTest-class), 28

INDEX 101

show,ScalarIndependenceTestConfint-method
(IndependenceTest-class), 28

sign_test (SymmetryTests), 83
size, 30, 56
size (pvalue-methods), 63
size,IndependenceTest-method

(pvalue-methods), 63
size,NullDistribution-method

(pvalue-methods), 63
size-methods (pvalue-methods), 63
spearman_test (CorrelationTests), 12
statistic, 23, 30, 34
statistic (statistic-methods), 71
statistic,IndependenceLinearStatistic-method

(statistic-methods), 71
statistic,IndependenceTest-method

(statistic-methods), 71
statistic,IndependenceTestStatistic-method

(statistic-methods), 71
statistic-methods, 71
support, 30, 56
support

(PermutationDistribution-methods),
59

support,IndependenceTest-method
(PermutationDistribution-methods),
59

support,NullDistribution-method
(PermutationDistribution-methods),
59

support-methods
(PermutationDistribution-methods),
59

Surv, 73
surv_test (SurvivalTests), 73
survdiff, 76
SurvivalTests, 73
symmetry_test, 42, 76, 84
symmetry_test (SymmetryTest), 80
SymmetryProblem, 24, 42, 80, 84
SymmetryProblem-class, 79
SymmetryTest, 80
SymmetryTests, 83

taha_test (ScaleTests), 68
trafo, 25, 26, 81
trafo (Transformations), 88
Transformations, 88
treepipit, 92

VarCovar-class, 93
variance, 23, 30, 94
variance (expectation-methods), 16
variance,CovarianceMatrix-method

(expectation-methods), 16
variance,IndependenceLinearStatistic-method

(expectation-methods), 16
variance,IndependenceTest-method

(expectation-methods), 16
variance,Variance-method

(expectation-methods), 16
Variance-class (VarCovar-class), 93
variance-methods (expectation-methods),

16
vision, 91, 94

wilcox_test (LocationTests), 35
wilcoxsign_test (SymmetryTests), 83

zheng_trafo (Transformations), 88

	coin-package
	alpha
	alzheimer
	asat
	ContingencyTests
	CorrelationTests
	CWD
	expectation-methods
	glioma
	GTSG
	hohnloser
	IndependenceLinearStatistic-class
	IndependenceProblem-class
	IndependenceTest
	IndependenceTest-class
	IndependenceTestProblem-class
	IndependenceTestStatistic-class
	jobsatisfaction
	LocationTests
	malformations
	MarginalHomogeneityTests
	MaximallySelectedStatisticsTests
	mercuryfish
	neuropathy
	NullDistribution
	NullDistribution-class
	NullDistribution-methods
	ocarcinoma
	PermutationDistribution-methods
	photocar
	PValue-class
	pvalue-methods
	rotarod
	ScaleTests
	statistic-methods
	SurvivalTests
	SymmetryProblem-class
	SymmetryTest
	SymmetryTests
	Transformations
	treepipit
	VarCovar-class
	vision
	Index

