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cctest Tests of Independence Based on Canonical Correlations
Description

cctest estimates canonical correlations between two sets of variables, possibly after removing
effects of a third set of variables, and performs a classical multivariate test of (conditional) indepen-
dence based on Pillai’s statistic.
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Usage
cctest(formula, data = NULL, df = formula[-2L], ..., tol = 1e-07)

Arguments

formula A formula object of the form Y ~ X ~ A, where Y represents dependent variables,
X represents a second set of dependent variables or explanatory variables not
present under the null hypothesis, and A represents explanatory variables that
remain under the null hypothesis. The operators (like +) and expansion rules
defined for the model part of a formula object here apply to all three parts alike.
Typically, A includes at least the constant 1 to specify a model with intercepts;
unlike 1m, the function never adds this automatically.

data An optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model.

df An optional formula object of the form ~ A@, where AQ is a replacement of A for
the degrees of freedom computation. If not specified, this is the same as A.

Additional optional arguments passed to model.frame. In particular, subset
specifies which rows of data to include, na.action how to handle missing val-
ues (e.g., na.exclude), and weights is a vector of any nonnegative numbers
that specify how many identical observations each row represents.

tol The tolerance in the QR decomposition for detecting linear dependencies (i.e.,
collinearities) of the variables.

Details

cctest unifies various classical statistical procedures that involve the same underlying computa-
tions, including t-tests, tests in univariate and multivariate linear models, parametric and nonpara-
metric tests for correlation, Kruskal-Wallis tests, common approximate versions of Wilcoxon rank-
sum and signed rank tests, chi-squared tests of independence, score tests of particular hypotheses
in generalized linear models, canonical correlation analysis and linear discriminant analysis (see
Examples).

Specifically, for the matrices with ranks r,, and r,, obtained from X and Y by subtracting from each
column its orthogonal projection on the column space of A, the function computes factorizations
XU and YV with X and Y/ having r; and 7, columns, respectively, such that both XTX =rland
Y'Y =¢,and XY =rDisa rectangular diagonal matrix with decreasing diagonal elements.
The scaling factor r, which should be nonzero, is the dimension of the orthogonal complement of
the column space of Ay.

The function realizes this variant of the singular value decomposition by first computing prelimi-
nary QR factorizations of the stated form (taking » = 1) without the requirement on D, and then,
in a second step, modifying these based on a standard singular value decomposition of that ma-
trix. The main work is done in a rotated coordinate system where the column space of A aligns
with the coordinate axes. The basic approach and the rank detection algorithm are inspired by the
implementations in cancor and in 1m, respectively.

The diagonal elements of D, or singular values, are the estimated canonical correlations (Hotelling
1936) of the variables represented by X and Y if these follow a linear model (X Y) = A(a 38) +
(6 €) with known A, unknown (« () and error terms (0 ¢) that have uncorrelated rows with
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expectation zero and an identical unknown covariance matrix. In the most common case, where A
is given as a constant 1, these are the sample canonical correlations (i.e., based on simple centering)
most often presented in the literature for full column ranks r,, and r,. They are always decreasing
and between 0 and 1.

In the case of the linear model with independent normally distributed rows and Ay = A, the ranks
r, and ry equal, with probability 1, the ranks of the covariance matrices of the rows of X and Y,
respectively, or 7, whichever is smaller. Under the hypothesis of independence of X and Y, given
those ranks, the joint distribution of the s squared singular values, where s is the smaller of the two
ranks, is then known and in the case r > 7, + r, has a probability density (Hsu 1939, Anderson
2003, Anderson 2007) given by
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denominator representing the degrees of freedom, or twice the parameters of the beta distribution.
Pillai’s statistic is the sum of squares of the canonical correlations, which equals, even without
the requirement on D, the squared Frobenius norm of that matrix (or trace of D' D). Replacing
the distribution of that statistic divided by s (i.e., of the mean of squares) with beta or gamma
distributions with first or shape parameter r,r,/2 and expectation r,r,/(rs) leads to the F and
chi-squared approximations that the p-values returned by cctest are based on.

The F or beta approximation (Pillai 1954, p. 99, p. 44) is usually used with Ag = A and then
is exact if s = 1. The chi-squared approximation represents Rao’s (1948) score test (with a test
statistic that is r times Pillai’s statistic) in the model obtained after removing (or conditioning on)
the orthogonal projections on the column space of A provided that is a subset of the column space
of A.

Value

A list with class htest containing the following components:

X,y matrices X and Y of new transformed variables

xinv, yinv matrices U and V representing the inverse coordinate transformations

estimate vector of canonical correlations, i.e., the diagonal elements of D

statistic vector of p-values based on Pillai’s statistic and classical chi-squared and F ap-
proximations

df.residual the number r

method the name of the function

data.name a character string representation of formula (possibly shortened)

Note

The handling of weights differs from that in 1m unless the nonzero weights are scaled so as to have
a mean of 1. Also, to facilitate predictions for rows with zero weights (see Examples and the code
marked as optional), the square roots of the weights, used internally for scaling the data, are always
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computed as nonzero numbers, even for zero weights, where they are so small that their square is
still numerically zero and hence without effect on the correlation analysis. An offset, if included

inAor ...,is subtracted from all columns in X and Y.
Author(s)

Robert Schlicht
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See Also

Functions cancor, anova.mlmin package stats and implementations of canonical correlation anal-
ysis in other packages such as CCP (tests only), MVar, candisc (both including tests based on Wilks’
statistic), yacca, CCA, acca, whitening.

Examples

## Artificial observations in 5-by-5 meter quadrats in a forest for
## comparing cctest analyses with equivalent "stats” methods:
set.seed(0)
dat <- within(data.frame(row.names=1:150), {
plot <- sample(factor(c("a”,”"b")), 150, TRUE)
X <- as.integer(runif(150,1,31) + 81x(plot=="b"))
y <- as.integer(runif(150,1,31) + 61x(plot=="b"))
ori <- sample(factor(c("E","N","S","W")), 150, TRUE)
elev <- runif(150,605,645) + 5*%(plot=="b")
h <- rnorm(150, 125-.17%elev, 3.5)
h5 <= rnorm(150, h, 2)
h10 <- rnorm(150, h5, 2)
c15 <- as.integer(rnorm(150, h1@, 2) > 20)
sapl <- rnbinom(150, 2.6, mu=.02xelev)
»
dat[1:8,]

plot a or b

X position on grid

y position on grid
orientation of slope
elevation (in meters)

tree height (in meters)

tree height 5 years earlier
tree height 10 years earlier
0-1 coded, 15 years earlier
number of saplings
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## t-tests:
cctest(h~plot~1, dat)
t.test(h~plot, dat, var.equal=TRUE)
summary (1m(Ch~plot, dat))
cctest(I(h-20)~1~0, dat)
t.test(dat$h, mu=20)
t.test(h~1, dat, mu=20)
cctest(I(h-h5)~1~0, dat)
t.test(dat$h, dat$h5, paired=TRUE)
t.test(Pair(h,h5)~1, dat)

## Test for correlation:
cctest(h~elev~1, dat)
cor.test(~h+elev, dat)

## One-way analysis of variance:
cctest(h~ori~1, dat)
anova(lm(h~ori, dat))

## F-tests in linear models:
cctest(h~ori~1+elev, dat)
anova(lm(h~1+elev, dat), lm(h~ori+elev, dat))
cctest(h~h10~0, dat, subset=1:5)
anova(lm(h~0,dat,subset=1:5), 1lm(h~0+h10,dat,subset=1:5))

## Test in multivariate linear model based on Pillai's statistic:
cctest(h+h5+h10~x+y~1+elev, dat)
anova(lm(cbind(h,h5,h10)~elev, dat),
Im(cbind(h,h5,h10)~elev+x+y, dat))

## Test based on Spearman's rank correlation coefficient:
cctest(rank(h)~rank(elev)~1, dat)
cor.test(~h+telev, dat, method="spearman”, exact=FALSE)

## Kruskal-Wallis and Wilcoxon rank-sum tests:
cctest(rank(h)~ori~1, dat)

kruskal.test(h~ori, dat)
cctest(rank(h)~plot~1, dat)

wilcox.test(h~plot, dat, exact=FALSE, correct=FALSE)

## Wilcoxon signed rank test:
cctest(rank(abs(h-h5))~sign(h-h5)~0, subset(dat, h-h5 != 0))
wilcox.test(h-h5 ~ 1, dat, exact=FALSE, correct=FALSE)

## Chi-squared test of independence:

cctest(ori~plot~1, dat, ~0)

cctest(ori~plot~1, xtabs(~ori+plot,dat), ~0, weights=Freq)
summary (xtabs(~ori+plot, dat, drop.unused.levels=TRUE))
chisqg.test(dat$ori, dat$plot, correct=FALSE)

## Score test in logistic regression (logit model, ...~1 only):
cctest(c15~x+y~1, dat, ~0)
anova(glm(c15~1, binomial, dat, epsilon=1e-12),



cctest

glm(c15~1+x+y, binomial, dat), test="Rao")

## Score test in multinomial logit model (...~1 only):
cctest(ori~x+y~1, dat, ~0)
with(list(d=dat, e=expand.grid(stringsAsFactors=FALSE,
i=row.names(dat), j=levels(dat$ori))
), anova(
glm(d[i,"ori"]==j ~ j+d[i,"x"]1+d[i,"y"], poisson, e, epsilon=1e-12),
glm(d[i,"ori"J==j ~ j*(d[i,"x"]1+d[i,"y"]1), poisson, e), test="Rao"
D)

## Absolute values of (partial) correlation coefficients:
cctest(h~elev~1, dat)$est
cor(dat$h, dat$elev)
cctest(h~elev~1+x+y, dat)$est
cov2cor(estVar(Im(cbind(h,elev)~1+x+y, dat)))
cctest(h~x+y+elev~1, dat)$est”2
summary (Im(h~1+x+y+elev, dat))$r.squared

## Canonical correlations:
cctest(h+h5+h10~x+y~1, dat)$est
cancor(dat[c("x","y")],dat[c("h","h5","h10")])$cor

## Linear discriminant analysis:

with(list(
cc = cctest(h+h5+h10~ori~1, dat, ~ori)

), cc$y / sqrt(1-cc$est*2)[col(ccsy))[1:7,]
#predict (MASS: :1da(ori~h+h5+h10,dat))$x[1:7,]

## Correspondence analysis:
cctest(ori~plot~1, xtabs(~oritplot,dat), ~0, weights=Freq)[1:2]
#MASS: :corresp(~plot+ori, dat, nf=2)

## Prediction in multivariate linear model:

with(list(
cc = cctest(h+h5+h10~1+x+y~0, dat, weights=plot=="a")

), cc$x %*% diag(cc$est,ncol(cc$x),ncol(ccsy)) %*% cc$yinv)[1:7,]
predict(Im(cbind(h,h5,h10)~1+x+y, dat, subset=plot=="a"), dat)[1:7,]

## Not run:
## Handling of additional arguments and edge cases:
cctest(h~h10~offset(h5), dat)
anova(lm(h~@+offset(h5), dat), 1Im(h~0+I(h10-h5)+offset(h5), dat))
cctest(h~x~1, dat, weights=sapl/mean(sapl[sapl!=01))
anova(lm(h~1, dat, weights=sapl),
Im(h~1+x, dat, weights=sapl))
cctest(sqgrt(h-17)~elev~1, dat[1:5,], na.action=na.exclude)[1:2]
scale(resid(Im(cbind(elev,sqrt(h-17))~1, dat[1:5,],
na.action=na.exclude)), FALSE)
cctest(ori:I(sum(Freq)/Freq)~I(0*Freq)~offset(Freq*@), xtabs(~ori,dat),
weights=Freq*2/sum(Freq)/c(.4,.1,.2,.3), na.action=na.fail)
chisq.test(xtabs(~ori,dat), p=c(.4,.1,.2,.3))
cctest(c15~h~1, dat, t0l=0.999*sqrt(1-cctest(h~1~0,dat) $est*2))
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summary (1m(c15~h, dat, tol=0.999*sqrt(1-cctest(h~1~0,dat)$est*2)))
cctest(c15~h~1, dat, t0l=1.001*sqgrt(1-cctest(h~1~0,dat)$est*2))
summary(1Im(c15~h, dat, tol=1.001*sqrt(1-cctest(h~1~0,dat)$est*2)))
cctest(c(1)~c(@)~c(@))
anova(lm(1~0),1m(1~0))
cctest(0~0~0, dat, na.action=na.fail)
NaN
cctest(1~0~1, dat)
anova(lm(h*@~1, dat), lm(h*0~0+1, dat))
cctest(1~1~0, dat)
anova(lm(h*0~0, dat), lm(h*0~1, dat))
## End(Not run)
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