
Package ‘castor’
November 17, 2024

Type Package

Title Efficient Phylogenetics on Large Trees

Version 1.8.3

Date 2024-11-15

Description Efficient phylogenetic analyses on massive phylogenies comprising up to mil-
lions of tips. Functions include pruning, rerooting, calculation of most-recent common ances-
tors, calculating distances from the tree root and calculating pairwise distances. Calcula-
tion of phylogenetic signal and mean trait depth (trait conservatism), ancestral state reconstruc-
tion and hidden character prediction of discrete characters, simulating and fitting mod-
els of trait evolution, fitting and simulating diversification models, dating trees, compar-
ing trees, and reading/writing trees in Newick format. Citation: Louca, Stilianos and Doe-
beli, Michael (2017) <doi:10.1093/bioinformatics/btx701>.

License GPL (>= 2)

Depends Rcpp (>= 0.12.10)

Imports parallel, naturalsort, stats, Matrix, RSpectra, jsonlite,
methods

Suggests nloptr, ape

LinkingTo Rcpp

RoxygenNote 7.1.2

NeedsCompilation yes

Author Stilianos Louca [aut, cre, cph]

Maintainer Stilianos Louca <louca.research@gmail.com>

Repository CRAN

Date/Publication 2024-11-17 21:50:02 UTC

Contents
castor-package . 4
asr_empirical_probabilities . 5
asr_independent_contrasts . 7
asr_max_parsimony . 10

1

https://doi.org/10.1093/bioinformatics/btx701

2 Contents

asr_mk_model . 13
asr_squared_change_parsimony . 18
asr_subtree_averaging . 20
clade_densities . 21
collapse_monofurcations . 23
collapse_tree_at_resolution . 24
congruent_divergence_times . 26
congruent_hbds_model . 29
consensus_taxonomies . 33
consentrait_depth . 35
correlate_phylo_geodistances . 38
count_lineages_through_time . 40
count_tips_per_node . 42
count_transitions_between_clades . 43
date_tree_red . 44
discrete_trait_depth . 46
evaluate_spline . 49
expanded_tree_from_jplace . 50
expected_distances_sbm . 52
exponentiate_matrix . 53
extend_tree_to_height . 55
extract_deep_frame . 56
extract_fasttree_constraints . 57
extract_tip_neighborhood . 58
extract_tip_radius . 60
find_farthest_tips . 62
find_farthest_tip_pair . 64
find_nearest_tips . 65
find_root . 67
find_root_of_monophyletic_tips . 68
fit_and_compare_bm_models . 70
fit_and_compare_sbm_const . 73
fit_bm_model . 77
fit_hbds_model_on_grid . 80
fit_hbds_model_parametric . 92
fit_hbd_model_on_grid . 100
fit_hbd_model_parametric . 106
fit_hbd_pdr_on_best_grid_size . 114
fit_hbd_pdr_on_grid . 119
fit_hbd_pdr_parametric . 126
fit_hbd_psr_on_best_grid_size . 132
fit_hbd_psr_on_grid . 137
fit_hbd_psr_parametric . 143
fit_mk . 150
fit_musse . 155
fit_sbm_const . 168
fit_sbm_geobiased_const . 173
fit_sbm_linear . 179

Contents 3

fit_sbm_on_grid . 185
fit_sbm_parametric . 191
fit_tree_model . 199
gamma_statistic . 204
generate_gene_tree_msc . 205
generate_gene_tree_msc_hgt_dl . 208
generate_random_tree . 214
generate_tree_hbds . 218
generate_tree_hbd_reverse . 223
generate_tree_with_evolving_rates . 228
geographic_acf . 233
get_all_distances_to_root . 236
get_all_distances_to_tip . 238
get_all_node_depths . 239
get_all_pairwise_distances . 240
get_ancestral_nodes . 242
get_clade_list . 243
get_independent_contrasts . 245
get_independent_sister_tips . 248
get_mrca_of_set . 249
get_pairwise_distances . 250
get_pairwise_mrcas . 252
get_random_diffusivity_matrix . 253
get_random_mk_transition_matrix . 254
get_reds . 255
get_stationary_distribution . 257
get_subtrees_at_nodes . 258
get_subtree_at_node . 259
get_subtree_with_tips . 261
get_tips_for_mrcas . 263
get_trait_acf . 264
get_trait_stats_over_time . 267
get_transition_index_matrix . 270
get_tree_span . 271
get_tree_traversal_root_to_tips . 272
hsp_binomial . 273
hsp_empirical_probabilities . 277
hsp_independent_contrasts . 279
hsp_max_parsimony . 282
hsp_mk_model . 284
hsp_nearest_neighbor . 289
hsp_squared_change_parsimony . 291
hsp_subtree_averaging . 293
is_bifurcating . 295
is_monophyletic . 296
join_rooted_trees . 297
loglikelihood_hbd . 299
map_to_state_space . 303

4 castor-package

mean_abs_change_scalar_ou . 304
merge_nodes_to_multifurcations . 306
merge_short_edges . 308
model_adequacy_hbd . 310
model_adequacy_hbds . 315
multifurcations_to_bifurcations . 321
pick_random_tips . 322
place_tips_taxonomically . 324
read_fasta . 325
read_tree . 327
reconstruct_past_diversification . 329
reorder_tree_edges . 335
root_at_midpoint . 336
root_at_node . 338
root_in_edge . 339
root_via_outgroup . 341
root_via_rtt . 342
shift_clade_times . 344
simulate_bm_model . 346
simulate_deterministic_hbd . 348
simulate_deterministic_hbds . 352
simulate_diversification_model . 357
simulate_dsse . 361
simulate_mk_model . 368
simulate_ou_model . 370
simulate_rou_model . 372
simulate_sbm . 374
simulate_tdsse . 377
spline_coefficients . 383
split_tree_at_height . 385
tree_distance . 386
tree_from_branching_ages . 389
tree_from_sampling_branching_ages . 390
tree_from_taxa . 392
tree_imbalance . 393
trim_tree_at_height . 394
write_tree . 396

Index 398

castor-package Efficient computations on large phylogenetic trees.

asr_empirical_probabilities 5

Description

This package provides efficient tree manipulation functions including pruning, rerooting, calcula-
tion of most-recent common ancestors, calculating distances from the tree root and calculating pair-
wise distance matrices. Calculation of phylogenetic signal and mean trait depth (trait conservatism).
Efficient ancestral state reconstruction and hidden character prediction of discrete characters on phy-
logenetic trees, using Maximum Likelihood and Maximum Parsimony methods. Simulating models
of trait evolution, and generating random trees.

Details

The most important data unit is a phylogenetic tree of class "phylo", with the tree topology encoded
in the member variable tree.edge. See the ape package manual for details on the "phylo" format.
The castor package was designed to be efficient for large phylogenetic trees (>10,000 tips), and
scales well to trees with millions of tips. Most functions have asymptotically linear time complexity
O(N) in the number of edges N. This efficiency is achived via temporary auxiliary data structures,
use of dynamic programing, heavy use of C++, and integer-based indexing instead of name-based
indexing of arrays. All functions support trees that include monofurcations (nodes with a single
child) as well as multifurcations (nodes with more than 2 children). See the associated paper by
Louca et al. for a comparison with other packages.

Throughout this manual, "Ntips" refers to the number of tips, "Nnodes" to the number of nodes and
"Nedges" to the number of edges in a tree. In the context of discrete trait evolution/reconstruction,
"Nstates" refers to the number of possible states of the trait. In the context of multivariate trait
evolution, "Ntraits" refers to the number of traits.

Author(s)

Stilianos Louca

Maintainer: Stilianos Louca <louca@zoology.ubc.ca>

References

S. Louca and M. Doebeli (2017). Efficient comparative phylogenetics on large trees. Bioinformat-
ics. DOI:10.1093/bioinformatics/btx701

asr_empirical_probabilities

Empirical ancestral state probabilities.

Description

Given a rooted phylogenetic tree and the states of a discrete trait for each tip, calculate the empirical
state frequencies/probabilities for each node in the tree, i.e. the frequencies/probabilities of states
across all tips descending from that node. This may be used as a very crude estimate of ancestral
state probabilities.

6 asr_empirical_probabilities

Usage

asr_empirical_probabilities(tree, tip_states, Nstates=NULL,
probabilities=TRUE, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree as an
integer from 1 to Nstates, where Nstates is the possible number of states (see
below).

Nstates Either NULL, or an integer specifying the number of possible states of the trait.
If NULL, then it will be computed based on the maximum value encountered in
tip_states

probabilities Logical, specifying whether empirical frequencies should be normalized to rep-
resent probabilities. If FALSE, then the raw occurrence counts are returned.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g., charac-
ters or factors), you should map them to a set of integers 1,..,Nstates. You can easily map any set of
discrete states to integers using the function map_to_state_space.

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). The function has asymptotic time complexity O(Nedges
x Nstates).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include names; if it does, however, they are checked for consistency (if
check_input==TRUE).

Value

A list with the following elements:

ancestral_likelihoods

A 2D integer (if probabilities==FALSE) or numeric (if probabilities==TRUE)
matrix, listing the frequency or probability of each state for each node. This
matrix will have size Nnodes x Nstates, where Nstates was either explicitly pro-
vided as an argument or inferred from tip_states. The rows in this matrix will
be in the order in which nodes are indexed in the tree, i.e. the [n,s]-th entry will
be the frequency or probability of the s-th state for the n-th node. Note that the
name was chosen for compatibility with other ASR functions.

asr_independent_contrasts 7

ancestral_states

Integer vector of length Nnodes, listing the ancestral states with highest prob-
ability. In the case of ties, the first state with maximum probability is chosen.
This vector is computed based on ancestral_likelihoods.

Author(s)

Stilianos Louca

See Also

asr_max_parsimony, asr_squared_change_parsimony asr_mk_model, map_to_state_space

Examples

Not run:
generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

create a random transition matrix
Nstates = 3
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
cat(sprintf("Simulated ER transition rate=%g\n",Q[1,2]))

simulate the trait's evolution
simulation = simulate_mk_model(tree, Q)
tip_states = simulation$tip_states

calculate empirical probabilities of tip states
asr_empirical_probabilities(tree, tip_states=tip_states, Nstates=Nstates)

End(Not run)

asr_independent_contrasts

Ancestral state reconstruction via phylogenetic independent contrasts.

Description

Reconstruct ancestral states for a continuous (numeric) trait using phylogenetic independent con-
trasts (PIC; Felsenstein, 1985).

Usage

asr_independent_contrasts(tree,
tip_states,
weighted = TRUE,
include_CI = FALSE,
check_input = TRUE)

8 asr_independent_contrasts

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the known state of each tip in the
tree.

weighted Logical, specifying whether to weight tips and nodes by the inverse length of
their incoming edge, as in the original method by Felsenstein (1985). If FALSE,
edge lengths are treated as if they were 1.

include_CI Logical, specifying whether to also calculate standard errors and confidence in-
tervals for the reconstructed states under a Brownian motion model, as described
by Garland et al (1999).

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

The function traverses the tree in postorder (tips–>root) and estimates the state of each node as a
convex combination of the estimated states of its chilren. These estimates are the intermediate "X"
variables introduced by Felsenstein (1985) in his phylogenetic independent contrasts method. For
the root, this yields the same globally parsimonious state as the squared-changes parsimony algo-
rithm implemented in asr_squared_change_parsimony (Maddison 1991). For any other node,
PIC only yields locally parsimonious reconstructions, i.e. reconstructed states only depend on the
subtree descending from the node (see discussion by Maddison 1991).

If weighted==TRUE, then this function yields the same ancestral state reconstructions as

ape::ace(phy=tree, x=tip_states, type="continuous", method="pic", model="BM", CI=FALSE)

in the ape package (v. 0.5-64). Note that in contrast to the CI95 returned by ape::ace, the confi-
dence intervals calculated here have the same units as the trait and depend both on the tree topology
as well as the tip states.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. This is the
same as setting weighted=FALSE. The tree may include multi-furcations (i.e. nodes with more than
2 children) as well as mono-furcations (i.e. nodes with only one child). Edges with length 0 will be
adjusted internally to some tiny length if needed (if weighted==TRUE).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE). All tip states must be non-NA; otherwise, consider using one of the functions
for hidden-state-prediction (e.g., hsp_independent_contrasts).

The function has asymptotic time complexity O(Nedges).

Value

A list with the following elements:

ancestral_states

A numeric vector of size Nnodes, listing the reconstructed state of each node.
The entries in this vector will be in the order in which nodes are indexed in the
tree.

asr_independent_contrasts 9

standard_errors

Numeric vector of size Nnodes, listing the phylogenetically estimated standard
error for the state in each node, under a Brownian motion model. The standard
errors have the same units as the trait and depend both on the tree topology as
well as the tip states. Calculated as described by Garland et al. (1999, page
377). Only included if include_CI==TRUE.

CI95 Numeric vector of size Nnodes, listing the radius (half width) of the 95% con-
fidence interval of the state in each node. Confidence intervals have same units
as the trait and depend both on the tree topology as well as the tip states. For
each node, the confidence interval is calculated according to the Student’s t-
distribution with Npics degrees of freedom, where Npics is the number of inter-
nally calculated independent contrasts descending from the node [Garland et al,
1999]. Only included if include_CI==TRUE.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

W. P. Maddison (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Systematic Zoology. 40:304-314.

T. Garland Jr., P. E. Midford, A. R. Ives (1999). An introduction to phylogenetically based statistical
methods, with a new method for confidence intervals on ancestral values. American Zoologist.
39:374-388.

See Also

asr_squared_change_parsimony, asr_max_parsimony, asr_mk_model

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree,

stationary_mean=0,
stationary_std=1,
decay_rate=0.001)$tip_states

reconstruct node states via weighted PIC
asr = asr_independent_contrasts(tree, tip_states, weighted=TRUE, include_CI=TRUE)
node_states = asr$ancestral_states

get lower bounds of 95% CIs
lower_bounds = node_states - asr$CI95

10 asr_max_parsimony

asr_max_parsimony Maximum-parsimony ancestral state reconstruction.

Description

Reconstruct ancestral states for a discrete trait using maximum parsimony. Transition costs can vary
between transitions, and can optionally be weighted by edge length.

Usage

asr_max_parsimony(tree, tip_states, Nstates=NULL,
transition_costs="all_equal",
edge_exponent=0, weight_by_scenarios=TRUE,
check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree as an
integer from 1 to Nstates, where Nstates is the possible number of states (see
below).

Nstates Either NULL, or an integer specifying the number of possible states of the trait. If
NULL, then Nstates will be computed based on the maximum value encountered
in tip_states

transition_costs

Either "all_equal","sequential", "proportional", "exponential", or a quadratic
non-negatively valued matrix of size Nstates x Nstates, specifying the transition
costs between all possible states (which can include 0 as well as Inf). The [r,c]-
th entry of the matrix is the cost of transitioning from state r to state c. The option
"all_equal" specifies that all transitions are permitted and are equally costly. "se-
quential" means that only transitions between adjacent states are permitted from
a node to its children, and all permitted transitions are equally costly. "propor-
tional" means that all transitions are permitted, but the cost increases propor-
tional to the distance between states. "exponential" means that all transitions are
permitted, but the cost increases exponentially with the distance between states.
The options "sequential" and "proportional" only make sense if states exhibit an
order relation (as reflected in their integer representation).

edge_exponent Non-negative real-valued number. Optional exponent for weighting transition
costs by the inverse length of edge lengths. If 0, edge lengths do not influence
the ancestral state reconstruction (this is the conventional max-parsimony). If
>0, then at each edge the transition costs are multiplied by 1/Le, where L is the
edge length and e is the edge exponent. This parameter is mostly experimental;
modify at your own discretion.

asr_max_parsimony 11

weight_by_scenarios

Logical, indicating whether to weight each optimal state of a node by the number
of optimal maximum-parsimony scenarios in which the node is in that state. If
FALSE, then all optimal states of a node are weighted equally (i.e. are assigned
equal probabilities).

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. characters
or factors), you should map them to a set of integers 1,..,Nstates. The order of states (if relevant)
should be reflected in their integer representation. For example, if your original states are "small",
"medium" and "large" and transition_costs=="sequential", it is advised to represent these
states as integers 1,2,3. You can easily map any set of discrete states to integers using the function
map_to_state_space.

This function utilizes Sankoff’s (1975) dynamic programming algorithm for determining the small-
est number (or least costly if transition costs are uneven) of state changes along edges needed to
reproduce the observed tip states. The function has asymptotic time complexity O(Ntips+Nnodes x
Nstates).

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. If edge_exponent
is 0, then edge lengths do not influence the result. If edge_exponent!=0, then all edges must have
non-zero length. The tree may include multi-furcations (i.e. nodes with more than 2 children) as
well as mono-furcations (i.e. nodes with only one child).

Tips must be represented in tip_states in the same order as in tree$tip.label. None of the
input vectors or matrixes need include row or column names; if they do, however, they are checked
for consistency (if check_input==TRUE).

This function is meant for reconstructing ancestral states in all nodes of a tree, when the state of
each tip is known. If some of the tips have unknown state, consider either pruning the tree to keep
only tips with known states, or using the function hsp_max_parsimony.

Not all datasets are consistent with all possible transition cost models, i.e., it could happen that
for some peculiar datasets some rather constrained models (e.g. "sequential") cannot possibly pro-
duce the data. In this case, castor will most likely return non-sensical ancestral state estimates and
total_cost=Inf, although this has not thoroughly been tested.

Value

A list with the following elements:

success Boolean, indicating whether ASR was successful. If FALSE, the remaining re-
turned elements may be undefined.

ancestral_likelihoods

A 2D numeric matrix, listing the probability of each node being in each state.
This matrix will have size Nnodes x Nstates, where Nstates was either explicitly
provided as an argument or inferred from tip_states. The rows in this matrix

12 asr_max_parsimony

will be in the order in which nodes are indexed in the tree, i.e. the [n,s]-th entry
will be the probability of the s-th state for the n-th node. These probabilities are
calculated based on scenario_counts (see below), assuming that every maxi-
mum parsimony scenario is equally likely. Note that the name was chosen for
compatibility with other ASR functions.

scenario_counts

A 2D numeric matrix of size Nnodes x Nstates, listing for each node and each
state the number of maximum parsimony scenarios in which the node was in the
specific state. If only a single maximum parsimony scenario exists for the whole
tree, then the sum of entries in each row will be one.

ancestral_states

Integer vector of length Nnodes, listing the ancestral states with highest likeli-
hoods. In the case of ties, the first state with maximum likelihood is chosen.
This vector is computed based on ancestral_likelihoods.

total_cost Real number, specifying the total transition cost across the tree for the most par-
simonious scenario. In the classical case where transition_costs="all_equal",
the total_cost equals the total number of state changes in the tree under the
most parsimonious scenario. Under some constrained transition models (e.g.,
"sequential"), total_cost may sometimes be Inf, which basically means that
the data violates the model.

Author(s)

Stilianos Louca

References

D. Sankoff (1975). Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics.
28:35-42.

J. Felsenstein (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts.

See Also

hsp_max_parsimony, asr_squared_change_parsimony asr_mk_model, hsp_mk_model, map_to_state_space

Examples

Not run:
generate random tree
Ntips = 10
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a discrete trait
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER")
tip_states = simulate_mk_model(tree, Q)$tip_states

reconstruct node states via MPR
results = asr_max_parsimony(tree, tip_states, Nstates)

asr_mk_model 13

node_states = max.col(results$ancestral_likelihoods)

print reconstructed node states
print(node_states)

End(Not run)

asr_mk_model Ancestral state reconstruction with Mk models and rerooting

Description

Ancestral state reconstruction of a discrete trait using a fixed-rates continuous-time Markov model
(a.k.a. "Mk model"). This function can estimate the (instantaneous) transition matrix using maxi-
mum likelihood, or take a specified transition matrix. The function can optionally calculate marginal
ancestral state likelihoods for each node in the tree, using the rerooting method by Yang et al.
(1995).

Usage

asr_mk_model(tree,
tip_states,
Nstates = NULL,
tip_priors = NULL,
rate_model = "ER",
transition_matrix = NULL,
include_ancestral_likelihoods = TRUE,
reroot = TRUE,
root_prior = "auto",
Ntrials = 1,
optim_algorithm = "nlminb",
optim_max_iterations = 200,
optim_rel_tol = 1e-8,
store_exponentials = TRUE,
check_input = TRUE,
Nthreads = 1)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree in
terms of an integer from 1 to Nstates, where Ntips is the number of tips and
Nstates is the number of possible states (see below). Can also be NULL. If
tip_states==NULL, then tip_priors must not be NULL (see below).

14 asr_mk_model

Nstates Either NULL, or an integer specifying the number of possible states of the trait.
If Nstates==NULL, then it will be computed based on the maximum value en-
countered in tip_states or based on the number of columns in tip_priors
(whichever is non-NULL).

tip_priors A 2D numeric matrix of size Ntips x Nstates, where Nstates is the possible num-
ber of states for the character modelled. Hence, tip_priors[i,s] is the likeli-
hood of the observed state of tip i, if the tip’s true state was in state s. For exam-
ple, if you know for certain that a tip is in state k, then set tip_priors[i,s]=1
for s=k and tip_priors[i,s]=0 for all other s.

rate_model Rate model to be used for fitting the transition rate matrix. Can be "ER" (all
rates equal), "SYM" (transition rate i–>j is equal to transition rate j–>i), "ARD"
(all rates can be different), "SUEDE" (only stepwise transitions i–>i+1 and i–
>i-1 allowed, all ’up’ transitions are equal, all ’down’ transitions are equal) or
"SRD" (only stepwise transitions i–>i+1 and i–>i-1 allowed, and each rate can
be different). Can also be an index matrix that maps entries of the transition
matrix to the corresponding independent rate parameter to be fitted. Diagonal
entries should map to 0, since diagonal entries are not treated as independent
rate parameters but are calculated from the remaining entries in the transition
matrix. All other entries that map to 0 represent a transition rate of zero. The
format of this index matrix is similar to the format used by the ace function in
the ape package. rate_model is only relevant if transition_matrix==NULL.

transition_matrix

Either a numeric quadratic matrix of size Nstates x Nstates containing fixed tran-
sition rates, or NULL. The [r,c]-th entry in this matrix should store the transition
rate from state r to state c. Each row in this matrix must have sum zero. If NULL,
then the transition rates will be estimated using maximum likelihood, based on
the rate_model specified.

root_prior Prior probability distribution of the root’s states, used to calculate the model’s
overall likelihood from the root’s marginal ancestral state likelihoods. Can be
"flat" (all states equal), "empirical" (empirical probability distribution of
states across the tree’s tips), "stationary" (stationary probability distribution of
the transition matrix), "likelihoods" (use the root’s state likelihoods as prior)
or "max_likelihood" (put all weight onto the state with maximum likelihood).
If "stationary" and transition_matrix==NULL, then a transition matrix is
first fitted using a flat root prior, and then used to calculate the stationary distri-
bution. root_prior can also be a non-negative numeric vector of size Nstates
and with total sum equal to 1.

include_ancestral_likelihoods

Include the marginal ancestral likelihoods for each node (conditional scaled
state likelihoods) in the return values. Note that this may increase the com-
putation time and memory needed, so you may set this to FALSE if you don’t
need marginal ancestral states.

reroot Reroot tree at each node when computing marginal ancestral likelihoods, ac-
cording to Yang et al. (1995). This is the default and recommended behavior,
but leads to increased computation time. If FALSE, ancestral likelihoods at each
node are computed solely based on the subtree descending from that node, with-
out rerooting. Caution: Rerooting is strictly speaking only valid if the Mk model

asr_mk_model 15

is time-reversible (for example, if the transition matrix is symmetric). Do not
use the rerooting method if rate_model="ARD".

Ntrials Number of trials (starting points) for fitting the transition matrix. Only relevant
if transition_matrix=NULL. A higher number may reduce the risk of land-
ing in a local non-global optimum of the likelihood function, but will increase
computation time during fitting.

optim_algorithm

Either "optim" or "nlminb", specifying which optimization algorithm to use
for maximum-likelihood estimation of the transition matrix. Only relevant if
transition_matrix==NULL.

optim_max_iterations

Maximum number of iterations (per fitting trial) allowed for optimizing the like-
lihood function.

optim_rel_tol Relative tolerance (stop criterion) for optimizing the likelihood function.
store_exponentials

Logical, specifying whether to pre-calculate and store exponentials of the transi-
tion matrix during calculation of ancestral likelihoods. This may reduce compu-
tation time because each exponential is only calculated once, but requires more
memory since all exponentials are stored.
Only relevant if include_ancestral_likelihoods==TRUE, otherwise expo-
nentials are never stored.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Nthreads Number of parallel threads to use for running multiple fitting trials simultane-
ously. This only makes sense if your computer has multiple cores/CPUs and if
Ntrials>1, and is only relevant if transition_matrix==NULL. This option is
ignored on Windows, because Windows does not support forking.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. char-
acters or factors), you should map them to a set of integers 1,..,Nstates. The order of states (if
relevant) should be reflected in their integer representation. For example, if your original states
are "small", "medium" and "large" and rate_model=="SUEDE", it is advised to represent these
states as integers 1,2,3. You can easily map any set of discrete states to integers using the function
map_to_state_space.

This function allows the specification of the precise tip states (if these are known) using the vector
tip_states. Alternatively, if some tip states are only known in terms of a probability distribution,
you can pass these probability distributions using the matrix tip_priors. Note that exactly one of
the two arguments, tip_states or tip_priors, must be non-NULL.

Tips must be represented in tip_states or tip_priors in the same order as in tree$tip.label.
None of the input vectors or matrixes need include row or column names; if they do, however, they
are checked for consistency (if check_input==TRUE).

16 asr_mk_model

The tree is either assumed to be complete (i.e. include all possible species), or to represent a random
subset of species chosen independently of their states. The rerooting method by Yang et al (1995)
is used to calculate the marginal ancestral state likelihoods for each node by treating the node as a
root and calculating its conditional scaled likelihoods. Note that the re-rooting algorithm is strictly
speaking only valid for reversible Mk models, that is, satisfying the criterion

πiQij = πjQji, ∀i, j,

where Q is the transition rate matrix and π is the stationary distribution of the model. The rate
models “ER”, ‘SYM”, “SUEDE” and “SRD” are reversible. For example, for “SUEDE” or “SRD”
choose πi+1 = πiQi,i+1/Qi+1,i. In contrast, “ARD” models are generally not reversible.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree
may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations
(i.e. nodes with only one child). This function is similar to rerootingMethod in the phytools
package (v0.5-64) and similar to ape::ace (v4.1) with options method="ML", type="discrete"
and marginal=FALSE, but tends to be much faster than rerootingMethod and ace for large trees.

Internally, this function uses fit_mk to estimate the transition matrix if the latter is not provided. If
you only care about estimating the transition matrix but not the ancestral states, consider using the
more versatile function fit_mk.

Value

A list with the following elements:

success Logical, indicating whether ASR was successful. If FALSE, all other return val-
ues may be NULL.

Nstates Integer, specifying the number of modeled trait states.
transition_matrix

A numeric quadratic matrix of size Nstates x Nstates, containing the transition
rates of the Markov model. The [r,c]-th entry is the transition rate from state r to
state c. Will be the same as the input transition_matrix, if the latter was not
NULL.

loglikelihood Log-likelihood of the observed tip states under the fitted (or provided) Mk model.
If transition_matrix was NULL in the input, then this will be the log-likelihood
maximized during fitting.

AIC Numeric, the Akaike Information Criterion for the fitted Mk model (if appli-
cable), defined as 2k − 2 log(L), where k is the number of independent fitted
parameters and L is the maximized likelihood. If the transition matrix was pro-
vided as input, then no fitting was performed and hence AIC will be NULL.

ancestral_likelihoods

Optional, only returned if include_ancestral_likelihoods was TRUE. A 2D
numeric matrix, listing the likelihood of each state at each node (marginal an-
cestral likelihoods). This matrix will have size Nnodes x Nstates, where Nstates
was either explicitly provided as an argument, or inferred from tip_states or
tip_priors (whichever was non-NULL). The rows in this matrix will be in the
order in which nodes are indexed in the tree, i.e. the [n,s]-th entry will be the
likelihood of the s-th state at the n-th node. For example, likelihoods[1,3]
will store the likelihood of observing the tree’s tip states (if reroot=TRUE) or the

asr_mk_model 17

descending subtree’s tip states (if reroot=FALSE), if the first node was in state
3. Note that likelihoods are rescaled (normalized) to sum to 1 for convenience
and numerical stability. The marginal likelihoods at a node should not, however,
be interpreted as a probability distribution among states.

ancestral_states

Integer vector of length Nnodes, listing the ancestral states with highest likeli-
hoods. In the case of ties, the first state with maximum likelihood is chosen. This
vector is computed based on ancestral_likelihoods and is only included if
include_ancestral_likelihoods=TRUE.

Author(s)

Stilianos Louca

References

Z. Yang, S. Kumar and M. Nei (1995). A new method for inference of ancestral nucleotide and
amino acid sequences. Genetics. 141:1641-1650.

See Also

hsp_mk_model, asr_max_parsimony, asr_squared_change_parsimony, hsp_max_parsimony, map_to_state_space,
fit_mk

Examples

Not run:
generate random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

create random transition matrix
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
cat(sprintf("Simulated ER transition rate=%g\n",Q[1,2]))

simulate the trait's evolution
simulation = simulate_mk_model(tree, Q)
tip_states = simulation$tip_states
cat(sprintf("Simulated states for last 20 nodes:\n"))
print(tail(simulation$node_states,20))

reconstruct node states from simulated tip states
at each node, pick state with highest marginal likelihood
results = asr_mk_model(tree, tip_states, Nstates, rate_model="ER", Ntrials=2)
node_states = max.col(results$ancestral_likelihoods)

print Mk model fitting summary
cat(sprintf("Mk model: log-likelihood=%g\n",results$loglikelihood))
cat(sprintf("Fitted ER transition rate=%g\n",results$transition_matrix[1,2]))

18 asr_squared_change_parsimony

print reconstructed node states for last 20 nodes
print(tail(node_states,20))

End(Not run)

asr_squared_change_parsimony

Squared-change parsimony ancestral state reconstruction.

Description

Reconstruct ancestral states for a continuous (numeric) trait using squared-change maximum par-
simony (Maddison, 1991). Transition costs can optionally be weighted by the inverse edge lengths
("weighted squared-change parsimony" by Maddison).

Usage

asr_squared_change_parsimony(tree, tip_states, weighted=TRUE, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the known state of each tip in the
tree.

weighted Logical, specifying whether to weight transition costs by the inverted edge lengths.
This corresponds to the "weighted squared-change parsimony" reconstruction
by Maddison (1991) for a Brownian motion model of trait evolution.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

The function traverses the tree in postorder (tips–>root) to calculate the quadratic parameters de-
scribed by Maddison (1991) and obtain the globally parsimonious squared-change parsimony state
for the root. The function then reroots at each node, updates all affected quadratic parameters in the
tree and calculates the node’s globally parsimonious squared-change parsimony state. The function
has asymptotic time complexity O(Nedges).

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. This is the
same as setting weighted=FALSE. The tree may include multi-furcations (i.e. nodes with more than
2 children) as well as mono-furcations (i.e. nodes with only one child). Edges with length 0 will be
adjusted internally to some tiny length if needed (if weighted==TRUE).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

asr_squared_change_parsimony 19

If weighted==FALSE, then this function yields the same ancestral state reconstructions as

ape::ace(tip_states, tree, type="continuous", method="ML", model="BM", CI=FALSE)

in the ape package (v. 0.5-64), assuming the tree as unit edge lengths. If weighted==TRUE, then
this function yields the same ancestral state reconstructions as the maximum likelihood estimates
under a Brownian motion model, as implemented by the Rphylopars package (v. 0.2.10):

Rphylopars::anc.recon(tip_states, tree, vars=FALSE, CI=FALSE).

Value

A list with the following elements:

ancestral_states

A numeric vector of size Nnodes, listing the reconstructed state of each node.
The entries in this vector will be in the order in which nodes are indexed in the
tree.

total_sum_of_squared_changes

The total sum of squared changes, minimized by the (optionally weighted) squared-
change parsimony algorithm. This is equation 7 in (Maddison, 1991).

Author(s)

Stilianos Louca

References

W. P. Maddison (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Systematic Zoology. 40:304-314.

See Also

asr_independent_contrasts asr_max_parsimony, asr_mk_model

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree,

stationary_mean=0,
stationary_std=1,
decay_rate=0.001)$tip_states

reconstruct node states based on simulated tip states
node_states = asr_squared_change_parsimony(tree, tip_states, weighted=TRUE)$ancestral_states

20 asr_subtree_averaging

asr_subtree_averaging Ancestral state reconstruction via subtree averaging.

Description

Reconstruct ancestral states in a phylogenetic tree for a continuous (numeric) trait by averaging
trait values over descending subtrees. That is, for each node the reconstructed state is set to the
arithmetic average state of all tips descending from that node.

Usage

asr_subtree_averaging(tree, tip_states, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the known state of each tip in the
tree.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

The function returns the estimated ancestral states (=averages) as well as the corresponding standard
deviations. Note that reconstructed states are local estimates, i.e. they only take into account the
tips descending from the reconstructed node.

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). Edge lengths and distances between tips and nodes are
not taken into account. All tip states are assumed to be known, and NA or NaN are not allowed in
tip_states.

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

Value

A list with the following elements:

success Logical, indicating whether ASR was sucessful. If all input data are valid then
this will always be TRUE, but it is provided for consistency with other ASR func-
tions.

ancestral_states

A numeric vector of size Nnodes, listing the reconstructed state (=average over
descending tips) for each node. The entries in this vector will be in the order in
which nodes are indexed in the tree.

clade_densities 21

ancestral_stds A numeric vector of size Nnodes, listing the standard deviations corresponding
to ancestral_stds.

ancestral_counts

A numeric vector of size Nnodes, listing the number of (descending) tips used
to reconstruct the state of each node.

Author(s)

Stilianos Louca

See Also

asr_independent_contrasts, asr_squared_change_parsimony

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree, stationary_mean=0,

stationary_std=1, decay_rate=0.001)$tip_states

reconstruct node states by averaging simulated tip states
node_states = asr_subtree_averaging(tree, tip_states)$ancestral_states

clade_densities Estimate the density of tips & nodes in a timetree.

Description

Given a rooted timetree (i.e., a tree whose edge lengths represent time intervals), estimate the den-
sity of tips and nodes as a function of age (tips or nodes per time unit), on a discrete grid. Optionally
the densities can be normalized by the local number of lineages. If the tree is full (includes all extinct
& extant clades), then the normalized tip (node) density is an estimate for the per-capita extinction
(speciation) rate.

Usage

clade_densities(tree,
Nbins = NULL,
min_age = NULL,
max_age = NULL,
normalize = TRUE,
ultrametric = FALSE)

22 clade_densities

Arguments

tree A rooted tree of class "phylo", where edge lengths represent time intervals (or
similar).

Nbins Integer, number of equidistant age bins at which to calculate densities.

min_age Numeric, minimum age to consider. If NULL, it will be set to the minimum
possible.

max_age Numeric, maximum age to consider. If NULL, it will be set to the maximum
possible.

normalize Logical, whether to normalize densities by the local number of lineages (in addi-
tion to dividing by the age interval). Hence, tip (or node) densities will represent
number of tips (or nodes) per time unit per lineage.

ultrametric Logical, specifying whether the input tree is guaranteed to be ultrametric, even
in the presence of some numerical inaccuracies causing some tips not have ex-
actly the same distance from the root.

Details

This function discretizes the full considered age range (from min_age to max_age) into Nbins
discrete disjoint bins, then computes the number of tips and nodes in each bin, and finally divides
those numbers by the bin width. If normalize==True, the densities are further divided by the
number of lineages in the middle of each age bin. For typical timetrees it is generally recommended
to omit the most recent tips (i.e., extant at age 0), by setting min_age to a small non-zero value;
otherwise, the first age bin will typically be associated with a high tip density, i.e., tip densities will
be zero-inflated.

Value

A list with the following elements:

Nbins Integer, indicating the number of discrete age bins.

ages Numeric vector of size Nbins, listing the centres of the age bins.

tip_densities Numeric vector of size Nbins, listing the tip densities in the corresponding age
bins.

node_densities Numeric vector of size Nbins, listing the node densities in the corresponding
age bins.

Author(s)

Stilianos Louca

See Also

count_lineages_through_time

collapse_monofurcations 23

Examples

generate a random full tree, including all extinct & extant tips
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips=1000, coalescent=FALSE)$tree

compute node densities, as an estimate for the speciation rate
densities = clade_densities(tree, Nbins=10, normalize=TRUE)

plot node densities
plot(densities$ages, densities$node_densities, type="l", xlab="age", ylab="node density")

collapse_monofurcations

Remove monofurcations from a tree.

Description

Eliminate monofurcations (nodes with only a single child) from a phylogenetic tree, by connecting
their incoming and outgoing edge.

Usage

collapse_monofurcations(tree, force_keep_root=TRUE, as_edge_counts=FALSE)

Arguments

tree A rooted tree of class "phylo".
force_keep_root

Logical, indicating whether the root node should always be kept (i.e., even if it
only has a single child).

as_edge_counts Logical, indicating whether all edges should be assumed to have length 1. If
TRUE, the outcome is the same as if the tree had no edges.

Details

All tips in the input tree retain their original indices, however the returned tree may include fewer
nodes and edges. Edge and node indices may change.

If tree$edge.length is missing, then all edges in the input tree are assumed to have length 1.

Value

A list with the following elements:

tree A new tree of class "phylo", containing only bifurcations (and multifurcations,
if these existed in the input tree). The number of nodes in this tree, Nnodes_new,
may be lower than of the input tree.

new2old_node Integer vector of length Nnodes_new, mapping node indices in the new tree to
node indices in the old tree.

Nnodes_removed Integer. Number of nodes (monofurcations) removed from the tree.

24 collapse_tree_at_resolution

Author(s)

Stilianos Louca

See Also

multifurcations_to_bifurcations

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1), max_tips=Ntips)$tree

prune the tree to generate random monofurcations
random_tips = sample.int(n=Ntips, size=0.5 * Ntips, replace=FALSE)
tree = get_subtree_with_tips(tree, only_tips=random_tips, collapse_monofurcations=FALSE)$subtree

collapse monofurcations
new_tree = collapse_monofurcations(tree)$tree

print summary of old and new tree
cat(sprintf("Old tree has %d nodes\n",tree$Nnode))
cat(sprintf("New tree has %d nodes\n",new_tree$Nnode))

collapse_tree_at_resolution

Collapse nodes of a tree at a phylogenetic resolution.

Description

Given a rooted tree and a phylogenetic resolution threshold, collapse all nodes whose distance to all
descending tips does not exceed the threshold (or whose sum of descending edge lengths does not
exceed the threshold), into new tips. This function can be used to obtain a "coarser" version of the
tree, or to cluster closely related tips into a single tip.

Usage

collapse_tree_at_resolution(tree,
resolution = 0,
by_edge_count = FALSE,
shorten = TRUE,
rename_collapsed_nodes = FALSE,
criterion = 'max_tip_depth')

collapse_tree_at_resolution 25

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

resolution Numeric, specifying the phylogenetic resolution at which to collapse the tree.
This is the maximum distance a descending tip can have from a node, such that
the node is collapsed into a new tip. If set to 0 (default), then only nodes whose
descending tips are identical to the node will be collapsed.

by_edge_count Logical. Instead of considering edge lengths, consider edge counts as phyloge-
netic distance between nodes and tips. This is the same as if all edges had length
equal to 1.

shorten Logical, indicating whether collapsed nodes should be turned into tips at the
same location (thus potentially shortening the tree). If FALSE, then the incoming
edge of each collapsed node is extended by some length L, where L is the dis-
tance of the node to its farthest descending tip (thus maintaining the height of
the tree).

rename_collapsed_nodes

Logical, indicating whether collapsed nodes should be renamed using a repre-
sentative tip name (the farthest descending tip). See details below.

criterion Character, specifying the criterion to use for collapsing (i.e. how to interpret
resolution). ’max_tip_depth’: Collapse nodes based on their maximum dis-
tance to any descending tip. ’sum_tip_paths’: Collapse nodes based on the
sum of descending edges (each edge counted once). ’max_tip_pair_dist’:
Collapse nodes based on the maximum distance between any pair of descending
tips.

Details

The tree is traversed from root to tips and nodes are collapsed into tips as soon as the criterion
equals or falls below the resolution threshold.

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). Tip labels and uncollapsed node labels of the collapsed
tree are inheritted from the original tree. If rename_collapsed_nodes==FALSE, then labels of
collapsed nodes will be the node labels from the original tree (in this case the original tree should
include node labels). If rename_collapsed_nodes==TRUE, each collapsed node is given the label
of its farthest descending tip. If shorten==TRUE, then edge lengths are the same as in the original
tree. If shorten==FALSE, then edges leading into collapsed nodes may be longer than before.

Value

A list with the following elements:

tree A new rooted tree of class "phylo", containing the collapsed tree.

root_shift Numeric, indicating the phylogenetic distance between the old and the new root.
Will always be non-negative.

collapsed_nodes

Integer vector, listing indices of collapsed nodes in the original tree (subset of
1,..,Nnodes).

26 congruent_divergence_times

farthest_tips Integer vector of the same length as collapsed_nodes, listing indices of the
farthest tips for each collapsed node. Hence, farthest_tips[n] will be the in-
dex of a tip in the original tree that descended from node collapsed_nodes[n]
and had the greatest distance from that node among all descending tips.

new2old_clade Integer vector of length equal to the number of tips+nodes in the collapsed tree,
with values in 1,..,Ntips+Nnodes, mapping tip/node indices of the collapsed tree
to tip/node indices in the original tree.

new2old_edge Integer vector of length equal to the number of edges in the collapsed tree, with
values in 1,..,Nedges, mapping edge indices of the collapsed tree to edge indices
in the original tree.

old2new_clade Integer vector of length equal to the number of tips+nodes in the original tree,
mapping tip/node indices of the original tree to tip/node indices in the collapsed
tree. Non-mapped tips/nodes (i.e., missing from the collapsed tree) will be rep-
resented by zeros.

Author(s)

Stilianos Louca

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

print number of nodes
cat(sprintf("Simulated tree has %d nodes\n",tree$Nnode))

collapse any nodes with tip-distances < 20
collapsed = collapse_tree_at_resolution(tree, resolution=20)$tree

print number of nodes
cat(sprintf("Collapsed tree has %d nodes\n",collapsed$Nnode))

congruent_divergence_times

Extract dating anchors for a target tree, using a dated reference tree

Description

Given a reference tree and a target tree, this function maps target nodes to concordant reference
nodes when possible, and extracts divergence times of the mapped reference nodes from the refer-
ence tree. This function can be used to define secondary dating constraints for a larger target tree,
based on a time-calibrated smaller reference tree (Eastman et al. 2013). This only makes sense if
the reference tree is time-calibrated. A provided mapping specifies which and how tips in the target
tree correspond to tips in the reference tree.

congruent_divergence_times 27

Usage

congruent_divergence_times(reference_tree, target_tree, mapping)

Arguments

reference_tree A rooted tree object of class "phylo". Usually this tree will be time-calibrated
(i.e. edge lengths represent time intervals).

target_tree A rooted tree object of class "phylo".

mapping A table mapping a subset of target tips to a subset of reference tips, as described
by Eastman et al (2013). Multiple target tips may map to the same reference
tip, but not vice versa (i.e. every target tip can appear at most once in the map-
ping). In general, a tip mapped to in the reference tree is assumed to represent a
monophyletic group of tips in the target tree, although this assumption may be
violated in practice (Eastman et al. 2013).
The mapping must be in one of the following formats:
Option 1: A 2D integer array of size NM x 2 (with NM being the number of
mapped target tips), listing target tip indices mapped to reference tip indices
(mapping[m,1] (target tip) –> mapping[m,2] (reference tip)).
Option 2: A 2D character array of size NM x 2, listing target tip labels mapped
to reference tip labels.
Option 3: A data frame of size NM x 1, whose row names are target tip la-
bels and whose entries are either integers (reference tip indices) or characters
(reference tip labels). This is the format used by geiger::congruify.phylo
(v.206).
Option 4: A vector of size NM, whose names are target tip labels and whose
entries are either integers (reference tip indices) or characters (reference tip la-
bels).

Details

Both the reference and target tree may include monofurcations and/or multifurcations. In principle,
neither of the two trees needs to be ultrametric, although in most applications reference_tree will
be ultrametric.

In special cases each reference tip may be found in the target tree, i.e. the reference tree is a subtree
of the target tree. This may occur e.g. if a smaller subtree of the target tree has been extracted and
dated, and subsequently the larger target tree is to be dated using secondary constraints inferred
from the dated subtree.

The function returns a table that maps a subset of target nodes to an equally sized subset of con-
cordant reference nodes. Ages (divergence times) of the mapped reference nodes are extracted and
associated with the concordant target nodes.

For bifurcating trees the average time complexity of this function is O(TNtips x log(RNtips) x NM),
where TNtips and RNtips are the number of tips in the target and reference tree, respectively. This
function is similar to geiger::congruify.phylo (v.206). For large trees, this function tends to be
much faster than geiger::congruify.phylo.

28 congruent_divergence_times

Value

A named list with the following elements:

Rnodes Integer vector of length NC (where NC is the number of concordant node pairs
found) and with values in 1,..,RNnodes, listing indices of reference nodes that
could be matched with (i.e. were concordant to) a target node. Entries in Rnodes
will correspond to entries in Tnodes and ages.

Tnodes Integer vector of length NC and with values in 1,..,TNnodes, listing indices of
target nodes that could be matched with (i.e. were concordant to) a reference
node. Entries in Tnodes will correspond to entries in Rnodes and ages.

ages Numeric vector of length NC, listing divergence times (ages) of the reference
nodes listed in Rnodes. These ages can be used as fixed anchors for time-
calibrating the target tree using a separate program (such as PATHd8).

Author(s)

Stilianos Louca

References

J. M. Eastman, L. J. Harmon, D. C. Tank (2013). Congruification: support for time scaling large
phylogenetic trees. Methods in Ecology and Evolution. 4:688-691.

See Also

extend_tree_to_height, date_tree_red, get_tips_for_mrcas, tree_distance

Examples

generate random tree (target tree)
Ntips = 10000
tree = castor::generate_random_tree(parameters=list(birth_rate_intercept=1), max_tips=Ntips)$tree

extract random subtree (reference tree)
Nsubtips = 10
subtips = sample.int(n=Ntips,size=Nsubtips,replace=FALSE)
subtreeing = castor::get_subtree_with_tips(tree, only_tips=subtips)
subtree = subtreeing$subtree

map subset of target tips to reference tips
mapping = matrix(c(subtreeing$new2old_tip,(1:Nsubtips)),ncol=2,byrow=FALSE)

extract divergence times by congruification
congruification = congruent_divergence_times(subtree, tree, mapping)

cat("Concordant target nodes:\n")
print(congruification$target_nodes)

cat("Ages of concordant nodes:\n")
print(congruification$ages)

congruent_hbds_model 29

congruent_hbds_model Generate a congruent homogenous-birth-death-sampling model.

Description

Given a homogenous birth-death-sampling (HBDS) model (or abstract congruence class), obtain
the congruent model (or member of the congruence class) with a specific speciation rate λ, or
extinction rate µ, or sampling rate ψ, or effective reproduction ratio Re or removal rate µ + ψ
(aka. "become uninfectious"" rate). All input and output time-profiles are specified as piecewise
polynomial curves (splines), defined on a discrete grid of ages. This function allows exploration
of a model’s congruence class, by obtaining various members of the congruence class depending
on the specified λ, µ, ψ, Re or removal rate. For more details on HBDS models and congruence
classes see the documentation of simulate_deterministic_hbds.

Usage

congruent_hbds_model(age_grid,
PSR,
PDR,
lambda_psi,
lambda = NULL,
mu = NULL,
psi = NULL,
Reff = NULL,
removal_rate = NULL,
lambda0 = NULL,
CSA_ages = NULL,
CSA_pulled_probs = NULL,
CSA_PSRs = NULL,
splines_degree = 1,
ODE_relative_dt = 0.001,
ODE_relative_dy = 1e-4)

Arguments

age_grid Numeric vector, listing discrete ages (time before present) on which the vari-
ous model variables (e.g., λ, µ etc) are specified. Listed ages must be strictly
increasing, and must include the present-day (i.e. age 0).

PSR Numeric vector, of the same size as age_grid, specifying the pulled speciation
rate (PSR) (in units 1/time) at the ages listed in age_grid. The PSR is assumed
to vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case PSR is assumed to be time-independent.

PDR Numeric vector, of the same size as age_grid, specifying the pulled diversifi-
cation rate (PDR) (in units 1/time) at the ages listed in age_grid. The PDR is as-
sumed to vary polynomially between grid points (see argument splines_degree).
The PDR of a HBDS model is defined as PDR = λ − µ − ψ + (1/λ)dλ/dt

30 congruent_hbds_model

(where t denotes age). Can also be a single number, in which case PDR is as-
sumed to be time-independent.

lambda_psi Numeric vector, of the same size as age_grid, specifying the product of specia-
tion rate and sampling rate (λψ, in units 1/time^2) at the ages listed in age_grid.
λψ is assumed to vary polynomially between grid points (see argument splines_degree).
Can also be a single number, in which case λψ is assumed to be time-independent.

lambda Numeric vector, of the same size as age_grid, specifying the speciation rate (λ,
in units 1/time) at the ages listed in age_grid. The speciation rate is assumed to
vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case λ is assumed to be time-independent. By
providing λ, one can select a specific model from the congruence class. Note
that exactly one of lambda, mu, psi, Reff or removal_rate must be provided.

mu Numeric vector, of the same size as age_grid, specifying the extinction rate (µ,
in units 1/time) at the ages listed in age_grid. The extinction rate is assumed to
vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case µ is assumed to be time-independent. In
an epidemiological context, µ typically corresponds to the recovery rate plus the
death rate of infected individuals. By providing µ (together with lambda0, see
below), one can select a specific model from the congruence class. Note that
exactly one of lambda, mu, psi, Reff or removal_rate must be provided.

psi Numeric vector, of the same size as age_grid, specifying the (Poissonian)
sampling rate (ψ, in units 1/time) at the ages listed in age_grid. The sam-
pling rate is assumed to vary polynomially between grid points (see argument
splines_degree). Can also be a single number, in which case ψ is assumed to
be time-independent. By providing ψ, one can select a specific model from the
congruence class. Note that exactly one of lambda, mu, psi, Reff or removal_rate
must be provided.

Reff Numeric vector, of the same size as age_grid, specifying the effective repro-
duction ratio (Re, unitless) at the ages listed in age_grid. The Re is assumed to
vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case Re is assumed to be time-independent.
By providing Re (together with lambda0, see below), one can select a specific
model from the congruence class. Note that exactly one of lambda, mu, psi,
Reff or removal_rate must be provided.

removal_rate Numeric vector, of the same size as age_grid, specifying the removal rate (µ+
ψ, in units 1/time) at the ages listed in age_grid. IN an epidemiological context
this is also known as "become uninfectious" rate. The removal rate is assumed
to vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case the removal rate is assumed to be time-
independent. By providing µ + ψ (together with lambda0, see below), one can
select a specific model from the congruence class. Note that exactly one of
lambda, mu, psi, Reff or removal_rate must be provided.

lambda0 Numeric, specifying the speciation rate at the present-day (i.e., at age 0). Must
be provided if and only if one of mu, Reff or removal_rate is provided.

CSA_ages Optional numeric vector, listing the ages of concentrated sampling attempts, in
ascending order. Concentrated sampling is assumed to occur in addition to any
continuous (Poissonian) sampling specified by psi.

congruent_hbds_model 31

CSA_pulled_probs

Optional numeric vector of the same size as CSA_ages, listing pulled sampling
probabilities at each concentrated sampling attempt (CSA). Note that in contrast
to the sampling rates psi, the CSA_pulled_probs are interpreted as probabili-
ties and must thus be between 0 and 1. CSA_pulled_probs must be provided if
and only if CSA_ages is provided.

CSA_PSRs Optional numeric vector of the same size as CSA_ages, specifying the pulled
sampling rate (PSR) during each concentrated sampling attempt. While in prin-
ciple the PSR is already provided by the argument PSR, the PSR may be non-
continuous at CSAs, which makes a representation as piecewise polynomial
function difficult; hence, you must explicitly provide the correct PSR at each
CSA. CSA_PSRs must be provided if and only if CSA_ages is provided.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
time-dependent variables between grid points in age_grid. For example, if
splines_degree==1, then the provided PDR, PSR and so on are interpreted as
piecewise-linear curves; if splines_degree==2 they are interpreted as quadratic
splines; if splines_degree==3 they are interpreted as cubic splines. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on.

ODE_relative_dt

Positive unitless number, specifying the default relative time step for internally
used ordinary differential equation solvers. Typical values are 0.01-0.001.

ODE_relative_dy

Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-
ues are 1e-2 to 1e-5. A smaller ODE_relative_dy increases interpolation accu-
racy, but also increases memory requirements and adds runtime.

Details

The PDR, PSR and the product λψ are variables that are invariant across the entire congruence class
of an HBDS model, i.e. any two congruent models have the same PSR, PDR and product λψ. Re-
ciprocally, any HBDS congruence class is fully determined by its PDR, PSR and λψ. This function
thus allows "collapsing" a congruence class down to a single member (a specific HBDS model) by
specifying one or more additional variables over time (such as λ, or ψ, or µ and λ0). Alternatively,
this function may be used to obtain alternative models that are congruent to some reference model,
for example to explore the robustness of specific epidemiological quantities of interest. The func-
tion returns a specific HBDS model in terms of the time profiles of various variables (such as λ, µ
and ψ).

In the current implementation it is assumed that any sampled lineages are immediately removed
from the pool, that is, this function cannot accommodate models with a non-zero retention prob-
ability upon sampling. This is a common assumption in molecular epidemiology. Note that in
this function age always refers to time before present, i.e., present day age is 0, and age increases
towards the root.

32 congruent_hbds_model

Value

A named list with the following elements:

success Logical, indicating whether the calculation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) providing a de-
scription of the error; all other return variables may be undefined.

valid Logical, indicating whether the returned model appears to be biologically valid
(for example, does not have negative λ, µ or ψ). In principle, a congruence class
may include biologically invalid models, which might be returned depending on
the input to congruent_hbds_model. Note that only biologically valid models
can be subsequently simulated using simulate_deterministic_hbds.

ages Numeric vector of size NG, specifying the discrete ages (time before present) on
which all returned time-curves are specified. Will always be equal to age_grid.

lambda Numeric vector of size NG, listing the speciation rates λ of the returned model
at the ages given in ages[].

mu Numeric vector of size NG, listing the extinction rates µ of the returned model
at the ages given in ages[].

psi Numeric vector of size NG, listing the (Poissonian) sampling rates ψ of the
returned model at the ages given in ages[].

lambda_psi Numeric vector of size NG, listing the product λψ at the ages given in ages[].

Reff Numeric vector of size NG, listing the effective reproduction ratio Re of the
returned model at the ages given in ages[].

removal_rate Numeric vector of size NG, listing the removal rate (µ + ψ, aka. "become
uninfectious" rate) of the returned model at the ages given in ages[].

Pmissing Numeric vector of size NG, listing the probability that a past lineage extant
during ages[] will be missing from a tree generated by the model.

CSA_probs Numeric vector of the same size as CSA_ages, listing the sampling probabilities
at each of the CSAs.

CSA_Pmissings Numeric vector of the same size as CSA_ages, listing the probability that a past
lineage extant during each of CSA_ages[] will be missing from a tree generated
by the model.

Author(s)

Stilianos Louca

References

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

A. MacPherson, S. Louca, A. McLaughlin, J. B. Joy, M. W. Pennell (in review as of 2020). A gen-
eral birth-death-sampling model for epidemiology and macroevolution. DOI:10.1101/2020.10.10.334383

See Also

generate_tree_hbds, fit_hbds_model_parametric, simulate_deterministic_hbds

consensus_taxonomies 33

Examples

define an HBDS model with exponentially decreasing speciation/extinction rates
and constant Poissonian sampling rate psi
oldest_age= 10
age_grid = seq(from=0,to=oldest_age,by=0.1) # choose a sufficiently fine age grid
lambda = 1*exp(0.01*age_grid) # define lambda on the age grid
mu = 0.2*lambda # assume similarly shaped but smaller mu

simulate deterministic HBD model
scale LTT such that it is 100 at age 1
sim = simulate_deterministic_hbds(age_grid = age_grid,

lambda = lambda,
mu = mu,
psi = 0.1,
age0 = 1,
LTT0 = 100)

calculate a congruent HBDS model with an alternative sampling rate
use the previously simulated variables to define the congruence class
new_psi = 0.1*exp(-0.01*sim$ages) # consider a psi decreasing with age
congruent = congruent_hbds_model(age_grid = sim$ages,

PSR = sim$PSR,
PDR = sim$PDR,
lambda_psi = sim$lambda_psi,
psi = new_psi)

compare the deterministic LTT of the two models
to confirm that the models are indeed congruent
if(!congruent$valid){

cat("WARNING: Congruent model is not biologically valid\n")
}else{

simulate the congruent model to get the LTT
csim = simulate_deterministic_hbds(age_grid = congruent$ages,

lambda = congruent$lambda,
mu = congruent$mu,
psi = congruent$psi,
age0 = 1,
LTT0 = 100)

plot deterministic LTT of the original and congruent model
plot(x = sim$ages, y = sim$LTT, type='l',

main='dLTT', xlab='age', ylab='lineages',
xlim=c(oldest_age,0), col='red')

lines(x= csim$ages, y=csim$LTT,
type='p', pch=21, col='blue')

}

consensus_taxonomies Compute consensus taxonomies across a tree.

34 consensus_taxonomies

Description

Given a rooted phylogenetic tree and taxonomies for all tips, compute corresponding consensus
taxonomies for all nodes in the tree based on their descending tips. The consensus taxonomy of a
given node is the longest possible taxonomic path (i.e., to the lowest possible level) such that the
taxonomies of all descending tips are nested within that taxonomic path. Some tip taxonomies may
be incomplete, i.e., truncated at higher taxonomic levels. In that case, consensus taxonomy building
will be conservative, i.e., no assumptions will be made about the missing taxonomic levels.

Usage

consensus_taxonomies(tree, tip_taxonomies = NULL, delimiter = ";")

Arguments

tree A rooted tree of class "phylo".

tip_taxonomies Optional, character vector of length Ntips, listing taxonomic paths for the tips.
If NULL, then tip labels in the tree are assumed to be tip taxonomies.

delimiter Character, the delimiter between taxonomic levels (e.g., ";" for SILVA and Green-
genes taxonomies).

Details

Examples:

• If the descending tips of a node have taxonomies "A;B;C" and "A;B;C;D" and "A;B;C;E",
then their consensus taxonomy is "A;B;C".

• If the descending tips of a node have taxonomies "A;B" and "A;B;C;D" and "A;B;C;E", then
their consensus taxonomy is "A;B".

• If the descending tips of a node have taxonomies "X;B;C" and "Y;B;C", then their consensus
taxonomy is "" (i.e., empty).

Value

A character vector of length Nnodes, listing the inferred consensus taxonomies for all nodes in the
tree.

Author(s)

Stilianos Louca

See Also

place_tips_taxonomically

consentrait_depth 35

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_factor=0.1), max_tips=7)$tree

define a character vector storing hypothetical tip taxonomies
tip_taxonomies = c("R;BB;C", "AA;BB;C;DD", "AA;BB;C;E",

"AA;BB", "AA;BB;D", "AA;BB;C;F", "AA;BB;C;X")

compute consensus taxonomies and store them in the tree as node labels
tree$node.label = castor::consensus_taxonomies(tree,

tip_taxonomies = tip_taxonomies,
delimiter = ";")

consentrait_depth Calculate phylogenetic depth of a binary trait using the consenTRAIT
metric.

Description

Given a rooted phylogenetic tree and presences/absences of a binary trait for each tip, calculate the
mean phylogenetic depth at which the trait is conserved across clades, in terms of the consenTRAIT
metric introduced by Martiny et al (2013). This is the mean depth of clades that are positive in the
trait (i.e. in which a sufficient fraction of tips exhibits the trait).

Usage

consentrait_depth(tree,
tip_states,
min_fraction = 0.9,
count_singletons = TRUE,
singleton_resolution= 0,
weighted = FALSE,
Npermutations = 0)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips indicating absence (value <=0) or presence (value
>0) of a particular trait at each tip of the tree. Note that tip_states[i] (where i is
an integer index) must correspond to the i-th tip in the tree.

min_fraction Minimum fraction of tips in a clade exhibiting the trait, for the clade to be con-
sidered "positive" in the trait. In the original paper by Martiny et al (2013), this
was 0.9.

36 consentrait_depth

count_singletons

Logical, specifying whether to include singletons in the statistics (tips positive
in the trait, but not part of a larger positive clade). The phylogenetic depth of
singletons is taken to be half the length of their incoming edge, as proposed by
Martiny et al (2013). If FALSE, singletons are ignored.

singleton_resolution

Numeric, specifying the phylogenetic resolution at which to resolve singletons.
Any clade found to be positive in a trait will be considered a singleton if the
distance of the clade’s root to all descending tips is below this threshold.

weighted Whether to weight positive clades by their number of positive tips. If FALSE,
each positive clades is weighted equally, as proposed by Martiny et al (2013).

Npermutations Number of random permutations for estimating the statistical significance of the
mean trait depth. If zero (default), the statistical significance is not calculated.

Details

This function calculates the "consenTRAIT" metric (or variants thereof) proposed by Martiny et al.
(2013) for measuring the mean phylogenetic depth at which a binary trait (e.g. presence/absence of
a particular metabolic function) is conserved across clades. A greater mean depth means that the
trait tends to be conserved in deeper-rooting clades. In their original paper, Martiny et al. proposed
to consider a trait as conserved in a clade (i.e. marking a clade as "positive" in the trait) if at
least 90% of the clade’s tips exhibit the trait (i.e. are "positive" in the trait). This fraction can be
controlled using the min_fraction parameter. The depth of a clade is taken as the average distance
of its tips to the clade’s root.

Note that the consenTRAIT metric does not treat "presence" and "absence" equally, i.e., if one were
to reverse all presences and absences then the consenTRAIT metric will generally have a different
value. This is because the focus is on the presence of the trait (e.g., presence of a metabolic function,
or presence of a morphological feature).

The default parameters of this function reflect the original choices made by Martiny et al. (2013),
however in some cases it may be sensible to adjust them. For example, if you suspect a high
risk of false positives in the detection of a trait, it may be worth setting count_singletons to
FALSE to avoid skewing the distribution of conservation depths towards shallower depths due to
false positives.

The statistical significance of the calculated mean depth, i.e. the probability of encountering such a
mean dept or higher by chance, is estimated based on a null model in which each tip is re-assigned
a presence or absence of the trait by randomly reshuffling the original tip_states.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If tree$edge.length is missing, then every edge is assumed to have length 1.

Value

A list with the following elements:

mean_depth Mean phylogenetic depth of clades that are positive in the trait.

var_depth Variance of phylogenetic depths of clades that are positive in the trait.

min_depth Minimum phylogenetic depth of clades that are positive in the trait.

max_depth Maximum phylogenetic depth of clades that are positive in the trait.

consentrait_depth 37

Npositives Number of clades that are positive in the trait.

P Statistical significance (P-value) of mean_depth, under a null model of random
trait presences/absences (see details above). This is the probability that, under
the null model, the mean_depth would be at least as high as observed in the
data.

mean_random_depth

Mean random mean_depth, under a null model of random trait presences/absences
(see details above).

positive_clades

Integer vector, listing indices of tips and nodes (from 1 to Ntips+Nnodes) that
were found to be positive in the trait and counted towards the statistic.

positives_per_clade

Integer vector of size Ntips+Nnodes, listing the number of descending tips per
clade (tip or node) that were positive in the trait.

mean_depth_per_clade

Numeric vector of size Ntips+Nnodes, listing the mean phylogenetic depth of
each clade (tip or node), i.e. the average distance to all its descending tips.

Author(s)

Stilianos Louca

References

A. C. Martiny, K. Treseder and G. Pusch (2013). Phylogenetic trait conservatism of functional traits
in microorganisms. ISME Journal. 7:830-838.

See Also

get_trait_acf, discrete_trait_depth

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

simulate binary trait evolution on the tree
Q = get_random_mk_transition_matrix(Nstates=2, rate_model="ARD", max_rate=0.1)
tip_states = simulate_mk_model(tree, Q)$tip_states

change states from 1/2 to 0/1 (presence/absence)
tip_states = tip_states - 1

calculate phylogenetic conservatism of trait
results = consentrait_depth(tree, tip_states, count_singletons=FALSE, weighted=TRUE)
cat(sprintf("Mean depth = %g, std = %g\n",results$mean_depth,sqrt(results$var_depth)))

End(Not run)

38 correlate_phylo_geodistances

correlate_phylo_geodistances

Correlations between phylogenetic & geographic distances.

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) of each tip,
examine the correlation between pairwise phylogenetic and geographic distances of tips. The sta-
tistical significance is computed by randomly permuting the tip coordinates, which is essentially a
phylogenetic version of the Mantel test and accounts for shared evolutionary history between tips.

Usage

correlate_phylo_geodistances(tree,
tip_latitudes,
tip_longitudes,
correlation_method,
max_phylodistance = Inf,
Npermutations = 1000,
alternative = "right",
radius = 1)

Arguments

tree A rooted tree of class "phylo".
tip_latitudes Numeric vector of size Ntips, specifying the latitudes (decimal degrees) of the

tree’s tips. By convention, positive latitudes correspond to the northern hemi-
sphere. Note that tip_latitudes[i] must correspond to the i-th tip in the tree,
i.e. as listed in tree$tip.label.

tip_longitudes Numeric vector of size Ntips, specifying the longitudes (decimal degrees) of
the tree’s tips. By convention, positive longitudes correspond to the eastern
hemisphere.

correlation_method

Character, one of "pearson", "spearman" or "kendall".
max_phylodistance

Numeric, maximum phylodistance between tips to consider, in the same units as
the tree’s edge lengths. If Inf, all tip pairs will be considered.

Npermutations Integer, number of random permutations to consider for estimating the statistical
significance (P value). If 0, the significance will not be computed. A larger
number improves accuracy but at the cost of increased computing time.

alternative Character, one of "two_sided", "right" or "left", specifying which part of the
null model’s distribution to use as P-value.

radius Optional numeric, radius to assume for the sphere. If 1, then all geodistances are
measured in multiples of the sphere radius. This does not affect the correlation
or P-value, but it affects the returned geodistances. Note that Earth’s average
radius is about 6371 km.

correlate_phylo_geodistances 39

Details

To compute the statistical significance (P value) of the observed correlation C, this function repeat-
edly randomly permutes the tip coordinates, each time recomputing the corresponding "random"
correlation, and then examines the distribution of the random correlations. If alternative="right",
the P value is set to the fraction of random correlations equal to or greater than C.

Value

A named list with the following elements:

correlation Numeric between -1 and 1, the correlation between phylodistances and geodis-
tances.

Npairs Integer, the number of tip pairs considered.

Pvalue Numeric between 0 and 1, estimated statistical significance of the correlation.
Only returned if Npermutations>0.

mean_random_correlation

Numeric between -1 and 1, the mean correlation obtained across all random
permutations. Only returned if Npermutations>0.

phylodistances Numeric vector of length Npairs, listing the pairwise phylodistances between
tips, used to compute the correlation.

geodistances Numeric vector of length Npairs, listing the pairwise geodistances between tips,
used to compute the correlation.

Author(s)

Stilianos Louca

See Also

geographic_acf

Examples

Generate a random tree
Ntips = 50
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate spherical Brownian motion (a dispersal model) on the tree
simul = simulate_sbm(tree, radius=6371, diffusivity=50)

Analyze correlations between geodistances & phylodistances
coranal = correlate_phylo_geodistances(tree = tree,

tip_latitudes = simul$tip_latitudes,
tip_longitudes = simul$tip_longitudes,
correlation_method = "spearman",
Npermutations = 100,
max_phylodistance = 100,
radius = 6371)

print(coranal$correlation)

40 count_lineages_through_time

print(coranal$Pvalue)
plot(coranal$phylodistances, coranal$geodistances,

xlab="phylodistance", ylab="geodistance", type="p")

count_lineages_through_time

Count number of lineages through time (LTT).

Description

Given a rooted timetree (i.e., a tree whose edge lengths represent time intervals), calculate the
number of lineages represented in the tree at various time points, otherwise known as "lineages
through time"" (LTT) curve. The root is interpreted as time 0, and the distance of any node or tip
from the root is interpreted as time elapsed since the root. Optionally, the slopes and relative slopes
of the LTT curve are also returned.

Usage

count_lineages_through_time(tree,
Ntimes = NULL,
min_time = NULL,
max_time = NULL,
times = NULL,
include_slopes= FALSE,
ultrametric = FALSE,
degree = 1,
regular_grid = TRUE)

Arguments

tree A rooted tree of class "phylo", where edge lengths represent time intervals (or
similar).

Ntimes Integer, number of equidistant time points at which to count lineages. Can also
be NULL, in which case times must be provided.

min_time Minimum time (distance from root) to consider. If NULL, this will be set to the
minimum possible (i.e. 0). Only relevant if times==NULL.

max_time Maximum time (distance from root) to consider. If NULL, this will be set to the
maximum possible. Only relevant if times==NULL.

times Integer vector, listing time points (in ascending order) at which to count lineages.
Can also be NULL, in which case Ntimes must be provided.

include_slopes Logical, specifying whether the slope and the relative slope of the returned
clades-per-time-point curve should also be returned.

ultrametric Logical, specifying whether the input tree is guaranteed to be ultrametric, even
in the presence of some numerical inaccuracies causing some tips not have ex-
actly the same distance from the root. If you know the tree is ultrametric, then
this option helps the function choose a better time grid for the LTT.

count_lineages_through_time 41

degree Integer, specifying the "degree" of the LTT curve: LTT(t) will be the number
of lineages in the tree at time t that have at least n descending tips in the tree.
Typically order=1, which corresponds to the classical LTT curve.

regular_grid Logical, specifying whether the automatically generated time grid should be reg-
ular (equal distances between grid points). This option only matters if times==NULL.
If regular_grid==FALSE and times==NULL, the time grid will be irregular,
with grid point density being roughly proportional to the square root of the num-
ber of lineages at any particular time (i.e., the grid becomes finer towards the
tips).

Details

Given a sequence of time points between a tree’s root and tips, this function essentially counts how
many edges "cross" each time point (if degree==1). The slopes and relative slopes are calculated
from this curve using finite differences.

Note that the classical LTT curve (degree=1) is non-decreasing over time, whereas higher-degree
LTT’s may be decreasing as well as increasing over time.

If tree$edge.length is missing, then every edge in the tree is assumed to be of length 1. The tree
may include multifurcations as well as monofurcations (i.e. nodes with only one child). The tree
need not be ultrametric, although in general this function only makes sense for dated trees (e.g.,
where edge lengths are time intervals or similar).

Either Ntimes or times must be non-NULL, but not both. If times!=NULL, then min_time and
max_time must be NULL.

Value

A list with the following elements:

Ntimes Integer, indicating the number of returned time points. Equal to the provided
Ntimes if applicable.

times Numeric vector of size Ntimes, listing the time points at which the LTT was
calculated. If times was provided as an argument to the function, then this will
be the same as provided, otherwise times will be listed in ascending order.

ages Numeric vector of size Ntimes, listing the ages (time before the youngest tip)
corresponding to the returned times[].

lineages Integer vector of size Ntimes, listing the number of lineages represented in the
tree at each time point that have at least degree descending tips, i.e. the LTT
curve.

slopes Numeric vector of size Ntimes, listing the slopes (finite-difference approxima-
tion of 1st derivative) of the LTT curve.

relative_slopes

Numeric vector of size Ntimes, listing the relative slopes of the LTT curve, i.e.
slopes divided by a sliding-window average of lineages.

Author(s)

Stilianos Louca

42 count_tips_per_node

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1), max_tips=1000)$tree

calculate classical LTT curve
results = count_lineages_through_time(tree, Ntimes=100)

plot classical LTT curve
plot(results$times, results$lineages, type="l", xlab="time", ylab="# clades")

count_tips_per_node Count descending tips.

Description

Given a rooted phylogenetic tree, count the number of tips descending (directy or indirectly) from
each node.

Usage

count_tips_per_node(tree)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

Details

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges.

Value

An integer vector of size Nnodes, with the i-th entry being the number of tips descending (directly
or indirectly) from the i-th node.

Author(s)

Stilianos Louca

See Also

get_subtree_at_node

count_transitions_between_clades 43

Examples

generate a tree using a simple speciation model
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

count number of tips descending from each node
tips_per_node = count_tips_per_node(tree);

plot histogram of tips-per-node
barplot(table(tips_per_node[tips_per_node<10]), xlab="# tips", ylab="# nodes")

count_transitions_between_clades

Count the number of state transitions between tips or nodes.

Description

Given a rooted phylogenetic tree, one or more pairs of tips and/or nodes, and the state of some
discrete trait at each tip and node, calculate the number of state transitions along the shortest path
between each pair of tips/nodes.

Usage

count_transitions_between_clades(tree, A, B, states, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

A An integer vector or character vector of size Npairs, specifying the first of the
two members of each pair of tips/nodes. If an integer vector, it must list indices
of tips (from 1 to Ntips) and/or nodes (from Ntips+1 to Ntips+Nnodes). If a
character vector, it must list tip and/or node names.

B An integer vector or character vector of size Npairs, specifying the second of the
two members of each pair of tips/nodes. If an integer vector, it must list indices
of tips (from 1 to Ntips) and/or nodes (from Ntips+1 to Ntips+Nnodes). If a
character vector, it must list tip and/or node names.

states Integer vector of length Ntips+Nnodes, listing the discrete state of each tip
and node in the tree. The order of entries must match the order of tips and
nodes in the tree; this requirement is only verified if states has names and
check_input==TRUE.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

44 date_tree_red

Details

The discrete state must be represented by integers (both negatives and positives are allowed); char-
acters and other data types are not allowed. If tip/node states are originally encoded as characters
rather than integers, you can use map_to_state_space to convert these to integers (for example
“male” & “female” may be represented as 1 & 2). Also note that a state must be provided for each
tip and ancestral node, not just for the tips. If you only know the states of tips, you can use an
ancestral state reconstruction tool to estimate ancestral states first.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If A and/or B is a character vector, then tree$tip.label must exist. If node names are included in
A and/or B, then tree$node.label must also exist.

Value

An integer vector of size Npairs, with the i-th element being the number of state transitions between
tips/nodes A[i] and B[i] (along their shortest connecting path).

Author(s)

Stilianos Louca

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick 3 random pairs of tips or nodes
Npairs = 3
A = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)
B = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)

assign a random state to each tip & node in the tree
consider a binary trait
states = sample.int(n=2, size=Ntips+tree$Nnode, replace=TRUE)

calculate number of transitions for each tip pair
Ntransitions = count_transitions_between_clades(tree, A, B, states=states)

date_tree_red Date a tree based on relative evolutionary divergences.

Description

Given a rooted phylogenetic tree and a single node (’anchor’) of known age (distance from the
present), rescale all edge lengths so that the tree becomes ultrametric and edge lengths correspond
to time intervals. The function is based on relative evolutionary divergences (RED), which measure
the relative position of each node between the root and its descending tips (Parks et al. 2018). If
no anchor node is provided, the root is simply assumed to have age 1. This function provides a
heuristic quick-and-dirty way to date a phylogenetic tree.

date_tree_red 45

Usage

date_tree_red(tree, anchor_node = NULL, anchor_age = 1)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

anchor_node Integer, ranging between 1 and Nnodes. Index of the node to be used as dating
anchor. If NULL, the tree’s root is used as anchor.

anchor_age Positive numeric. Age of the anchor node.

Details

The RED of a node measures its relative placement between the root and the node’s descending tips
(Parks et al. 2018). The root’s RED is set to 0. Traversing from root to tips (preorder traversal), for
each node the RED is set to P + (a/(a+ b)) · (1− P), where P is the RED of the node’s parent, a
is the edge length connecting the node to its parent, and b is the average distance from the node to
its descending tips. The RED of all tips is set to 1.

For each edge, the RED difference between child & parent is used to set the new length of that edge,
multiplied by some common scaling factor to translate RED units into time units. The scaling factor
is chosen such that the new distance of the anchor node from its descending tips equals anchor_age.
All tips will have age 0. The topology of the dated tree, as well as tip/node/edge indices, remain
unchanged.

This function provides a heuristic approach to making a tree ultrametric, and has not been derived
from a specific evolutionary model. In particular, its statistical properties are unknown to the author.

The time complexity of this function is O(Nedges). The input tree may include multi-furcations
(i.e. nodes with more than 2 children) as well as mono-furcations (i.e. nodes with only one child).
If tree$edge.length is NULL, then all edges in the input tree are assumed to have length 1.

Value

A list with the following elements:

success Logical, indicating whether the dating was successful. If FALSE, all other return
values (except for error) may be undefined.

tree A new rooted tree of class "phylo", representing the dated tree.

REDs Numeric vector of size Nnodes, listing the RED of each node in the input tree.

error Character, listing any error message if success==FALSE.

Author(s)

Stilianos Louca

References

D. H. Parks, M. Chuvochina et al. (2018). A proposal for a standardized bacterial taxonomy based
on genome phylogeny. bioRxiv 256800. DOI:10.1101/256800

46 discrete_trait_depth

See Also

congruent_divergence_times

Examples

generate a random non-ultrametric tree
params = list(birth_rate_intercept=1, death_rate_intercept=0.8)
tree = generate_random_tree(params, max_time=1000, coalescent=FALSE)$tree

make ultrametric, by setting the root to 2 million years
dated_tree = date_tree_red(tree, anchor_age=2e6)

discrete_trait_depth Calculate phylogenetic depth of a discrete trait.

Description

Given a rooted phylogenetic tree and the state of a discrete trait at each tip, calculate the mean
phylogenetic depth at which the trait is conserved across clades, using a modification of the con-
senTRAIT metric introduced by Martiny et al (2013). This is the mean depth of clades that are
"maximally uniform" in the trait (see below for details).

Usage

discrete_trait_depth(tree,
tip_states,
min_fraction = 0.9,
count_singletons = TRUE,
singleton_resolution = 0,
weighted = FALSE,
Npermutations = 0)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A vector of size Ntips specifying the state at each tip. Note that tip_states[i]
(where i is an integer index) must correspond to the i-th tip in the tree. This
vector may be of any base data type, although character or integer are the most
typical types.

min_fraction Minimum fraction of tips in a clade that must have the dominant state, for the
clade to be considered "uniform" in the trait.

count_singletons

Logical, specifying whether to consider singleton clades in the statistics (e.g.,
tips not part of a larger uniform clade). The phylogenetic depth of singletons
is taken to be half the length of their incoming edge, as proposed by Martiny et
al (2013). If FALSE, singletons are ignored. If you suspect a high risk of false

discrete_trait_depth 47

positives in the detection of a trait, it may be worth setting count_singletons
to FALSE to avoid skewing the distribution of conservation depths towards shal-
lower depths due to false positives.

singleton_resolution

Numeric, specifying the phylogenetic resolution at which to resolve singletons.
A clade will be considered a singleton if the distance of the clade’s root to all
descending tips is below this threshold.

weighted Whether to weight uniform clades by their number of tips in the dominant state.
If FALSE, each uniform clades is weighted equally.

Npermutations Number of random permutations for estimating the statistical significance of the
mean trait depth. If zero (default), the statistical significance is not calculated.

Details

The depth of a clade is defined as the average distance of its tips to the clade’s root. The "domi-
nant" state of a clade is defined as the most frequent state among all of the clade’s tips. A clade is
considered "uniform" in the trait if the frequency of its dominant state is equal to or greater than
min_fraction. The clade is "maximally uniform" if it is uniform and not descending from another
uniform clade. The mean depth of the trait is defined as the average phylogenetic depth of all con-
sidered maximal uniform clades (whether a maximally uniform clade is considered in this statistic
depends on count_singletons and singleton_resolution). A greater mean depth means that
the trait tends to be conserved in deeper-rooting clades.

This function implements a modification of the "consenTRAIT" metric proposed by Martiny et al.
(2013) for measuring the mean phylogenetic depth at which a binary trait is conserved across clades.
Note that the original consenTRAIT metric by Martiny et al. (2013) does not treat the two states
of a binary trait ("presence" and "absence") equally, whereas the function discrete_trait_depth
does. If you want the original consenTRAIT metric for a binary trait, see the function consentrait_depth.

The statistical significance of the calculated mean depth, i.e. the probability of encountering such a
mean dept or higher by chance, is estimated based on a null model in which each tip is re-assigned a
state by randomly reshuffling the original tip_states. A low P value indicates that the trait exhibits
a phylogenetic signal, whereas a high P value means that there is insufficient evidence in the data to
suggest a phylogenetic signal (i.e., the trait’s phylogenetic conservatism is indistinguishable from
the null model of zero conservatism).

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If tree$edge.length is missing, then every edge is assumed to have length 1.

Value

A list with the following elements:

unique_states Vector of the same type as tip_states and of length Nstates, listing the unique
possible states of the trait.

mean_depth Numeric, specifying the mean phylogenetic depth of the trait, i.e., the mean
depth of considered maximally uniform clades.

var_depth Numeric, specifying the variance of phylogenetic depths of considered maxi-
mally uniform clades.

48 discrete_trait_depth

min_depth Numeric, specifying the minimum phylogenetic depth of considered maximally
uniform clades.

max_depth Numeric, specifying the maximum phylogenetic depth of considered maximally
uniform clades.

Nmax_uniform Number of considered maximal uniform clades.
mean_depth_per_state

Numeric vector of size Nstates. Mean depth of considered maximally uni-
form clades, separately for each state and in the same order as unique_states.
Hence, mean_depth_per_state[s] lists the mean depth of considered maxi-
mally uniform clades whose dominant state is unique_states[s].

var_depth_per_state

Numeric vector of size Nstates. Variance of depths of considered maximally uni-
form clades, separately for each state and in the same order as unique_states

min_depth_per_state

Numeric vector of size Nstates. Minimum phylogenetic depth of considered
maximally uniform clades, separately for each state and in the same order as
unique_states

max_depth_per_state

Numeric vector of size Nstates. Maximum phylogenetic depth of considered
maximally uniform clades, separately for each state and in the same order as
unique_states

Nmax_uniform_per_state

Integer vector of size Nstates. Number of considered maximally uniform clades,
seperately for each state and in the same order as unique_states

P Statistical significance (P-value) of mean_depth, under a null model of random
tip states (see details above). This is the probability that, under the null model,
the mean_depth would be at least as high as observed in the data.

mean_random_depth

Mean random mean_depth, under the null model of random tip states (see details
above).

Author(s)

Stilianos Louca

References

A. C. Martiny, K. Treseder and G. Pusch (2013). Phylogenetic trait conservatism of functional traits
in microorganisms. ISME Journal. 7:830-838.

See Also

get_trait_acf, consentrait_depth

evaluate_spline 49

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

simulate discrete trait evolution on the tree
consider a trait with 3 discrete states
Q = get_random_mk_transition_matrix(Nstates=3, rate_model="ARD", max_rate=0.1)
tip_states = simulate_mk_model(tree, Q)$tip_states

calculate phylogenetic conservatism of trait
results = discrete_trait_depth(tree, tip_states, count_singletons=FALSE, weighted=TRUE)
cat(sprintf("Mean depth = %g, std = %g\n",results$mean_depth,sqrt(results$var_depth)))

End(Not run)

evaluate_spline Evaluate a scalar spline at arbitrary locations.

Description

Given a natural spline function Y : R → R, defined as a series of Y values on a discrete X
grid, evaluate its values (or derivative) at arbitrary X points. Supported splines degrees are 0 (Y is
piecewise constant), 1 (piecewise linear), 2 (piecewise quadratic) and 3 (piecewise cubic).

Usage

evaluate_spline(Xgrid,
Ygrid,
splines_degree,
Xtarget,
extrapolate = "const",
derivative = 0)

Arguments

Xgrid Numeric vector, listing x-values in ascending order.

Ygrid Numeric vector of the same length as Xgrid, listing the values of Y on Xgrid.

splines_degree Integer, either 0, 1, 2 or 3, specifying the polynomial degree of the spline curve
Y between grid points. For example, 0 means Y is piecewise constant, 1 means
Y is piecewise linear and so on.

Xtarget Numeric vector, listing arbitrary X values on which to evaluate Y.

extrapolate Character, specifying how to extrapolate Y beyond Xgrid if needed. Avail-
able options are "const" (i.e. use the value of Y on the nearest Xgrid point) or
"splines" (i.e. use the polynomial coefficients from the nearest grid point).

derivative Integer, specifying which derivative to return. To return the spline’s value, set
derivative=0. Currently only the options 0,1,2 are supported.

50 expanded_tree_from_jplace

Details

Spline functions are returned by some of castor’s fitting routines, so evaluate_spline is meant
to aid with the evaluation and plotting of such functions. A spline function of degree D ≥ 1 has
continuous derivatives up to degree D − 1. The function evaluate_spline is much more efficient
if Xtarget is monotonically increasing or decreasing.

This function is used to evaluate the spline’s values at arbitrary points. To obtain the spline’s poly-
nomial coefficients, use spline_coefficients.

Value

A numeric vector of the same length as Xtarget, listing the values (or derivatives, if derivative>0)
of Y on Xtarget.

Author(s)

Stilianos Louca

See Also

spline_coefficients

Examples

specify Y on a coarse X grid
Xgrid = seq(from=0,to=10,length.out=10)
Ygrid = sin(Xgrid)

define a fine grid of target X values
Xtarget = seq(from=0,to=10,length.out=1000)

evaluate Y on Xtarget, either as piecewise linear or piecewise cubic function
Ytarget_lin = evaluate_spline(Xgrid,Ygrid,splines_degree=1,Xtarget=Xtarget)
Ytarget_cub = evaluate_spline(Xgrid,Ygrid,splines_degree=3,Xtarget=Xtarget)

plot both the piecewise linear and piecewise cubic curves
plot(x=Xtarget, y=Ytarget_cub, type='l', col='red', xlab='X', ylab='Y')
lines(x=Xtarget, y=Ytarget_lin, type='l', col='blue', xlab='X', ylab='Y')

expanded_tree_from_jplace

Place queries on a tree from a jplace file.

Description

Given a jplace file (e.g., as generated by pplacer or EPA-NG), construct an expanded tree consist-
ing of the original reference tree and additional tips representing the placed query sequences. The
reference tree and placements are loaded from the jplace file. If multiple placements are listed for
a query, this function can either add the best (maximum-likelihood) placement or all listed place-
ments.

expanded_tree_from_jplace 51

Usage

expanded_tree_from_jplace(file_path,
only_best_placements = TRUE,
max_names_per_query = 1)

Arguments

file_path Character, the path to the input jplace file.

only_best_placements

Logical, only keep the best placement of each query, i.e., the placement with
maximum likelihood.

max_names_per_query

Positive integer, maximum number of sequence names to keep from each query.
Only relevant if queries in the jplace file include multiple sequence names (these
typically represent identical sequences). If greater than 1, and a query includes
multiple sequence names, then each of these sequence names will be added as a
tip to the tree.

Details

This function assumes version 3 of the jplace file format, as defined by Matsen et al. (2012).

Value

A named list with the following elements:

tree Object of class "phylo", the extended tree constructed by adding the placements
on the reference tree.

placed_tips Integer vector, specifying which tips in the returned tree correspond to place-
ments.

reference_tree Object of class "phylo", the original reference tree loaded from the jplace file.
This will be a subtree of tree.

Author(s)

Stilianos Louca

References

Frederick A. Matsen et al. (2012). A format for phylogenetic placements. PLOS One. 7:e31009

See Also

place_tips_taxonomically

52 expected_distances_sbm

Examples

Not run:
load jplace file and create expanded tree
J = expanded_tree_from_jplace("epa_ng_output.jplace")

save the reference and expanded tree as Newick files
write_tree(J$reference_tree, file="reference.tre")
write_tree(J$tree, file="expanded.tre")

End(Not run)

expected_distances_sbm

Expected distances traversed by a Spherical Brownian Motion.

Description

Given a Spherical Brownian Motion (SBM) process with constant diffusivity, compute the expected
geodesic distance traversed over specific time intervals. This quantity may be used as a measure for
how fast a lineage disperses across the globe over time.

Usage

expected_distances_sbm(diffusivity,
radius,
deltas)

Arguments

diffusivity Numeric, the diffusivity (aka. diffusion coefficient) of the SBM. The units of
the diffusivity must be consistent with the units used for specifying the radius
and time intervals (deltas); for example, if radius is in km and deltas are in
years, then diffusivity must be specified in km^2/year.

radius Positive numeric, the radius of the sphere.

deltas Numeric vector, listing time intervals for which to compute the expected geodesic
distances.

Details

This function returns expected geodesic distances (i.e. accounting for spherical geometry) for a
diffusion process on a sphere, with isotropic and homogeneous diffusivity.

Value

A non-negative numeric vector of the same length as deltas, specifying the expected geodesic
distance for each time interval in deltas.

exponentiate_matrix 53

Author(s)

Stilianos Louca

References

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

fit_sbm_const

Examples

compute the expected geodistance (in km) after 100 and 1000 years
assuming a diffusivity of 20 km^2/year
expected_distances = expected_distances_sbm(diffusivity = 20,

radius = 6371,
deltas = c(100,1000))

exponentiate_matrix Exponentiate a matrix.

Description

Calculate the exponential exp(T ·A) of some quadratic real-valued matrix A for one or more scalar
scaling factors T.

Usage

exponentiate_matrix(A, scalings=1, max_absolute_error=1e-3,
min_polynomials=1, max_polynomials=1000)

Arguments

A A real-valued quadratic matrix of size N x N.

scalings Vector of real-valued scalar scaling factors T, for each of which the exponential
exp(T ·A) should be calculated.

max_absolute_error

Maximum allowed absolute error for the returned approximations. A smaller
allowed error implies a greater computational cost as more matrix polynomi-
als need to be included (see below). The returned approximations may have a
greater error if the parameter max_polynomials is set too low.

54 exponentiate_matrix

min_polynomials

Minimum number of polynomials to include in the approximations (see equation
below), even if max_absolute_error may be satisfied with fewer polynomials.
If you don’t know how to choose this, in most cases the default is fine. Note
that regardless of min_polynomials and max_absolute_error, the number of
polynomials used will not exceed max_polynomials.

max_polynomials

Maximum allowed number of polynomials to include in the approximations (see
equation below). Meant to provide a safety limit for the amount of memory and
the computation time required. For example, a value of 1000 means that up to
1000 matrices (powers of A) of size N x N may be computed and stored tem-
porarily in memory. Note that if max_polynomials is too low, the requested
accuracy (via max_absolute_error) may not be achieved. That said, for large
trees more memory may be required to store the actual result rather than the in-
termediate polynomials, i.e. for purposes of saving RAM it doesn’t make much
sense to choose max_polynomials much smaller than the length of scalings.

Details

Discrete character evolution Markov models often involve repeated exponentiations of the same
transition matrix along each edge of the tree (i.e. with the scaling T being the edge length). Matrix
exponentiation can become a serious computational bottleneck for larger trees or large matrices (i.e.
spanning multiple discrete states). This function pre-calculates polynomials Ap/p! of the matrix,
and then uses linear combinations of the same polynomials for each requested T:

exp(T ·A) =
P∑

p=0

T pA
p

p!
+ ...

This function thus becomes very efficient when the number of scaling factors is large (e.g. >10,000).
The number of polynomials included is determined based on the specified max_absolute_error,
and based on the largest (by magnitude) scaling factor requested. The function utilizes the balancing
algorithm proposed by James et al (2014, Algorithm 3) and the scaling & squaring method (Moler
and Van Loan, 2003) to improve the conditioning of the matrix prior to exponentiation.

Value

A 3D numeric matrix of size N x N x S, where N is the number of rows & column of the input
matrix A and S is the length of scalings. The [r,c,s]-th element of this matrix is the entry in the
r-th row and c-th column of exp(scalings[s] ·A).

Author(s)

Stilianos Louca

References

R. James, J. Langou and B. R. Lowery (2014). On matrix balancing and eigenvector computation.
arXiv:1401.5766

C. Moler and C. Van Loan (2003). Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review. 45:3-49.

extend_tree_to_height 55

Examples

create a random 5 x 5 matrix
A = get_random_mk_transition_matrix(Nstates=5, rate_model="ER")

calculate exponentials exp(0.1*A) and exp(10*A)
exponentials = exponentiate_matrix(A, scalings=c(0.1,10))

print 1st exponential: exp(0.1*A)
print(exponentials[,,1])

print 2nd exponential: exp(10*A)
print(exponentials[,,2])

extend_tree_to_height Extend a rooted tree up to a specific height.

Description

Given a rooted phylogenetic tree and a specific distance from the root (“new height”), elongate
terminal edges (i.e. leading into tips) as needed so that all tips have a distance from the root equal to
the new height. If a tip already extends beyond the specified new height, its incoming edge remains
unchanged.

Usage

extend_tree_to_height(tree, new_height=NULL)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

new_height Numeric, specifying the phylogenetic distance from the root to which tips are to
be extended. If NULL or negative, then it is set to the maximum distance of any
tip from the root.

Details

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). All tip, edge and node indices remain unchanged. This
function provides a quick-and-dirty way to make a tree ultrametric, or to correct small numerical
inaccuracies in supposed-to-be ultrametric trees.

Value

A list with the following elements:

tree A new rooted tree of class "phylo", representing the extended tree.

max_extension Numeric. The largest elongation added to a terminal edge.

56 extract_deep_frame

Author(s)

Stilianos Louca

See Also

trim_tree_at_height

Examples

generate a random non-ultrametric tree
tree = generate_random_tree(list(birth_rate_intercept=1,death_rate_intercept=0.5),

max_time=1000,
coalescent=FALSE)$tree

print min & max distance from root
span = get_tree_span(tree)
cat(sprintf("Min & max tip height = %g & %g\n",span$min_distance,span$max_distance))

make tree ultrametric by extending terminal edges
extended = extend_tree_to_height(tree)$tree

print new min & max distance from root
span = get_tree_span(extended)
cat(sprintf("Min & max tip height = %g & %g\n",span$min_distance,span$max_distance))

extract_deep_frame Extract tips representing a tree’s deep splits.

Description

Given a rooted phylogenetic tree, extract a subset of tips representing the tree’s deepest splits
(nodes), thus obtaining a rough "frame" of the tree. For example, if Nsplits=1 and the tree is
bifurcating, then two tips will be extracted representing the two clades splitting at the root.

Usage

extract_deep_frame(tree,
Nsplits = 1,
only_tips = FALSE)

Arguments

tree A rooted tree of class "phylo".
Nsplits Strictly positive integer, specifying the maximum number of splits to descend

from the root. A larger value generally implies that more tips will be extracted,
representing a larger number of splits.

only_tips Boolean, specifying whether to only return the subset of extracted tips, rather
than the subtree spanned by those tips. If FALSE, a subtree is returned in addition
to the tips (this comes at a computational cost).

extract_fasttree_constraints 57

Details

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). No guarantee is made as to the precise subset of tips
extracted.

Value

A named list with the following elements:

tips Integer vector with values from 1 to Ntips, listing the indices of the extracted
tips.

subtree A new tree of class "phylo", the subtree spanned by the extracted tips. Only
included if only_tips==FALSE.

Author(s)

Stilianos Louca

See Also

get_pairwise_mrcas, get_tips_for_mrcas

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_factor=0.1),Ntips)$tree

extract a subtree representing the deep splits
subtree = extract_deep_frame(tree, Nsplits=3)$subtree

extract_fasttree_constraints

Extract tree constraints in FastTree alignment format.

Description

Given a rooted phylogenetic tree, extract binary constraints in FastTree alignment format. Every
internal bifurcating node with more than 2 descending tips will constitute an separate constraint.

Usage

extract_fasttree_constraints(tree)

Arguments

tree A rooted tree of class "phylo".

58 extract_tip_neighborhood

Details

This function can be used to define constraints based on a backbone subtree, to be used to generate
a larger tree using FastTree (as of v2.1.11). Only bifurcating nodes with at least 3 descending tips
are used as constraints.

The constraints are returned as a 2D matrix; the actual fasta file with the constraint alignments can
be written easily from this matrix. For more details on FastTree constraints see the original FastTree
documentation.

Value

A list with the following elements:

Nconstraints Integer, specifying the number of constraints extracted.
constraints 2D character matrix of size Ntips x Nconstraints, with values ’0’, ’1’ or ’-’,

specifying which side ("left" or "right") of a constraint (node) each tip is found
on.

constraint2node

Integer vector of size Nconstraints, with values in 1,..,Nnodes, specifying the
original node index used to define each constraint.

Author(s)

Stilianos Louca

Examples

generate a simple rooted tree, with tip names tip.1, tip.2, ...
Ntips = 10
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips=Ntips,
tip_basename="tip.")$tree

extract constraints
constraints = castor::extract_fasttree_constraints(tree)$constraints

print constraints to screen in fasta format
cat(paste(sapply(1:Ntips,

FUN=function(tip) sprintf(">%s\n%s\n",tree$tip.label[tip],
paste(as.character(constraints[tip,]),collapse=""))),collapse=""))

extract_tip_neighborhood

Extract a subtree spanning tips within a certain neighborhood.

Description

Given a rooted tree and a focal tip, extract a subtree comprising various representative nodes and
tips in the vicinity of the focal tip using a heuristic algorithm. This may be used for example to
display closely related taxa from a reference tree.

extract_tip_neighborhood 59

Usage

extract_tip_neighborhood(tree,
focal_tip,
Nbackward,
Nforward,
force_tips = NULL,
include_subtree = TRUE)

Arguments

tree A rooted tree of class "phylo".

focal_tip Either a character, specifying the name of the focal tip, or an integer between 1
and Ntips, specifying the focal tip’s index.

Nbackward Integer >=1, specifying how many splits backward (towards the root) to explore.
A larger value of Nbackward will generally lead to a larger extracted subtree
(i.e., including deeper splits).

Nforward Non-negative integer, specifying how many splits forward (towards the tips) to
explore. A larger value of Nforward will generally lead to a larger extracted
subtree (i.e., including more representative tips from each sister branch).

force_tips Optional integer or character list, specifying indices or names of tips to force-
include in any case.

include_subtree

Logical, whether to actually extract the subtree, rather than just returning the
inferred neighbor tips.

Details

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
The input tree must be rooted at some node for technical reasons (see function root_at_node), but
the choice of the root node does not influence which tips are extracted.

Value

A named list with the following elements:

neighbor_tips Integer vector with values in 1,..,Ntips, specifying which tips were found to be
neighbors of the focal tip.

subtree A new tree of class "phylo", containing a subset of the tips and nodes in the
vicinity of the focal tip. Only returned if include_subtree=TRUE.

new2old_tip Integer vector of length Ntips_extracted (=number of tips in the extracted sub-
tree) with values in 1,..,Ntips, mapping tip indices of the extracted subtree to tip
indices in the original tree. In particular, tree$tip.label[new2old_tip] will
be equal to subtree$tip.label. Only returned if include_subtree=TRUE.

Author(s)

Stilianos Louca

60 extract_tip_radius

See Also

get_subtree_with_tips

Examples

generate a random tree
Ntips = 50
tree = generate_random_tree(list(birth_rate_factor=0.1),

max_tips = Ntips,
tip_basename="tip.")$tree

extract a subtree in the vicinity of a focal tip
subtree = extract_tip_neighborhood(tree,

focal_tip="tip.39",
Nbackward=5,
Nforward=2)$subtree

extract_tip_radius Extract a subtree spanning tips within a certain radius.

Description

Given a rooted tree, a focal tip and a phylogenetic (patristic) distance radius, extract a subtree
comprising all tips located within the provided radius from the focal tip.

Usage

extract_tip_radius(tree,
focal_tip,
radius,
include_subtree = TRUE)

Arguments

tree A rooted tree of class "phylo".

focal_tip Either a character, specifying the name of the focal tip, or an integer between 1
and Ntips, specifying the focal tip’s index.

radius Non-negative numeric, specifying the patristic distance radius to consider around
the focal tip.

include_subtree

Logical, whether to actually extract the subtree, rather than just returning the
inferred within-radius tips.

extract_tip_radius 61

Details

The "patristic distance" between two tips and/or nodes is the shortest cumulative branch length that
must be traversed along the tree in order to reach one tip/node from the other. If tree$edge.length
is missing, then each edge is assumed to be of length 1.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
The input tree must be rooted at some node for technical reasons (see function root_at_node), but
the choice of the root node does not influence which tips are extracted.

Value

A named list with the following elements:

radius_tips Integer vector with values in 1,..,Ntips, specifying which tips were found to be
within the specified radius of the focal tip.

subtree A new tree of class "phylo", containing only the tips within the specified radius
from the focal tip, and the nodes & edges connecting those tips to the root. Only
returned if include_subtree=TRUE.

new2old_tip Integer vector of length Ntips_extracted (=number of tips in the extracted sub-
tree, i.e., within the specified distance radius from the focal tip) with values
in 1,..,Ntips, mapping tip indices of the extracted subtree to tip indices in the
original tree. In particular, tree$tip.label[new2old_tip] will be equal to
subtree$tip.label. Only returned if include_subtree=TRUE.

Author(s)

Stilianos Louca

See Also

get_all_distances_to_tip

Examples

generate a random tree
Ntips = 50
tree = generate_random_tree(list(birth_rate_factor=0.1),

max_tips = Ntips,
tip_basename="tip.")$tree

extract all tips within radius 50 from a focal tip
subtree = extract_tip_radius(tree,

focal_tip="tip.39",
radius=50)$subtree

62 find_farthest_tips

find_farthest_tips Find farthest tip to each tip & node of a tree.

Description

Given a rooted phylogenetic tree and a subset of potential target tips, for each tip and node in the
tree find the farthest target tip. The set of target tips can also be taken as the whole set of tips in the
tree.

Usage

find_farthest_tips(tree,
only_descending_tips = FALSE,
target_tips = NULL,
as_edge_counts = FALSE,
check_input = TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

only_descending_tips

A logical indicating whether the farthest tip to a node or tip should be chosen
from its descending tips only. If FALSE, then the whole set of possible target
tips is considered.

target_tips Optional integer vector or character vector listing the subset of target tips to
restrict the search to. If an integer vector, this should list tip indices (val-
ues in 1,..,Ntips). If a character vector, it should list tip names (in this case
tree$tip.label must exist). If target_tips is NULL, then all tips of the tree
are considered as target tips.

as_edge_counts Logical, specifying whether to count phylogenetic distance in terms of edge
counts instead of cumulative edge lengths. This is the same as setting all edge
lengths to 1.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

Details

If only_descending_tips is TRUE, then only descending target tips are considered when searching
for the farthest target tip of a node/tip. In that case, if a node/tip has no descending target tip,
its farthest target tip is set to NA. If tree$edge.length is missing or NULL, then each edge is
assumed to have length 1. The tree may include multi-furcations as well as mono-furcations (i.e.
nodes with only one child).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

find_farthest_tips 63

Value

A list with the following elements:

farthest_tip_per_tip

An integer vector of size Ntips, listing the farthest target tip for each tip in the
tree. Hence, farthest_tip_per_tip[i] is the index of the farthest tip (from
the set of target tips), with respect to tip i (where i=1,..,Ntips). Some values
may appear multiple times in this vector, if multiple tips share the same farthest
target tip.

farthest_tip_per_node

An integer vector of size Nnodes, listing the index of the farthest target tip
for each node in the tree. Hence, farthest_tip_per_node[i] is the index
of the farthest tip (from the set of target tips), with respect to node i (where
i=1,..,Nnodes). Some values may appear multiple times in this vector, if multi-
ple nodes share the same farthest target tip.

farthest_distance_per_tip

Integer vector of size Ntips. Phylogenetic ("patristic") distance of each tip in the
tree to its farthest target tip. If only_descending_tips was set to TRUE, then
farthest_distance_per_tip[i] will be set to infinity for any tip i that is not
a target tip.

farthest_distance_per_node

Integer vector of size Nnodes. Phylogenetic ("patristic") distance of each node
in the tree to its farthest target tip. If only_descending_tips was set to TRUE,
then farthest_distance_per_node[i] will be set to infinity for any node i
that has no descending target tips.

Author(s)

Stilianos Louca

References

M. G. I. Langille, J. Zaneveld, J. G. Caporaso et al (2013). Predictive functional profiling of micro-
bial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31:814-821.

See Also

find_nearest_tips

Examples

generate a random tree
Ntips = 1000
parameters = list(birth_rate_intercept=1,death_rate_intercept=0.9)
tree = generate_random_tree(parameters,Ntips,coalescent=FALSE)$tree

pick a random set of "target" tips
target_tips = sample.int(n=Ntips, size=5, replace=FALSE)

64 find_farthest_tip_pair

find farthest target tip to each tip & node in the tree
results = find_farthest_tips(tree, target_tips=target_tips)

plot histogram of distances to target tips (across all tips of the tree)
distances = results$farthest_distance_per_tip
hist(distances, breaks=10, xlab="farthest distance", ylab="number of tips", prob=FALSE);

find_farthest_tip_pair

Find the two most distant tips in a tree.

Description

Given a phylogenetic tree, find the two most phylogenetically distant tips (to each other) in the tree.

Usage

find_farthest_tip_pair(tree, as_edge_counts = FALSE)

Arguments

tree A rooted tree of class "phylo". While the tree must be rooted for technical
reasons, the outcome does not actually depend on the rooting.

as_edge_counts Logical, specifying whether to count phylogenetic distance in terms of edge
counts instead of cumulative edge lengths. This is the same as setting all edge
lengths to 1.

Details

If tree$edge.length is missing or NULL, then each edge is assumed to have length 1. The tree
may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value

A named list with the following elements:

tip1 An integer between 1 and Ntips, specifying the first of the two most distant tips.

tip2 An integer between 1 and Ntips, specifying the second of the two most distant
tips.

distance Numeric, specifying the phylogenetic (patristic) distance between the farthest_tip1
and farthest_tip2.

Author(s)

Stilianos Louca

find_nearest_tips 65

See Also

find_nearest_tips, find_farthest_tips

Examples

generate a random tree
Ntips = 1000
parameters = list(birth_rate_intercept=1,death_rate_intercept=0.9)
tree = generate_random_tree(parameters,Ntips,coalescent=FALSE)$tree

find farthest pair of tips
results = find_farthest_tip_pair(tree)

print results
cat(sprintf("Tip %d and %d have distance %g\n",

results$tip1,results$tip2,results$distance))

find_nearest_tips Find nearest tip to each tip & node of a tree.

Description

Given a rooted phylogenetic tree and a subset of potential target tips, for each tip and node in the
tree find the nearest target tip. The set of target tips can also be taken as the whole set of tips in the
tree.

Usage

find_nearest_tips(tree,
only_descending_tips = FALSE,
target_tips = NULL,
as_edge_counts = FALSE,
check_input = TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

only_descending_tips

A logical indicating whether the nearest tip to a node or tip should be chosen
from its descending tips only. If FALSE, then the whole set of possible target
tips is considered.

target_tips Optional integer vector or character vector listing the subset of target tips to
restrict the search to. If an integer vector, this should list tip indices (val-
ues in 1,..,Ntips). If a character vector, it should list tip names (in this case
tree$tip.label must exist). If target_tips is NULL, then all tips of the tree
are considered as target tips.

66 find_nearest_tips

as_edge_counts Logical, specifying whether to count phylogenetic distance in terms of edge
counts instead of cumulative edge lengths. This is the same as setting all edge
lengths to 1.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

Details

Langille et al. (2013) introduced the Nearest Sequenced Taxon Index (NSTI) as a measure for how
well a set of microbial operational taxonomic units (OTUs) is represented by a set of sequenced
genomes of related organisms. Specifically, the NSTI of a microbial community is the average phy-
logenetic distance of any OTU in the community, to the closest relative with an available sequenced
genome ("target tips"). In analogy to the NSTI, the function find_nearest_tips provides a means
to find the nearest tip (from a subset of target tips) to each tip and node in a phylogenetic tree,
together with the corresponding phylogenetic ("patristic") distance.

If only_descending_tips is TRUE, then only descending target tips are considered when searching
for the nearest target tip of a node/tip. In that case, if a node/tip has no descending target tip, its
nearest target tip is set to NA. If tree$edge.length is missing or NULL, then each edge is assumed
to have length 1. The tree may include multi-furcations as well as mono-furcations (i.e. nodes with
only one child).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value

A list with the following elements:

nearest_tip_per_tip

An integer vector of size Ntips, listing the nearest target tip for each tip in the
tree. Hence, nearest_tip_per_tip[i] is the index of the nearest tip (from the
set of target tips), with respect to tip i (where i=1,..,Ntips). Some values may
appear multiple times in this vector, if multiple tips share the same nearest target
tip.

nearest_tip_per_node

An integer vector of size Nnodes, listing the index of the nearest target tip
for each node in the tree. Hence, nearest_tip_per_node[i] is the index
of the nearest tip (from the set of target tips), with respect to node i (where
i=1,..,Nnodes). Some values may appear multiple times in this vector, if multi-
ple nodes share the same nearest target tip.

nearest_distance_per_tip

Numeric vector of size Ntips. Phylogenetic ("patristic") distance of each tip in
the tree to its nearest target tip. If only_descending_tips was set to TRUE, then
nearest_distance_per_tip[i] will be set to infinity for any tip i that is not a
target tip.

nearest_distance_per_node

Numeric vector of size Nnodes. Phylogenetic ("patristic") distance of each node
in the tree to its nearest target tip. If only_descending_tips was set to TRUE,

find_root 67

then nearest_distance_per_node[i] will be set to infinity for any node i that
has no descending target tips.

Author(s)

Stilianos Louca

References

M. G. I. Langille, J. Zaneveld, J. G. Caporaso et al (2013). Predictive functional profiling of micro-
bial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31:814-821.

See Also

find_farthest_tips

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick a random set of "target" tips
target_tips = sample.int(n=Ntips, size=as.integer(Ntips/10), replace=FALSE)

find nearest target tip to each tip & node in the tree
results = find_nearest_tips(tree, target_tips=target_tips)

plot histogram of distances to target tips (across all tips of the tree)
distances = results$nearest_distance_per_tip
hist(distances, breaks=10, xlab="nearest distance", ylab="number of tips", prob=FALSE);

find_root Find the root of a tree.

Description

Find the root of a phylogenetic tree. The root is defined as the unique node with no parent.

Usage

find_root(tree)

Arguments

tree A tree of class "phylo". If the tree is not rooted, the function will return NA.

68 find_root_of_monophyletic_tips

Details

By convention, the root of a "phylo" tree is typically the first node (i.e. with index Ntips+1), however
this is not always guaranteed. This function finds the root of a tree by searching for the node with
no parent. If no such node exists, NA is returned. If multiple such nodes exist, NA is returned. If
any node has more than 1 parent, NA is returned. Hence, this function can be used to test if a tree is
rooted purely based on the edge structure, assuming that the tree is connected (i.e. not a forest).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value

Index of the tree’s root, as listed in tree$edge. An integer ranging from Ntips+1 to Ntips+Nnodes,
where Ntips and Nnodes is the number of tips and nodes in the tree, respectively. By convention,
the root will typically be Ntips+1 but this is not guaranteed.

Author(s)

Stilianos Louca

See Also

find_root_of_monophyletic_tips, root_at_node, root_at_midpoint

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

reroot the tree at the 20-th node
new_root_node = 20
tree = root_at_node(tree, new_root_node, update_indices=FALSE)

find new root index and compare with expectation
cat(sprintf("New root is %d, expected at %d\n",find_root(tree),new_root_node+Ntips))

find_root_of_monophyletic_tips

Find the node or tip that, as root, would make a set of target tips
monophyletic.

Description

Given a tree (rooted or unrooted) and a specific set of target tips, this function finds the tip or
node that, if turned into root, would make a set of target tips a monophyletic group that either
descends from a single child of the new root (if as_MRCA==FALSE) or whose MRCA is the new root
(if as_MRCA==TRUE).

find_root_of_monophyletic_tips 69

Usage

find_root_of_monophyletic_tips(tree, monophyletic_tips, as_MRCA=TRUE, is_rooted=FALSE)

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted.
monophyletic_tips

Character or integer vector, specifying the names or indices, respectively, of the
target tips that should be turned monophyletic. If an integer vector, its elements
must be between 1 and Ntips. If a character vector, its elements must be elements
in tree$tip.label.

as_MRCA Logical, specifying whether the new root should become the MRCA of the target
tips. If FALSE, the new root is chosen such that the MRCA of the target tips is
the child of the new root.

is_rooted Logical, specifying whether the input tree can be assumed to be rooted. If you
are sure that the input tree is rooted, set this to TRUE for computational efficiency,
otherwise to be on the safe side set this to FALSE.

Details

The input tree may include an arbitrary number of incoming and outgoing edges per node (but only
one edge per tip), and the direction of these edges can be arbitrary. Of course, the undirected graph
defined by all edges must still be a valid tree (i.e. a connected acyclic graph). This function does
not change the tree, it just determines which tip or node should be made root for the target tips to
be a monophyletic group. If the target tips do not form a monophyletic group regardless of root
placement (this is typical if the tips are simply chosen randomly), this function returns NA.

The asymptotic time complexity of this function is O(Nedges).

Value

A single integer between 1 and (Ntips+Nnodes), specifying the index of the tip or node that, if made
root, would make the target tips monophyletic. If this was not possible, NA is returned.

Author(s)

Stilianos Louca

See Also

find_root

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

pick a random node and find all descending tips
MRCA = sample.int(tree$Nnode,size=1)

70 fit_and_compare_bm_models

monophyletic_tips = get_subtree_at_node(tree, MRCA)$new2old_tip

change root of tree (change edge directions)
tree = root_at_node(tree, new_root_node=10, update_indices=FALSE)

determine root that would make target tips monophyletic
new_root = find_root_of_monophyletic_tips(tree, monophyletic_tips, as_MRCA=TRUE, is_rooted=FALSE)

compare expectation with result
cat(sprintf("MRCA = %d, new root node=%d\n",MRCA,new_root-Ntips))

fit_and_compare_bm_models

Fit and compare Brownian Motion models for multivariate trait evo-
lution between two data sets.

Description

Given two rooted phylogenetic trees and states of one or more continuous (numeric) traits on the
trees’ tips, fit a multivariate Brownian motion model of correlated evolution to each data set and
compare the fitted models. This function estimates the diffusivity matrix for each data set (i.e.,
each tree/tip-states set) via maximum-likelihood and assesses whether the log-difference between
the two fitted diffusivity matrixes is statistically significant, under the null hypothesis that the two
data sets exhibit the same diffusivity. Optionally, multiple trees can be used as input for each data
set, under the assumption that the trait evolved on each tree according to the same BM model. For
more details on how BM is fitted to each data set see the function fit_bm_model.

Usage

fit_and_compare_bm_models(trees1,
tip_states1,
trees2,
tip_states2,
Nbootstraps = 0,
Nsignificance = 0,
check_input = TRUE,
verbose = FALSE,
verbose_prefix = "")

Arguments

trees1 Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the first data set on which a BM model is to be fitted. Edge lengths are
assumed to represent time intervals or a similarly interpretable phylogenetic dis-
tance.

tip_states1 Numeric state of each trait at each tip in each tree in the first data set. If trees1
is a single tree, then tip_states1 must either be a numeric vector of size Ntips
or a 2D numeric matrix of size Ntips x Ntraits, listing the trait states for each tip

fit_and_compare_bm_models 71

in the tree. If trees1 is a list of Ntrees trees, then tip_states1 must be a list of
length Ntrees, each element of which lists the trait states for the corresponding
tree (as a vector or 2D matrix, similarly to the single-tree case).

trees2 Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the second data set on which a BM model is to be fitted. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

tip_states2 Numeric state of each trait at each tip in each tree in the second data set, similarly
to tip_states1.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for calculat-
ing the confidence intervals of BM diffusivities fitted to each data set. If <=0,
no bootstrapping is performed.

Nsignificance Integer, specifying the number of simulations to perform for assessing the sta-
tistical significance of the log-transformed difference between the diffusivities
fitted to the two data sets, i.e. of | log(D1)− log(D2)|. Set to 0 to not calculate
the statistical significance. See below for additional details.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

verbose Logical, specifying whether to print progress report messages to the screen.
verbose_prefix Character, specifying a prefix to include in front of progress report messages on

each line. Only relevant if verbose==TRUE.

Details

For details on the Brownian Motion model see fit_bm_model and simulate_bm_model. This func-
tion separately fits a single-variate or multi-variate BM model with constant diffusivity (diffusivity
matrix, in the multivariate case) to each data set; internally, this function applies fit_bm_model to
each data set.

If Nsignificance>0, the statistical significance of the log-transformed difference of the two fitted
diffusivity matrixes, | log(D1)− log(D2)|, is assessed, under the null hypothesis that both data sets
were generated by the same common BM model. The diffusivity of this common BM model is
estimated by fitting to both datasets at once, i.e. after merging the two datasets into a single dataset
of trees and tip states (see return variable fit_common below). For each of the Nsignificance
random simulations of the common BM model on the two tree sets, the diffusivities are again
separately fitted on the two simulated sets and the resulting log-difference is compared to the one
of the original data sets. The returned significance is the probability that the diffusivities would
have a log-difference larger than the observed one, if the two data sets had been generated under the
common BM model.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may
include multifurcations (i.e. nodes with more than 2 children) as well as monofurcations (i.e. nodes
with only one child). Note that multifurcations are internally expanded to bifurcations, prior to
model fitting.

Value

A list with the following elements:

72 fit_and_compare_bm_models

success Logical, indicating whether the fitting was successful for both data sets. If
FALSE, then an additional return variable, error, will contain a description of
the error; in that case all other return variables may be undefined.

fit1 A named list containing the fitting results for the first data set, in the same format
as returned by fit_bm_model. In particular, the diffusivity fitted to the first data
set will be stored in fit1$diffusivity.

fit2 A named list containing the fitting results for the second data set, in the same
format as returned by fit_bm_model. In particular, the diffusivity fitted to the
second data set will be stored in fit2$diffusivity.

log_difference The absolute difference between the log-transformed diffusivities, i.e. | log(D1)−
log(D2)|. In the multivariate case, this will be a matrix of size Ntraits x Ntraits.

significance Numeric, statistical significance of the observed log-difference under the null
hypothesis that the two data sets were generated by a common BM model. Only
returned if Nsignificance>0.

fit_common A named list containing the fitting results for the two data sets combined, in the
same format as returned by fit_bm_model. The common diffusivity, fit_common$diffusivity
is used for the random simulations when assessing the statistical significance of
the log-difference of the separately fitted diffusivities. Only returned if Nsignificance>0.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

See Also

simulate_bm_model, fit_bm_model, get_independent_contrasts

Examples

simulate distinct BM models on two random trees
D1 = 1
D2 = 2
tree1 = generate_random_tree(list(birth_rate_factor=1),max_tips=100)$tree
tree2 = generate_random_tree(list(birth_rate_factor=1),max_tips=100)$tree
tip_states1 = simulate_bm_model(tree1, diffusivity = D1)$tip_states
tip_states2 = simulate_bm_model(tree2, diffusivity = D2)$tip_states

fit and compare BM models between the two data sets
fit = fit_and_compare_bm_models(trees1 = tree1,

tip_states1 = tip_states1,
trees2 = tree2,
tip_states2 = tip_states2,
Nbootstraps = 100,
Nsignificance = 100)

fit_and_compare_sbm_const 73

print summary of results
cat(sprintf("Fitted D1 = %g, D2 = %g, significance of log-diff. = %g\n",

fit$fit1$diffusivity, fit$fit2$diffusivity, fit$significance))

fit_and_compare_sbm_const

Fit and compare Spherical Brownian Motion models for diffusive ge-
ographic dispersal between two data sets.

Description

Given two rooted phylogenetic trees and geographic coordinates of the trees’ tips, fit a Spherical
Brownian Motion (SBM) model of diffusive geographic dispersal with constant diffusivity to each
tree and compare the fitted models. This function estimates the diffusivity (D) for each data set
(i.e., each set of trees + tip-coordinates) via maximum-likelihood and assesses whether the log-
difference between the two fitted diffusivities is statistically significant, under the null hypothesis
that the two data sets exhibit the same diffusivity. Optionally, multiple trees can be used as input
for each data set, under the assumption that dispersal occurred according to the same diffusivity in
each tree of that dataset. For more details on how SBM is fitted to each data set see the function
fit_sbm_const.

Usage

fit_and_compare_sbm_const(trees1,
tip_latitudes1,
tip_longitudes1,
trees2,
tip_latitudes2,
tip_longitudes2,
radius,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs = FALSE,
min_MRCA_time = 0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
min_diffusivity = NULL,
max_diffusivity = NULL,
Nbootstraps = 0,
Nsignificance = 0,
SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix = "")

74 fit_and_compare_sbm_const

Arguments

trees1 Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the first data set on which an SBM model is to be fitted. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

tip_latitudes1 Numeric vector listing the latitude (in decimal degrees) of each tip in each tree
in the first data set. If trees1 is a single tree, then tip_latitudes1 must be
a numeric vector of size Ntips, listing the latitudes for each tip in the tree. If
trees1 is a list of Ntrees trees, then tip_latitudes1 must be a list of length
Ntrees, each element of which lists the latitudes for the corresponding tree (as a
vector, similarly to the single-tree case).

tip_longitudes1

Similar to tip_latitudes1, but listing longitudes (in decimal degrees) of each
tip in each tree in the first data set.

trees2 Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the second data set on which an SBM model is to be fitted. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

tip_latitudes2 Numeric vector listing the latitude (in decimal degrees) of each tip in each tree
in the second data set, similarly to tip_latitudes1.

tip_longitudes2

Numeric vector listing the longitude (in decimal degrees) of each tip in each tree
in the second data set, similarly to tip_longitudes1.

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips’ MRCA
has at least this distance from the root. Set min_MRCA_time<=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips’ MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

fit_and_compare_sbm_const 75

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

min_diffusivity

Non-negative numeric, specifying the minimum possible diffusivity. If NULL,
this is automatically chosen.

max_diffusivity

Non-negative numeric, specifying the maximum possible diffusivity. If NULL,
this is automatically chosen.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for calculat-
ing the confidence intervals of SBM diffusivities fitted to each data set. If <=0,
no bootstrapping is performed.

Nsignificance Integer, specifying the number of simulations to perform for assessing the sta-
tistical significance of the linear difference and log-transformed difference be-
tween the diffusivities fitted to the two data sets, i.e. of |D1 − D2| and of
| log(D1) − log(D2)|. Set to 0 to not calculate statistical significances. See
below for additional details.

SBM_PD_functor SBM probability density functor object. Used internally and for debugging pur-
poses. Unless you know what you’re doing, you should keep this NULL.

verbose Logical, specifying whether to print progress report messages to the screen.

verbose_prefix Character, specifying a prefix to include in front of progress report messages on
each line. Only relevant if verbose==TRUE.

Details

For details on the Spherical Brownian Motion model see fit_sbm_const and simulate_sbm. This
function separately fits an SBM model with constant diffusivity to each of two data sets; internally,
this function applies fit_sbm_const to each data set.

If Nsignificance>0, the statistical significance of the linear difference (|D1 − D2|) and log-
transformed difference (| log(D1)−log(D2)|) of the two fitted diffusivities is assessed under the null
hypothesis that both data sets were generated by the same common SBM model. The diffusivity of
this common SBM model is estimated by fitting to both datasets at once, i.e. after merging the two
datasets into a single dataset of trees and tip coordinates (see return variable fit_common below).
For each of the Nsignificance random simulations of the common SBM model on the two tree
sets, the diffusivities are again separately fitted on the two simulated sets and the resulting difference
and log-difference is compared to those of the original data sets. The returned lin_significance
(or log_significance) is the probability that the diffusivities would have a difference (or log-
difference) larger than the observed one, if the two data sets had been generated under the common
SBM model.

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. Trees may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

76 fit_and_compare_sbm_const

success Logical, indicating whether the fitting was successful for both data sets. If
FALSE, then an additional return variable, error, will contain a description of
the error; in that case all other return variables may be undefined.

fit1 A named list containing the fitting results for the first data set, in the same format
as returned by fit_sbm_const. In particular, the diffusivity fitted to the first
data set will be stored in fit1$diffusivity.

fit2 A named list containing the fitting results for the second data set, in the same
format as returned by fit_sbm_const. In particular, the diffusivity fitted to the
second data set will be stored in fit2$diffusivity.

lin_difference The absolute difference between the two diffusivities, i.e. |D1 −D2|.
log_difference The absolute difference between the two log-transformed diffusivities, i.e. | log(D1)−

log(D2)|.
lin_significance

Numeric, statistical significance of the observed lin-difference under the null
hypothesis that the two data sets were generated by a common SBM model.
Only returned if Nsignificance>0.

log_significance

Numeric, statistical significance of the observed log-difference under the null
hypothesis that the two data sets were generated by a common SBM model.
Only returned if Nsignificance>0.

fit_common A named list containing the fitting results for the two data sets combined, in the
same format as returned by fit_sbm_const. The common diffusivity, fit_common$diffusivity
is used for the random simulations when assessing the statistical significance of
the lin-difference and log-difference of the separately fitted diffusivities. Only
returned if Nsignificance>0.

Author(s)

Stilianos Louca

References

S. Louca (in review as of 2020). Phylogeographic estimation and simulation of global diffusive
dispersal. Systematic Biology.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_linear, fit_sbm_parametric

Examples

Not run:
simulate distinct SBM models on two random trees
radius = 6371 # Earth's radius
D1 = 1 # diffusivity on 1st tree
D2 = 3 # diffusivity on 2nd tree
tree1 = generate_random_tree(list(birth_rate_factor=1),max_tips=100)$tree
tree2 = generate_random_tree(list(birth_rate_factor=1),max_tips=100)$tree

fit_bm_model 77

sim1 = simulate_sbm(tree=tree1, radius=radius, diffusivity=D1)
sim2 = simulate_sbm(tree=tree2, radius=radius, diffusivity=D2)
tip_latitudes1 = sim1$tip_latitudes
tip_longitudes1 = sim1$tip_longitudes
tip_latitudes2 = sim2$tip_latitudes
tip_longitudes2 = sim2$tip_longitudes

fit and compare SBM models between the two hypothetical data sets
fit = fit_and_compare_sbm_const(trees1 = tree1,

tip_latitudes1 = tip_latitudes1,
tip_longitudes1 = tip_longitudes1,
trees2 = tree2,
tip_latitudes2 = tip_latitudes2,
tip_longitudes2 = tip_longitudes2,
radius = radius,
Nbootstraps = 0,
Nsignificance = 100)

print summary of results
cat(sprintf("Fitted D1 = %g, D2 = %g, significance of log-diff. = %g\n",

fit$fit1$diffusivity, fit$fit2$diffusivity, fit$log_significance))

End(Not run)

fit_bm_model Fit a Brownian Motion model for multivariate trait evolution.

Description

Given a rooted phylogenetic tree and states of one or more continuous (numeric) traits on the tree’s
tips, fit a multivariate Brownian motion model of correlated co-evolution of these traits. This esti-
mates a single diffusivity matrix, which describes the variance-covariance structure of each trait’s
random walk. The model assumes a fixed diffusivity matrix on the entire tree. Optionally, multiple
trees can be used as input, under the assumption that the trait evolved on each tree according to the
same BM model.

Usage

fit_bm_model(trees,
tip_states,
isotropic = FALSE,
Nbootstraps = 0,
check_input = TRUE)

Arguments

trees Either a single rooted tree or a list of rooted trees, of class "phylo". The root of
each tree is assumed to be the unique node with no incoming edge. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

78 fit_bm_model

tip_states Numeric state of each trait at each tip in each tree. If trees was a single tree,
then tip_states must either be a numeric vector of size Ntips or a 2D numeric
matrix of size Ntips x Ntraits, listing the trait states for each tip in the tree. If
trees is a list of Ntrees trees, then tip_states must be a list of length Ntrees,
each element of which lists the trait states for the corresponding tree (as a vector
or 2D matrix, similarly to the single-tree case).

isotropic Logical, specifying whether diffusion should be assumed to be isotropic (i.e., in-
dependent of the direction). Hence, if isotropic=TRUE, then the diffusivity ma-
trix is forced to be diagonal, with all entries being equal. If isotropic=FALSE,
an arbitrary diffusivity matrix is fitted (i.e., the diffusivity matrix is only con-
strained to be symmetric and non-negative definite).

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for calculat-
ing the confidence intervals. If <=0, no bootstrapping is performed.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

The BM model is defined by the stochastic differential equation

dX = σ · dW

where W is a multidimensional Wiener process with Ndegrees independent components and σ is
a matrix of size Ntraits x Ndegrees, sometimes known as "volatility" or "instantaneous variance".
Alternatively, the same model can be defined as a Fokker-Planck equation for the probability density
ρ:

∂ρ

∂t
=

∑
i,j

Dij
∂2ρ

∂xi∂xj
.

The matrix D is referred to as the diffusivity matrix (or diffusion tensor), and 2D = σ · σT . Note
that in the multidimensional case σ can be obtained fromD by means of a Cholesky decomposition;
in the scalar case we have simply σ =

√
2D.

The function uses phylogenetic independent contrasts (Felsenstein, 1985) to retrieve independent
increments of the multivariate random walk. The diffusivity matrixD is then fitted using maximum-
likelihood on the intrinsic geometry of positive-definite matrices. If multiple trees are provided as
input, then independent contrasts are extracted from all trees and combined into a single set of
independent contrasts (i.e., as if they had been extracted from a single tree).

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may
include multifurcations (i.e. nodes with more than 2 children) as well as monofurcations (i.e. nodes
with only one child). Note that multifurcations are internally expanded to bifurcations, prior to
model fitting.

Value

A list with the following elements:

fit_bm_model 79

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

diffusivity Either a single non-negative number (if tip_states was a vector) or a 2D
quadratic non-negative-definite matrix (if tip_states was a 2D matrix). The
fitted diffusivity matrix of the multivariate Brownian motion model.

loglikelihood The log-likelihood of the fitted model, given the provided tip states data.
AIC The AIC (Akaike Information Criterion) of the fitted model.
BIC The BIC (Bayesian Information Criterion) of the fitted model.
Ncontrasts Integer, number of independent contrasts used to estimate the diffusivity. This

corresponds to the number of independent data points used.
standard_errors

Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the estimated standard errors of the estimated diffusivity, based on parametric
bootstrapping. Only returned if Nbootstraps>0.

CI50lower Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, list-
ing the lower bounds of the 50% confidence interval for the estimated diffusiv-
ity (25-75% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI50upper Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the upper bound of the 50% confidence interval for the estimated diffusivity,
based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the lower bound of the 95% confidence interval for the estimated diffusivity
(2.5-97.5% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI95upper Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the upper bound of the 95% confidence interval for the estimated diffusivity,
based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. If L denotes the loglikelihood of new data generated by the fitted model
(under the same model) andM denotes the expectation of L, then consistency
is the probability that |L −M | will be greater or equal to |X −M |, where X
is the loglikelihood of the original data under the fitted model. Only returned if
Nbootstraps>0. A low consistency (e.g., <0.05) indicates that the fitted model
is a poor description of the data. See Lindholm et al. (2019) for background.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

80 fit_hbds_model_on_grid

See Also

simulate_bm_model, get_independent_contrasts

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1), 10000)$tree

Example 1: Scalar case
- - - - - - - - - - - - - -
simulate scalar continuous trait on the tree
D = 1
tip_states = simulate_bm_model(tree, diffusivity=D)$tip_states

estimate original diffusivity from the generated data
fit = fit_bm_model(tree, tip_states)
cat(sprintf("True D=%g, fitted D=%g\n",D,fit$diffusivity))

Example 2: Multivariate case
- - - - - - - - - - - - - - -
simulate vector-valued continuous trait on the tree
D = get_random_diffusivity_matrix(Ntraits=5)
tip_states = simulate_bm_model(tree, diffusivity=D)$tip_states

estimate original diffusivity matrix from the generated data
fit = fit_bm_model(tree, tip_states)

compare true and fitted diffusivity matrices
cat("True D:\n"); print(D)
cat("Fitted D:\n"); print(fit$diffusivity)

fit_hbds_model_on_grid

Fit a homogenous birth-death-sampling model on a discrete time grid.

Description

Given a timetree (potentially sampled through time and not necessarily ultrametric), fit a homoge-
nous birth-death-sampling (HBDS) model in which speciation, extinction and lineage sampling
occurs at some continuous (Poissonian) rates λ, µ and ψ, which are defined on a fixed grid of dis-
crete time points and assumed to vary polynomially between grid points. Sampled lineages are kept
in the pool of extant lineages at some “retention probability” κ, which may also depend on time. In
addition, this model can include concentrated sampling attempts (CSAs) at a finite set of discrete
time points t1, .., tm. “Homogenous” refers to the assumption that, at any given moment in time, all
lineages exhibit the same speciation/extinction/sampling rates. Every HBDS model is thus defined
based on the values that λ, µ, ψ and κ take over time, as well as the sampling probabilities ρ1, .., ρm

fit_hbds_model_on_grid 81

and retention probabilities κ1, .., κm during the concentrated sampling attempts. This function es-
timates the values of λ, µ, ψ and κ on each grid point, as well as the ρ1, .., ρm and κ1, .., κm, by
maximizing the corresponding likelihood of the timetree. Special cases of this model (when rates
are piecewise constant through time) are sometimes known as “birth-death-skyline plots” in the lit-
erature (Stadler 2013). In epidemiology, these models are often used to describe the phylogenies of
viral strains sampled over the course of the epidemic.

Usage

fit_hbds_model_on_grid(tree,
root_age = NULL,
oldest_age = NULL,
age_grid = NULL,
CSA_ages = NULL,
min_lambda = 0,
max_lambda = +Inf,
min_mu = 0,
max_mu = +Inf,
min_psi = 0,
max_psi = +Inf,
min_kappa = 0,
max_kappa = 1,
min_CSA_probs = 0,
max_CSA_probs = 1,
min_CSA_kappas = 0,
max_CSA_kappas = 1,
guess_lambda = NULL,
guess_mu = NULL,
guess_psi = NULL,
guess_kappa = NULL,
guess_CSA_probs = NULL,
guess_CSA_kappas = NULL,
fixed_lambda = NULL,
fixed_mu = NULL,
fixed_psi = NULL,
fixed_kappa = NULL,
fixed_CSA_probs = NULL,
fixed_CSA_kappas = NULL,
fixed_age_grid = NULL,
const_lambda = FALSE,
const_mu = FALSE,
const_psi = FALSE,
const_kappa = FALSE,
const_CSA_probs = FALSE,
const_CSA_kappas = FALSE,
splines_degree = 1,
condition = "auto",
ODE_relative_dt = 0.001,
ODE_relative_dy = 1e-3,

82 fit_hbds_model_on_grid

CSA_age_epsilon = NULL,
Ntrials = 1,
max_start_attempts = 1,
Nthreads = 1,
max_model_runtime = NULL,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
fit_control = list(),
focal_param_values = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

tree A timetree of class "phylo", representing the time-calibrated reconstructed phy-
logeny of a set of extant and/or extinct species. Tips of the tree are interpreted
as terminally sampled lineages, while monofurcating nodes are interpreted as
non-terminally sampled lineages, i.e., lineages sampled at some past time point
and with subsequently sampled descendants.

root_age Positive numeric, specifying the age of the tree’s root. Can be used to define a
time offset, e.g. if the last tip was not actually sampled at the present. If NULL,
this will be calculated from the tree and it will be assumed that the last tip was
sampled at the present.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is interpreted as the stem age. If oldest_age is less
than the root age, the tree is split into multiple subtrees at that age by treating
every edge crossing that age as the stem of a subtree, and each subtree is consid-
ered an independent realization of the HBDS model stemming at that age. This
can be useful for avoiding points in the tree close to the root, where estimation
uncertainty is generally higher. If oldest_age==NULL, it is automatically set to
the root age.

age_grid Numeric vector, listing ages in ascending order, on which λ, µ, ψ and κ are fitted
and allowed to vary independently. This grid must cover at least the age range
from the present (age 0) to oldest_age. If NULL or of length <=1 (regardless of
value), then λ, µ, ψ and κ are assumed to be time-independent.

CSA_ages Optional numeric vector, listing ages (in ascending order) at which concentrated
sampling attempts (CSAs) occurred. If NULL, it is assumed that no concentrated
sampling attempts took place and that all tips were sampled according to the
continuous sampling rate psi.

min_lambda Numeric vector of length Ngrid (=max(1,length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted speciation rate λ at each point in
the age grid. If a single numeric, the same lower bound applies at all ages.

max_lambda Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted speciation rate λ at each point in the age grid. If a single numeric,
the same upper bound applies at all ages. Use +Inf to omit upper bounds.

fit_hbds_model_on_grid 83

min_mu Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted extinction rate µ at each point in the age grid. If a single numeric,
the same lower bound applies at all ages.

max_mu Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted extinction rate µ at each point in the age grid. If a single numeric,
the same upper bound applies at all ages. Use +Inf to omit upper bounds.

min_psi Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted Poissonian sampling rate ψ at each point in the age grid. If a single
numeric, the same lower bound applies at all ages.

max_psi Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted Poissonian sampling rate ψ at each point in the age grid. If a single
numeric, the same upper bound applies at all ages. Use +Inf to omit upper
bounds.

min_kappa Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted retention probability κ at each point in the age grid. If a single
numeric, the same lower bound applies at all ages.

max_kappa Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted retention probability κ at each point in the age grid. If a single
numeric, the same upper bound applies at all ages. Use +Inf to omit upper
bounds.

min_CSA_probs Numeric vector of length NCSA (=length(CSA_ages)), or a single numeric,
specifying lower bounds for the fitted sampling probabilities ρ1,..,ρm at each
concentrated sampling attempt. If a single numeric, the same lower bound ap-
plies at all CSAs. Note that, since ρ1, ρ2, ... are probabilities, min_CSA_probs
should not be negative.

max_CSA_probs Numeric vector of length NCSA, or a single numeric, specifying upper bounds
for the fitted sampling probabilities ρ1, ρ2, ... at each concentrated sampling
attempt. If a single numeric, the same upper bound applies at all CSAs. Note
that, since ρ1, ρ2, ... are probabilities, max_CSA_probs should not be greater
than 1.

min_CSA_kappas Numeric vector of length NCSA, or a single numeric, specifying lower bounds
for the fitted retention probabilities κ1, κ2, ... at each concentrated sampling
attempt. If a single numeric, the same lower bound applies at all CSAs. Note
that, since κ1, κ2, ... are probabilities, min_CSA_kappas should not be negative.

max_CSA_kappas Numeric vector of length NCSA, or a single numeric, specifying upper bounds
for the fitted sampling probabilities κ1, κ2, ... at each concentrated sampling
attempt. If a single numeric, the same upper bound applies at all CSAs. Note
that, since κ1, κ2, .. are probabilities, max_CSA_kappas should not be greater
than 1.

guess_lambda Initial guess for λ at each age-grid point. Either NULL (an initial guess will be
computed automatically), or a single numeric (guessing the same λ at all ages) or
a numeric vector of size Ngrid specifying a separate guess for λ at each age-grid
point. To omit an initial guess for some but not all age-grid points, set their guess
values to NA. Guess values are ignored for non-fitted (i.e., fixed) parameters.

guess_mu Initial guess for µ at each age-grid point. Either NULL (an initial guess will
be computed automatically), or a single numeric (guessing the same µ at all

84 fit_hbds_model_on_grid

ages) or a numeric vector of size Ngrid specifying a separate guess for µ at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

guess_psi Initial guess for ψ at each age-grid point. Either NULL (an initial guess will
be computed automatically), or a single numeric (guessing the same ψ at all
ages) or a numeric vector of size Ngrid specifying a separate guess for ψ at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

guess_kappa Initial guess for κ at each age-grid point. Either NULL (an initial guess will be
computed automatically), or a single numeric (guessing the same κ at all ages) or
a numeric vector of size Ngrid specifying a separate guess for κ at each age-grid
point. To omit an initial guess for some but not all age-grid points, set their guess
values to NA. Guess values are ignored for non-fitted (i.e., fixed) parameters.

guess_CSA_probs

Initial guess for the ρ1, ρ2, ... at each concentrated sampling attempt. Either
NULL (an initial guess will be computed automatically), or a single numeric
(guessing the same value at every CSA) or a numeric vector of size NCSA spec-
ifying a separate guess at each CSA. To omit an initial guess for some but not all
CSAs, set their guess values to NA. Guess values are ignored for non-fitted (i.e.,
fixed) parameters.

guess_CSA_kappas

Initial guess for the κ1, κ2, ... at each concentrated sampling attempt. Either
NULL (an initial guess will be computed automatically), or a single numeric
(guessing the same value at every CSA) or a numeric vector of size NCSA spec-
ifying a separate guess at each CSA. To omit an initial guess for some but not all
CSAs, set their guess values to NA. Guess values are ignored for non-fitted (i.e.,
fixed) parameters.

fixed_lambda Optional fixed (i.e. non-fitted) λ values on one or more age-grid points. Either
NULL (λ is not fixed anywhere), or a single numeric (λ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
λ fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_lambda must be finite numbers).

fixed_mu Optional fixed (i.e. non-fitted) µ values on one or more age-grid points. Either
NULL (µ is not fixed anywhere), or a single numeric (µ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
µ fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_mu must be finite numbers).

fixed_psi Optional fixed (i.e. non-fitted) ψ values on one or more age-grid points. Either
NULL (ψ is not fixed anywhere), or a single numeric (ψ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
ψ fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_psi must be finite numbers).

fit_hbds_model_on_grid 85

fixed_kappa Optional fixed (i.e. non-fitted) κ values on one or more age-grid points. Either
NULL (κ is not fixed anywhere), or a single numeric (κ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
κ fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_kappa must be finite numbers).

fixed_CSA_probs

Optional fixed (i.e. non-fitted) ρ1, ρ2, ... values on one or more age-grid points.
Either NULL (none of the ρ1, ρ2,... are fixed), or a single numeric (ρ1, ρ2,... are
fixed to the same value at all CSAs) or a numeric vector of size NCSA (one or
more of the ρ1, ρ2, ... are fixed, use NA for non-fixed values).

fixed_CSA_kappas

Optional fixed (i.e. non-fitted) κ1, κ2, ... values on one or more age-grid points.
Either NULL (none of the κ1, κ2,... are fixed), or a single numeric (κ1, κ2,... are
fixed to the same value at all CSAs) or a numeric vector of size NCSA (one or
more of the κ1, κ2, ... are fixed, use NA for non-fixed values).

fixed_age_grid Optional numeric vector, specifying an age grid on which fixed_lambda, fixed_mu,
fixed_psi and fixed_kappa (whichever is provided) are defined instead of on
the age_grid. If fixed_age_grid is provided, then each of fixed_lambda,
fixed_mu, fixed_psi and fixed_kappa must be defined (i.e. have a finite non-
negative value) on every point in fixed_age_grid. Entries in fixed_age_grid
must be in ascending order and must cover at least the ages 0 to oldest_age.
This option may be useful if you want to fit some parameters on a coarse grid,
but want to specify (fix) some other parameters on a much finer grid. Also note
that if fixed_age_grid is used, all parameters lambda, mu, psi and kappa are
internally re-interpolated onto fixed_age_grid when evaluating the likelihood;
hence, in general fixed_age_grid should be much finer than age_grid. In
most situations you would probably want to keep the default fixed_age_grid=NULL.

const_lambda Logical, specifying whether λ should be assumed constant across the grid, i.e.
time-independent. Setting const_lambda=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If λ is fixed on some grid points (i.e. via
fixed_lambda), then only the non-fixed lambdas are assumed to be identical to
one another.

const_mu Logical, specifying whether µ should be assumed constant across the grid, i.e.
time-independent. Setting const_mu=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If µ is fixed on some grid points (i.e. via
fixed_mu), then only the non-fixed mus are assumed to be identical to one an-
other.

const_psi Logical, specifying whether ψ should be assumed constant across the grid, i.e.
time-independent. Setting const_psi=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If ψ is fixed on some grid points (i.e. via
fixed_psi), then only the non-fixed psis are assumed to be identical to one
another.

const_kappa Logical, specifying whether κ should be assumed constant across the grid, i.e.
time-independent. Setting const_kappa=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If κ is fixed on some grid points (i.e. via

86 fit_hbds_model_on_grid

fixed_kappa), then only the non-fixed kappas are assumed to be identical to
one another.

const_CSA_probs

Logical, specifying whether the ρ1, ρ2, ... should be the same across all CSAs.
Setting const_CSA_probs=TRUE reduces the number of free (i.e., independently
fitted) parameters. If some of the ρ1, ρ2, ... are fixed (i.e. via fixed_CSA_probs),
then only the non-fixed CSA_probs are assumed to be identical to one another.

const_CSA_kappas

Logical, specifying whether the κ1, κ2, ... should be the same across all CSAs.
Setting const_CSA_kappas=TRUE reduces the number of free (i.e., indepen-
dently fitted) parameters. If some of the κ1, κ2, ... are fixed (i.e. via fixed_CSA_kappas),
then only the non-fixed CSA_kappas are assumed to be identical to one another.

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of λ, µ, ψ
and κ between age-grid points. If 0, then λ, µ, ψ and κ are considered piecewise
constant, if 1 they are considered piecewise linear, if 2 or 3 they are considered
to be splines of degree 2 or 3, respectively. The splines_degree influences
the analytical properties of the curve, e.g. splines_degree==1 guarantees a
continuous curve, splines_degree==2 guarantees a continuous curve and con-
tinuous derivative, and so on. A degree of 0 is generally not recommended. The
case splines_degree=0 is also known as “skyline” model.

condition Character, either "crown", "stem", "none" or "auto", specifying on what to con-
dition the likelihood. If "crown", the likelihood is conditioned on the survival
of the two daughter lineages branching off at the root. If "stem", the likelihood
is conditioned on the survival of the stem lineage. Note that "crown" really
only makes sense when oldest_age is equal to the root age, while "stem" is
recommended if oldest_age differs from the root age. "none" is generally not
recommended. If "auto", the condition is chosen according to the above recom-
mendations.

ODE_relative_dt

Positive unitless number, specifying the default relative time step for the ordi-
nary differential equation solvers. Typical values are 0.01-0.001.

ODE_relative_dy

Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-
ues are 1e-2 to 1e-5. A smaller ODE_relative_dy increases interpolation ac-
curacy, but also increases memory requirements and adds runtime (scaling with
the tree’s age span, not with Ntips).

CSA_age_epsilon

Non-negative numeric, in units of time, specfying the age radius around a con-
centrated sampling attempt, within which to assume that sampling events were
due to that concentrated sampling attempt. If NULL, this is chosen automatically
based on the anticipated scale of numerical rounding errors. Only relevant if
concentrated sampling attempts are included.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

fit_hbds_model_on_grid 87

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated parameters. Set to 0
for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

focal_param_values

Optional list, listing combinations of parameter values of particular interest and
for which the log-likelihoods should be returned. Every element of this list
should itself be a named list, containing the elements lambda, mu, psi and kappa
(each being a numeric vector of size NG) as well as the elements CSA_probs and
CSA_kappas (each being a numeric vector of size NCSA). This may be used e.g.
for diagnostic purposes, e.g. to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

Warning: In the absence of concentrated sampling attempts (NCSA=0), and without well-justified
a priori constraints on either λ, µ, ψ and/or κ, it is generally impossible to reliably estimate λ, µ, ψ
and κ from timetrees alone. This routine (and any other software that claims to estimate λ, µ, ψ and
κ solely from timetrees) should thus be treated with great suspicion. Many epidemiological models

88 fit_hbds_model_on_grid

make the (often reasonable assumption) that κ = 0; note that even in this case, one generally can’t
co-estimate λ, µ and ψ from the timetree alone.

It is advised to provide as much information to the function fit_hbds_model_on_grid as pos-
sible, including reasonable lower and upper bounds (min_lambda, max_lambda, min_mu, max_mu,
min_psi, max_psi, min_kappa, max_kappa) and reasonable parameter guesses. It is also important
that the age_grid is sufficiently fine to capture the expected major variations of λ, µ, ψ and κ over
time, but keep in mind the serious risk of overfitting when age_grid is too fine and/or the tree is too
small. The age_grid does not need to be uniform, i.e., you may want to use a finer grid in regions
where there’s more data (tips) available. If strong lower and upper bounds are not available and
fitting takes a long time to run, consider using the option max_model_runtime to limit how much
time the fitting allows for each evaluation of the likelihood.

Note that here "age" refers to time before present, i.e., age increases from tips to root and age 0 is
present-day. CSAs are enumerated in the order of increasing age, i.e., from the present to the past.
Similarly, the age grid specifies time points from the present towards the past.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.
guess_loglikelihood

The log-likelihood of the guessed model for the given timetree.

param_fitted Named list, specifying the fixed and fitted model parameters. This list will con-
tain the elements lambda, mu, psi and kappa (each being a numeric vector of
size NG, listing λ,µ, ψ and κ at each age-grid point) as well as the elements
CSA_probs and CSA_kappas (each being a numeric vector of size NCSA).

param_guess Named list, specifying the guessed model parameters. This list will contain the
elements lambda, mu, psi and kappa (each being a numeric vector of size NG)
as well as the elements CSA_probs and CSA_kappas (each being a numeric vec-
tor of size NCSA). Between grid points λ should be interpreted as a piecewise
polynomial function (natural spline) of degree splines_degree; to evaluate this
function at arbitrary ages use the castor routine evaluate_spline. The same
also applies to µ, ψ and κ.

age_grid Numeric vector of size NG, the age-grid on which λ, µ, ψ and κ are defined.
This will be the same as the provided age_grid, unless the latter was NULL or
of length <=1.

CSA_ages Numeric vector of size NCSA, ting listhe ages at which concentrated sampling
attempts occurred. This is the same as provided to the function.

fit_hbds_model_on_grid 89

NFP Integer, number of free (i.e., independently) fitted parameters. If none of the λ,
µ and ρ were fixed, and const_lambda=FALSE and const_mu=FALSE, then NFP
will be equal to 2*Ngrid+1.

Ndata Integer, the number of data points (sampling and branching events) used for
fitting.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

standard_errors

Named list specifying the standard errors of the parameters, based on parametric
bootstrapping. This list will contain the elements lambda, mu, psi and kappa
(each being a numeric vector of size NG) as well as the elements CSA_probs
and CSA_kappas (each being a numeric vector of size NCSA). Only included if
Nbootstraps>0. Note that the standard errors of non-fitted (i.e., fixed) parame-
ters will be zero.

CI50lower Named list specifying the lower end of the 50% confidence interval (i.e. the 25%
quantile) for each parameter, based on parametric bootstrapping. This list will
contain the elements lambda, mu, psi and kappa (each being a numeric vector
of size NG) as well as the elements CSA_probs and CSA_kappas (each being a
numeric vector of size NCSA). Only included if Nbootstraps>0.

CI50upper Similar to CI50lower, but listing the upper end of the 50% confidence inter-
val (i.e. the 75% quantile) for each parameter. For example, the confidence
interval for λ at age age_grid[1] will be between CI50lower$lambda[1] and
CI50upper$lambda[1]. Only included if Nbootstraps>0.

CI95lower Similar to CI50lower, but listing the lower end of the 95% confidence interval
(i.e. the 2.5% quantile) for each parameter. Only included if Nbootstraps>0.

CI95upper Similar to CI50upper, but listing the upper end of the 95% confidence interval
(i.e. the 97.5% quantile) for each parameter. Only included if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. If L denotes the loglikelihood of new data generated by the fitted model
(under the same model) andM denotes the expectation of L, then consistency
is the probability that |L −M | will be greater or equal to |X −M |, where X
is the loglikelihood of the original data under the fitted model. Only returned if

90 fit_hbds_model_on_grid

Nbootstraps>0. A low consistency (e.g., <0.05) indicates that the fitted model
is a poor description of the data. See Lindholm et al. (2019) for background.

Author(s)

Stilianos Louca

References

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

See Also

simulate_deterministic_hbds, fit_hbds_model_parametric

Examples

Not run:
define lambda & mu & psi as functions of time
Assuming an exponentially varying lambda & mu, and a constant psi
time2lambda = function(times){ 2*exp(0.1*times) }
time2mu = function(times){ 0.1*exp(0.09*times) }
time2psi = function(times){ rep(0.2, times=length(times)) }

define concentrated sampling attempts
CSA_times = c(3,4)
CSA_probs = c(0.1, 0.2)

generate random tree based on lambda, mu & psi
assume that all sampled lineages are removed from the pool (i.e. kappa=0)
time_grid = seq(from=0, to=100, by=0.01)
simul = generate_tree_hbds(max_time = 5,

time_grid = time_grid,
lambda = time2lambda(time_grid),
mu = time2mu(time_grid),
psi = time2psi(time_grid),
kappa = 0,
CSA_times = CSA_times,
CSA_probs = CSA_probs,
CSA_kappas = 0)

tree = simul$tree
root_age = simul$root_age
cat(sprintf("Tree has %d tips\n",length(tree$tip.label)))

Define an age grid on which lambda_function & mu_function shall be fitted
fit_age_grid = seq(from=0,to=root_age,length.out=3)

Fit an HBDS model on a grid
Assume that psi is known and that sampled lineages are removed from the pool

fit_hbds_model_on_grid 91

Hence, we only fit lambda & mu & CSA_probs
cat(sprintf("Fitting model to tree..\n"))
fit = fit_hbds_model_on_grid(tree,

root_age = root_age,
age_grid = fit_age_grid,
CSA_ages = rev(simul$final_time - CSA_times),

fixed_psi = time2psi(simul$final_time-fit_age_grid),
fixed_kappa = 0,
fixed_CSA_kappas = 0,
Ntrials = 4,
Nthreads = 4,
Nbootstraps = 0,
verbose = TRUE,
verbose_prefix = " ")

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
compare fitted lambda to true lambda
plot(x=fit$age_grid,

y=fit$param_fitted$lambda,
type='l',
col='#000000',
xlim=c(root_age,0),
xlab='age',
ylab='lambda')

lines(x=simul$final_time-time_grid,
y=time2lambda(time_grid),
type='l',
col='#0000AA')

}

compare true and fitted model in terms of their LTTs
LTT = castor::count_lineages_through_time(tree, Ntimes=100, include_slopes=TRUE)
LTT$ages = root_age - LTT$times

cat(sprintf("Simulating deterministic HBDS (true model)..\n"))
age0 = 0.5 # reference age at which to equate LTTs
LTT0 = approx(x=LTT$ages, y=LTT$lineages, xout=age0)$y # tree LTT at age0
fsim = simulate_deterministic_hbds(age_grid = fit$age_grid,

lambda = fit$param_fitted$lambda,
mu = fit$param_fitted$mu,
psi = fit$param_fitted$psi,
kappa = fit$param_fitted$kappa,
CSA_ages = fit$CSA_ages,
CSA_probs = fit$param_fitted$CSA_probs,
CSA_kappas = fit$param_fitted$CSA_kappas,
requested_ages = seq(0,root_age,length.out=200),
age0 = age0,
LTT0 = LTT0,
splines_degree = 1)

if(!fsim$success){
cat(sprintf("ERROR: Could not simulate fitted model: %s\n",fsim$error))

92 fit_hbds_model_parametric

stop()
}
plot(x=LTT$ages, y=LTT$lineages, type='l', col='#0000AA', lwd=2, xlim=c(root_age,0))
lines(x=fsim$ages, y=fsim$LTT, type='l', col='#000000', lwd=2)

End(Not run)

fit_hbds_model_parametric

Fit a parametric homogenous birth-death-sampling model to a time-
tree.

Description

Given a timetree (potentially sampled through time and not necessarily ultrametric), fit a homoge-
nous birth-death-sampling (HBDS) model in which speciation, extinction and lineage sampling
occurs at some continuous (Poissonian) rates λ, µ and ψ, which are given as parameterized func-
tions of time before present. Sampled lineages are kept in the pool of extant lineages at some
“retention probability” κ, which may also depend on time. In addition, this model can include con-
centrated sampling attempts (CSAs) at a finite set of discrete time points t1, .., tm. “Homogenous”
refers to the assumption that, at any given moment in time, all lineages exhibit the same specia-
tion/extinction/sampling rates. Every HBDS model is thus defined based on the values that λ, µ,
ψ and κ take over time, as well as the sampling probabilities ρ1, .., ρm and retention probabilities
κ1, .., κm during the concentrated sampling attempts; each of these parameters, in turn, is assumed
to be determined by a finite set of parameters. This function estimates these parameters by max-
imizing the corresponding likelihood of the timetree. Special cases of this model are sometimes
known as “birth-death-skyline plots” in the literature (Stadler 2013). In epidemiology, these models
are often used to describe the phylogenies of viral strains sampled over the course of the epidemic.

Usage

fit_hbds_model_parametric(tree,
param_values,
param_guess = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
root_age = NULL,
oldest_age = NULL,
lambda = 0,
mu = 0,
psi = 0,
kappa = 0,
age_grid = NULL,
CSA_ages = NULL,
CSA_probs = NULL,
CSA_kappas = 0,

fit_hbds_model_parametric 93

condition = "auto",
ODE_relative_dt = 0.001,
ODE_relative_dy = 1e-3,
CSA_age_epsilon = NULL,
Ntrials = 1,
max_start_attempts = 1,
Nthreads = 1,
max_model_runtime = NULL,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
fit_control = list(),
focal_param_values = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

tree A timetree of class "phylo", representing the time-calibrated reconstructed phy-
logeny of a set of extant and/or extinct species. Tips of the tree are interpreted
as terminally sampled lineages, while monofurcating nodes are interpreted as
non-terminally sampled lineages, i.e., lineages sampled at some past time point
and with subsequently sampled descendants.

param_values Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if the functions lambda, mu, psi, kappa, CSA_psi and CSA_kappa
query parameter values by name (as opposed to numeric index).

param_guess Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

param_min Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

param_max Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

param_scale Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

94 fit_hbds_model_parametric

root_age Positive numeric, specifying the age of the tree’s root. Can be used to define a
time offset, e.g. if the last tip was not actually sampled at the present. If NULL,
this will be calculated from the tree and it will be assumed that the last tip was
sampled at the present.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is interpreted as the stem age. If oldest_age is less
than the root age, the tree is split into multiple subtrees at that age by treating
every edge crossing that age as the stem of a subtree, and each subtree is consid-
ered an independent realization of the HBDS model stemming at that age. This
can be useful for avoiding points in the tree close to the root, where estimation
uncertainty is generally higher. If oldest_age==NULL, it is automatically set to
the root age.

lambda Function specifying the speciation rate at any given age (time before present)
and for any given parameter values. This function must take exactly two argu-
ments, the 1st one being a numeric vector (one or more ages) and the 2nd one
being a numeric vector of size NP (parameter values), and return a numeric vec-
tor of the same size as the 1st argument with strictly positive entries. Can also
be a single numeric (i.e., lambda is fixed).

mu Function specifying the extinction rate at any given age and for any given param-
eter values. This function must take exactly two arguments, the 1st one being a
numeric vector (one or more ages) and the 2nd one being a numeric vector of
size NP (parameter values), and return a numeric vector of the same size as the
1st argument with non-negative entries. Can also be a single numeric (i.e., mu
is fixed).

psi Function specifying the continuous (Poissonian) lineage sampling rate at any
given age and for any given parameter values. This function must take exactly
two arguments, the 1st one being a numeric vector (one or more ages) and the
2nd one being a numeric vector of size NP (parameter values), and return a
numeric vector of the same size as the 1st argument with non-negative entries.
Can also be a single numeric (i.e., psi is fixed).

kappa Function specifying the retention probability for continuously sampled lineages,
at any given age and for any given parameter values. This function must take
exactly two arguments, the 1st one being a numeric vector (one or more ages)
and the 2nd one being a numeric vector of size NP (parameter values), and return
a numeric vector of the same size as the 1st argument with non-negative entries.
The retention probability is the probability of a sampled lineage remaining in
the pool of extant lineages. Can also be a single numeric (i.e., kappa is fixed).

age_grid Numeric vector, specifying ages at which the lambda, mu, psi and kappa func-
tionals should be evaluated. This age grid must be fine enough to capture the
possible variation in λ, µ, ψ and κ over time, within the permissible parameter
range. Listed ages must be strictly increasing, and must cover at least the full
considered age interval (from 0 to oldest_age). Can also be NULL or a vector
of size 1, in which case λ, µ, ψ and κ are assumed to be time-independent.

CSA_ages Optional numeric vector, listing ages (in ascending order) at which concentrated
sampling attempts occurred. If NULL, it is assumed that no concentrated sam-

fit_hbds_model_parametric 95

pling attempts took place and that all tips were sampled according to the contin-
uous sampling rate psi.

CSA_probs Function specifying the sampling probabilities during the various concentrated
sampling attempts, depending on parameter values. Hence, for any choice of pa-
rameters, CSA_probs must return a numeric vector of the same size as CSA_ages.
Can also be a single numeric (i.e., concentrated sampling probability is fixed).

CSA_kappas Function specifying the retention probabilities during the various concentrated
sampling attempts, depending on parameter values. Hence, for any choice of pa-
rameters, CSA_kappas must return a numeric vector of the same size as CSA_ages.
Can also be a single numeric (i.e., retention probability during concentrated sam-
plings is fixed).

condition Character, either "crown", "stem", "none" or "auto", specifying on what to con-
dition the likelihood. If "crown", the likelihood is conditioned on the survival
of the two daughter lineages branching off at the root. If "stem", the likelihood
is conditioned on the survival of the stem lineage. Note that "crown" really
only makes sense when oldest_age is equal to the root age, while "stem" is
recommended if oldest_age differs from the root age. "none" is usually not
recommended. If "auto", the condition is chosen according to the above recom-
mendations.

ODE_relative_dt

Positive unitless number, specifying the default relative time step for the ordi-
nary differential equation solvers. Typical values are 0.01-0.001.

ODE_relative_dy

Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-
ues are 1e-2 to 1e-5. A smaller ODE_relative_dy increases interpolation ac-
curacy, but also increases memory requirements and adds runtime (scaling with
the tree’s age span, not with Ntips).

CSA_age_epsilon

Non-negative numeric, in units of time, specfying the age radius around a con-
centrated sampling attempt, within which to assume that sampling events were
due to that concentrated sampling attempt. If NULL, this is chosen automatically
based on the anticipated scale of numerical rounding errors. Only relevant if
concentrated sampling attempts are included.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly chosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

96 fit_hbds_model_parametric

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to 0 for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

focal_param_values

Optional numeric matrix having NP columns and an arbitrary number of rows,
listing combinations of parameter values of particular interest and for which the
log-likelihoods should be returned. This may be used for diagnostic purposes,
e.g., to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., pn ∈ R) that determine
the speciation rate λ, the extinction rate µ, the sampling rate ψ, the retention rate κ, the concen-
trated sampling probabilities ρ1, .., ρm and the concentrated retention probabilities κ1, .., κm, by
maximizing the likelihood of observing a given timetree under the HBDS model. Note that the ages
(times before present) of the concentrated sampling attempts are assumed to be known and are not
fitted.

It is generally advised to provide as much information to the function fit_hbds_model_parametric
as possible, including reasonable lower and upper bounds (param_min and param_max), a reason-
able parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of λ, µ, ψ and κ over time, since the likelihood
is calculated under the assumption that these functions vary linearly between grid points.

Note that in this function age always refers to time before present, i.e., present day age is 0 and
age increases from tips to root. The functions lambda, mu, psi and kappa should be functions of

fit_hbds_model_parametric 97

age, not forward time. Similarly, concentrated sampling attempts (CSAs) are enumerated in order
of increasing age, i.e., starting with the youngest CSA and moving towards older CSAs.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description
of the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model pa-
rameters in their standard order. If param_names was provided, elements in
param_guess will be named.

guess_loglikelihood

The loglikelihood of the data for the initial parameter guess (param_guess).
focal_loglikelihoods

A numeric vector of the same size as nrow(focal_param_values), listing log-
likelihoods for each of the focal parameter conbinations listed in focal_loglikelihoods.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

Ndata Number of data points used for fitting, i.e., the number of sampling and branch-
ing events that occurred between ages 0 and oldest_age.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (Ndata), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

98 fit_hbds_model_parametric

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors

Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI50upper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted model
(Lindholm et al. 2019). See the documentation of fit_hbds_model_on_grid
for an explanation.

Author(s)

Stilianos Louca

References

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

fit_hbds_model_parametric 99

See Also

generate_tree_hbds, simulate_deterministic_hbds

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu and constant psi
assume that all sampled lineages are removed from the pool (i.e. kappa=0)
time_grid = seq(from=0, to=100, by=0.01)
root_age = 5
tree = generate_tree_hbds(max_time = root_age,

time_grid = time_grid,
lambda = 2*exp(0.1*time_grid),
mu = 0.1*exp(0.09*time_grid),
psi = 0.1,
kappa = 0)$tree

cat(sprintf("Tree has %d tips\n",length(tree$tip.label)))

Define a parametric HBDS model, with exponentially varying lambda & mu
Assume that the sampling rate is constant but unknown
The model thus has 5 parameters: lambda0, mu0, alpha, beta, psi
lambda_function = function(ages,params){

return(params['lambda0']*exp(-params['alpha']*ages));
}
mu_function = function(ages,params){

return(params['mu0']*exp(-params['beta']*ages));
}
psi_function = function(ages,params){

return(rep(params['psi'],length(ages)))
}

Define an age grid on which lambda_function & mu_function shall be evaluated
Should be sufficiently fine to capture the variation in lambda & mu
age_grid = seq(from=0,to=root_age,by=0.01)

Perform fitting
cat(sprintf("Fitting model to tree..\n"))
fit = fit_hbds_model_parametric(tree,

root_age = root_age,
param_values = c(lambda0=NA, mu0=NA, alpha=NA, beta=NA, psi=NA),
param_guess = c(1,1,0,0,0.5),
param_min = c(0,0,-1,-1,0),
param_max = c(10,10,1,1,10),
param_scale = 1, # all params are in the order of 1
lambda = lambda_function,
mu = mu_function,
psi = psi_function,
kappa = 0,
age_grid = age_grid,
Ntrials = 4, # perform 4 fitting trials
Nthreads = 2) # use 2 CPUs

100 fit_hbd_model_on_grid

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))
print fitted parameters
print(fit$param_fitted)

}

End(Not run)

fit_hbd_model_on_grid Fit a homogenous birth-death model on a discrete time grid.

Description

Given an ultrametric timetree, fit a homogenous birth-death (HBD) model in which speciation and
extinction rates (λ and mu) are defined on a fixed grid of discrete time points and assumed to
vary polynomially between grid points. “Homogenous” refers to the assumption that, at any given
moment in time, all lineages exhibit the same speciation/extinction rates (in the literature this is
sometimes referred to simply as “birth-death model”). Every HBD model is defined based on the
values that λ and µ take over time as well as the sampling fraction ρ (fraction of extant species
sampled). This function estimates the values of λ and µ at each grid point by maximizing the
likelihood (Morlon et al. 2011) of the timetree under the resulting HBD model.

Usage

fit_hbd_model_on_grid(tree,
oldest_age = NULL,
age0 = 0,
age_grid = NULL,
min_lambda = 0,
max_lambda = +Inf,
min_mu = 0,
max_mu = +Inf,
min_rho0 = 1e-10,
max_rho0 = 1,
guess_lambda = NULL,
guess_mu = NULL,
guess_rho0 = 1,
fixed_lambda = NULL,
fixed_mu = NULL,
fixed_rho0 = NULL,
const_lambda = FALSE,
const_mu = FALSE,
splines_degree = 1,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,

fit_hbd_model_on_grid 101

Nthreads = 1,
max_model_runtime = NULL,
fit_control = list())

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
reconstructed phylogeny of a set of extant sampled species.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rho is defined. If age0>0, then rho0
refers to the sampling fraction at age age0, i.e. the fraction of lineages extant at
age0 that are included in the tree. See below for more details.

age_grid Numeric vector, listing ages in ascending order, on which λ and µ are allowed to
vary independently. This grid must cover age0. If splines_degree>0 (see op-
tion below) then the age grid must also cover oldest_age. If NULL or of length
<=1 (regardless of value), then λ and µ are assumed to be time-independent.

min_lambda Numeric vector of length Ngrid (=max(1,length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted λ at each point in the age grid. If a
single numeric, the same lower bound applies at all ages.

max_lambda Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted λ at each point in the age grid. If a single numeric, the same upper
bound applies at all ages. Use +Inf to omit upper bounds.

min_mu Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted µ at each point in the age grid. If a single numeric, the same lower
bound applies at all ages.

max_mu Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted µ at each point in the age grid. If a single numeric, the same upper
bound applies at all ages. Use +Inf to omit upper bounds.

min_rho0 Numeric, specifying a lower bound for the fitted sampling fraction ρ (fraction
of extant species included in the tree).

max_rho0 Numeric, specifying an upper bound for the fitted sampling fraction ρ.

guess_lambda Initial guess for λ at each age-grid point. Either NULL (an initial guess will be
computed automatically), or a single numeric (guessing the same λ at all ages) or
a numeric vector of size Ngrid specifying a separate guess for λ at each age-grid
point. To omit an initial guess for some but not all age-grid points, set their guess
values to NA. Guess values are ignored for non-fitted (i.e., fixed) parameters.

102 fit_hbd_model_on_grid

guess_mu Initial guess for µ at each age-grid point. Either NULL (an initial guess will
be computed automatically), or a single numeric (guessing the same µ at all
ages) or a numeric vector of size Ngrid specifying a separate guess for µ at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

guess_rho0 Numeric, specifying an initial guess for the sampling fraction ρ at age0. Setting
this to NULL or NA is the same as setting it to 1.

fixed_lambda Optional fixed (i.e. non-fitted) λ values on one or more age-grid points. Either
NULL (λ is not fixed anywhere), or a single numeric (λ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (λ fixed on one or more
age-grid points, use NA for non-fixed values).

fixed_mu Optional fixed (i.e. non-fitted) µ values on one or more age-grid points. Either
NULL (µ is not fixed anywhere), or a single numeric (µ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (µ fixed on one or more
age-grid points, use NA for non-fixed values).

fixed_rho0 Numeric between 0 and 1, optionallly specifying a fixed value for the sampling
fraction ρ. If NULL or NA, the sampling fraction ρ is estimated, however note that
this may not always be meaningful (Stadler 2009, Stadler 2013).

const_lambda Logical, specifying whether λ should be assumed constant across the grid, i.e.
time-independent. Setting const_lambda=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If λ is fixed on some grid points (i.e. via
fixed_lambda), then only the non-fixed lambdas are assumed to be identical to
one another.

const_mu Logical, specifying whether µ should be assumed constant across the grid, i.e.
time-independent. Setting const_mu=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If µ is fixed on some grid points (i.e. via
fixed_mu), then only the non-fixed mus are assumed to be identical to one an-
other.

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of λ and µ
between age-grid points. If 0, then λ and µ are considered piecewise constant, if
1 then λ and µ are considered piecewise linear, if 2 or 3 then λ and µ are consid-
ered to be splines of degree 2 or 3, respectively. The splines_degree influences
the analytical properties of the curve, e.g. splines_degree==1 guarantees a
continuous curve, splines_degree==2 guarantees a continuous curve and con-
tinuous derivative, and so on. A degree of 0 is generally not recommended, de-
spite the fact that it has been historically popular. The case splines_degree=0
is also known as “skyline” model.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled

fit_hbd_model_on_grid 103

tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier. "none" is generally not
recommended.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

Details

Warning: Unless well-justified constraints are imposed on either λ and/or µ and ρ, it is generally
impossible to reliably estimate λ and µ from extant timetrees alone (Louca and Pennell, 2020). This
routine (and any other software that claims to estimate λ and µ solely from extant timetrees) should
thus be used with great suspicion. If your only source of information is an extant timetree, and you
have no a priori information on how λ or µ might have looked like, you should consider using the
more appropriate routines fit_hbd_pdr_on_grid and fit_hbd_psr_on_grid instead.

If age0>0, the input tree is essentially trimmed at age0 (omitting anything younger than age0),
and the various variables are fitted to this new (shorter) tree, with time shifted appropriately. For
example, the fitted rho0 is thus the sampling fraction at age0, i.e. the fraction of lineages extant at
age0 that are represented in the timetree.

It is generally advised to provide as much information to the function fit_hbd_model_on_grid
as possible, including reasonable lower and upper bounds (min_lambda, max_lambda, min_mu,
max_mu, min_rho0 and max_rho0) and a reasonable parameter guess (guess_lambda, guess_mu
and guess_rho0). It is also important that the age_grid is sufficiently fine to capture the ex-
pected major variations of λ and µ over time, but keep in mind the serious risk of overfitting when
age_grid is too fine and/or the tree is too small.

Value

A list with the following elements:

104 fit_hbd_model_on_grid

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

fitted_lambda Numeric vector of size Ngrid, listing fitted or fixed speciation rates λ at each
age-grid point. Between grid points λ should be interpreted as a piecewise poly-
nomial function (natural spline) of degree splines_degree; to evaluate this
function at arbitrary ages use the castor routine evaluate_spline.

fitted_mu Numeric vector of size Ngrid, listing fitted or fixed extinction rates µ at each
age-grid point. Between grid points µ should be interpreted as a piecewise poly-
nomial function (natural spline) of degree splines_degree; to evaluate this
function at arbitrary ages use the castor routine evaluate_spline.

fitted_rho Numeric, specifying the fitted or fixed sampling fraction ρ.

guess_lambda Numeric vector of size Ngrid, specifying the initial guess for λ at each age-grid
point.

guess_mu Numeric vector of size Ngrid, specifying the initial guess for µ at each age-grid
point.

guess_rho0 Numeric, specifying the initial guess for ρ.

age_grid The age-grid on which λ and µ are defined. This will be the same as the provided
age_grid, unless the latter was NULL or of length <=1.

NFP Integer, number of free (i.e., independently) fitted parameters. If none of the λ,
µ and ρ were fixed, and const_lambda=FALSE and const_mu=FALSE, then NFP
will be equal to 2*Ngrid+1.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

fit_hbd_model_on_grid 105

Author(s)

Stilianos Louca

References

T. Stadler (2009). On incomplete sampling under birth-death models and connections to the sampling-
based coalescent. Journal of Theoretical Biology. 261:58-66.

T. Stadler (2013). How can we improve accuracy of macroevolutionary rate estimates? Systematic
Biology. 62:321-329.

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_parametric

fit_hbd_pdr_on_grid

fit_hbd_pdr_parametric

fit_hbd_psr_on_grid

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
sim = generate_random_tree(parameters = list(rarefaction=rho),

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit mu on grid
Assume that lambda & rho are known

106 fit_hbd_model_parametric

Ngrid = 5
age_grid = seq(from=0,to=root_age,length.out=Ngrid)
fit = fit_hbd_model_on_grid(tree,

age_grid = age_grid,
max_mu = 100,
fixed_lambda= approx(x=time_grid,y=lambdas,xout=sim$final_time-age_grid)$y,
fixed_rho0 = rho,
condition = "crown",
Ntrials = 10,# perform 10 fitting trials
Nthreads = 2,# use two CPUs
max_model_runtime = 1) # limit model evaluation to 1 second

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))

plot fitted & true mu
plot(x = fit$age_grid,

y = fit$fitted_mu,
main = 'Fitted & true mu',
xlab = 'age',
ylab = 'mu',
type = 'b',
col = 'red',
xlim = c(root_age,0))

lines(x = sim$final_time-time_grid,
y = mus,
type = 'l',
col = 'blue');

get fitted mu as a function of age
mu_fun = approxfun(x=fit$age_grid, y=fit$fitted_mu)

}

End(Not run)

fit_hbd_model_parametric

Fit a parametric homogenous birth-death model to a timetree.

Description

Given an ultrametric timetree, fit a homogenous birth-death (HBD) model in which speciation and
extinction rates (λ and µ) are given as parameterized functions of time before present. “Homoge-
nous” refers to the assumption that, at any given moment in time, all lineages exhibit the same
speciation/extinction rates (in the literature this is sometimes referred to simply as “birth-death
model”). Every HBD model is defined based on the values that λ and µ take over time as well as
the sampling fraction ρ (fraction of extant species sampled); in turn, λ, µ and ρ can be parame-
terized by a finite set of parameters. This function estimates these parameters by maximizing the
likelihood (Morlon et al. 2011) of the timetree under the resulting HBD model.

fit_hbd_model_parametric 107

Usage

fit_hbd_model_parametric(tree,
param_values,
param_guess = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
oldest_age = NULL,
age0 = 0,
lambda,
mu = 0,
rho0 = 1,
age_grid = NULL,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
max_start_attempts = 1,
Nthreads = 1,
max_model_runtime = NULL,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
fit_algorithm = "nlminb",
fit_control = list(),
focal_param_values = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
reconstructed phylogeny of a set of extant sampled species.

param_values Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or if
the functions lambda, mu or rho query parameter values by name (as opposed to
numeric index).

param_guess Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

param_min Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

108 fit_hbd_model_parametric

param_max Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

param_scale Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rho is defined. If age0>0, then rho0
refers to the sampling fraction at age age0, i.e. the fraction of lineages extant at
age0 that are included in the tree. See below for more details.

lambda Function specifying the speciation rate at any given age (time before present)
and for any given parameter values. This function must take exactly two argu-
ments, the 1st one being a numeric vector (one or more ages) and the 2nd one
being a numeric vector of size NP (parameter values), and return a numeric vec-
tor of the same size as the 1st argument with strictly positive entries. Can also
be a single number (i.e., lambda is fixed).

mu Function specifying the extinction rate at any given age and for any given param-
eter values. This function must take exactly two arguments, the 1st one being a
numeric vector (one or more ages) and the 2nd one being a numeric vector of
size NP (parameter values), and return a numeric vector of the same size as the
1st argument with non-negative entries. Can also be a single number (i.e., mu is
fixed).

rho0 Function specifying the sampling fraction (fraction of extant species sampled
at age0) for any given parameter values. This function must take exactly one
argument, a numeric vector of size NP (parameter values), and return a numeric
between 0 (exclusive) and 1 (inclusive). Can also be a single number (i.e., rho0
is fixed).

age_grid Numeric vector, specifying ages at which the lambda and mu functionals should
be evaluated. This age grid must be fine enough to capture the possible variation
in λ and µ over time, within the permissible parameter range. If of size 1,
then lambda & mu are assumed to be time-independent. Listed ages must be
strictly increasing, and must cover at least the full considered age interval (from
0 to oldest_age). Can also be NULL or a vector of size 1, in which case the
speciation rate and extinction rate is assumed to be time-independent.

fit_hbd_model_parametric 109

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier. "none" is generally not
recommended.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to 0 for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

fit_algorithm Character, specifying which optimization algorithm to use. Either "nlminb" or
"subplex" are allowed.

110 fit_hbd_model_parametric

fit_control Named list containing options for the nlminb or subplex optimization routine,
depending on the choice of fit_algorithm. For example, for "nlminb" com-
monly modified options are iter.max, eval.max or rel.tol. For a complete
list of options and default values see the documentation of nlminb in the stats
package or of nloptr in the nloptr package.

focal_param_values

Optional numeric matrix having NP columns and an arbitrary number of rows,
listing combinations of parameter values of particular interest and for which the
log-likelihoods should be returned. This may be used for diagnostic purposes,
e.g., to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., pn ∈ R) that determine
the speciation rate λ, the extinction rate µ and the sampling fraction ρ, by maximizing the likelihood
of observing a given timetree under the HBD model. For example, the investigator may assume that
both λ and µ vary exponentially over time, i.e. they can be described by λ(t) = λo · e−αt and
µ(t) = µo · e−βt (where λo, µo are unknown present-day rates and α, β are unknown factors, and t
is time before present), and that the sampling fraction ρ is known. In this case the model has 4 free
parameters, p1 = λo, p2 = µo, p3 = α and p4 = β, each of which may be fitted to the tree.

It is generally advised to provide as much information to the function fit_hbd_model_parametric
as possible, including reasonable lower and upper bounds (param_min and param_max), a reason-
able parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of lambda and mu over time, since the likeli-
hood is calculated under the assumption that both vary linearly between grid points.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

fit_hbd_model_parametric 111

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model pa-
rameters in their standard order. If param_names was provided, elements in
param_guess will be named.

loglikelihood The log-likelihood of the fitted model for the given timetree.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors

Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

112 fit_hbd_model_parametric

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI50upper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted model
(Lindholm et al. 2019). See the documentation of fit_hbds_model_on_grid
for an explanation.

Author(s)

Stilianos Louca

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_on_grid

fit_hbd_pdr_on_grid

fit_hbd_pdr_parametric

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)

fit_hbd_model_parametric 113

tree = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)$tree

root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Define a parametric HBD model, with exponentially varying lambda & mu
Assume that the sampling fraction is known
The model thus has 4 parameters: lambda0, mu0, alpha, beta
lambda_function = function(ages,params){
return(params['lambda0']*exp(-params['alpha']*ages));
}
mu_function = function(ages,params){
return(params['mu0']*exp(-params['beta']*ages));
}
rho_function = function(params){
return(rho) # rho does not depend on any of the parameters
}

Define an age grid on which lambda_function & mu_function shall be evaluated
Should be sufficiently fine to capture the variation in lambda & mu
age_grid = seq(from=0,to=100,by=0.01)

Perform fitting
Lets suppose extinction rates are already known
cat(sprintf("Fitting model to tree..\n"))
fit = fit_hbd_model_parametric(tree,

param_values = c(lambda0=NA, mu0=3, alpha=NA, beta=-0.09),
param_guess = c(1,1,0,0),
param_min = c(0,0,-1,-1),
param_max = c(10,10,1,1),
param_scale = 1, # all params are in the order of 1
lambda = lambda_function,
mu = mu_function,
rho0 = rho_function,
age_grid = age_grid,
Ntrials = 10, # perform 10 fitting trials
Nthreads = 2, # use 2 CPUs
max_model_runtime = 1, # limit model evaluation to 1 second
fit_control = list(rel.tol=1e-6))

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))
}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))
print(fit)
}

End(Not run)

114 fit_hbd_pdr_on_best_grid_size

fit_hbd_pdr_on_best_grid_size

Fit pulled diversification rates of birth-death models on a time grid
with optimal size.

Description

Given an ultrametric timetree, estimate the pulled diversification rate of homogenous birth-death
(HBD) models that best explains the tree via maximum likelihood, automatically determining the
optimal time-grid size based on the data. Every HBD model is defined by some speciation and
extinction rates (λ and µ) over time, as well as the sampling fraction ρ (fraction of extant species
sampled). “Homogenous” refers to the assumption that, at any given moment in time, all lineages
exhibit the same speciation/extinction rates. For any given HBD model there exists an infinite
number of alternative HBD models that predict the same deterministic lineages-through-time curve
and yield the same likelihood for any given reconstructed timetree; these “congruent” models cannot
be distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled diversification rate” (PDR; Louca et al
2018), defined as PDR = λ−µ+λ−1dλ/dτ (where τ is time before present) as well as the product
ρλo (where λo is the present-day speciation rate). That is, two HBD models are congruent if and
only if they have the same PDR and the same product ρλo. This function is designed to estimate
the generating congruence class for the tree, by fitting the PDR on a grid of discrete times as well
as the product ρλo. Internally, the function uses fit_hbd_pdr_on_grid to perform the fitting. The
"best" grid size is determined based on some optimality criterion, such as AIC.

Usage

fit_hbd_pdr_on_best_grid_size(tree,
oldest_age = NULL,
age0 = 0,
grid_sizes = c(1,10),
uniform_grid = FALSE,
criterion = "AIC",
exhaustive = TRUE,
min_PDR = -Inf,
max_PDR = +Inf,
min_rholambda0 = 1e-10,
max_rholambda0 = +Inf,
guess_PDR = NULL,
guess_rholambda0 = NULL,
fixed_PDR = NULL,
fixed_rholambda0 = NULL,
splines_degree = 1,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
Nbootstraps = 0,

fit_hbd_pdr_on_best_grid_size 115

Ntrials_per_bootstrap = NULL,
Nthreads = 1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
verbose_prefix = "")

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age. If oldest_age is less than
the root age, the tree is split into multiple subtrees at that age by treating every
edge crossing that age as the stem of a subtree, and each subtree is considered
an independent realization of the HBD model stemming at that age. This can be
useful for avoiding points in the tree close to the root, where estimation uncer-
tainty is generally higher. If oldest_age==NULL, it is automatically set to the
root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting. If age0>0, the tree essentially is trimmed at age0, omitting
anything younger than age0, and the PDR and ρλo are fitted to the trimmed tree
while shifting time appropriately.

grid_sizes Numeric vector, listing alternative grid sizes to consider.

uniform_grid Logical, specifying whether to use uniform time grids (equal time intervals) or
non-uniform time grids (more grid points towards the present, where more data
are available).

criterion Character, specifying which criterion to use for selecting the best grid. Options
are "AIC" and "BIC".

exhaustive Logical, whether to try all grid sizes before choosing the best one. If FALSE,
the grid size is gradually increased until the selection criterio (e.g., AIC) starts
becoming worse, at which point the search is halted. This avoids fitting models
with excessive grid sizes when an optimum already seems to have been found at
a smaller grid size.

min_PDR Numeric vector of length Ngrid (=max(1,length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PDR at each point in the age grid. If
a single numeric, the same lower bound applies at all ages. Note that in general
the PDR may be negative as well as positive.

max_PDR Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PDR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

min_rholambda0 Strictly positive numeric, specifying the lower bound for the fitted ρλo (sam-
pling fraction times present-day extinction rate).

max_rholambda0 Strictly positive numeric, specifying the upper bound for the fitted ρλo. Set to
+Inf to omit this upper bound.

116 fit_hbd_pdr_on_best_grid_size

guess_PDR Initial guess for the PDR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing a constant PDR
at all ages), or a function handle (for generating guesses at each grid point;
this function may also return NA at some time points for which a guess shall be
computed automatically).

guess_rholambda0

Numeric, specifying an initial guess for the product ρλo. If NULL, a guess will
be computed automatically.

fixed_PDR Optional fixed (i.e. non-fitted) PDR values. Either NULL (none of the PDR values
are fixed) or a function handle specifying the PDR for any arbitrary age (PDR
will be fixed at any age for which this function returns a finite number). The
function fixed_PDR() need not return finite values for all times, in fact doing
so would mean that the PDR is not fitted anywhere.

fixed_rholambda0

Numeric, optionally specifying a fixed value for the product ρλo. If NULL or NA,
the product ρλo is estimated.

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of the
PDR between age-grid points. If 0, then the PDR is considered to be piecewise
constant, if 1 then the PDR is considered piecewise linear, if 2 or 3 then the PDR
is considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for
estimating standard errors and confidence intervals of maximum-likelihood fit-
ted parameters. If 0, no bootstrapping is performed. Typical values are 10-100.

fit_hbd_pdr_on_best_grid_size 117

At each bootstrap sampling, a random timetree is generated under the birth-
death model according to the fitted PDR and ρλo, the parameters are estimated
anew based on the generated tree, and subsequently compared to the original
fitted parameters. Each bootstrap sampling will use roughly the same informa-
tion and similar computational resources as the original maximum-likelihood fit
(e.g., same number of trials, same optimization parameters, same initial guess,
etc). Bootstrapping is only performed for the best grid size.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

It is generally advised to provide as much information to the function fit_hbd_pdr_on_best_grid_size
as possible, including reasonable lower and upper bounds (min_PDR, max_PDR, min_rholambda0
and max_rholambda0) and a reasonable parameter guess (guess_PDR and guess_rholambda0).

Value

A list with the following elements:

success Logical, indicating whether the function executed successfully. If FALSE, the
returned list will include an additional “error” element (character) providing a
description of the error; in that case all other return variables may be undefined.

best_fit A named list containing the fitting results for the best grid size. This list has the
same structure as the one returned by fit_hbd_pdr_on_grid.

grid_sizes Numeric vector, listing the grid sizes as provided during the function call.

118 fit_hbd_pdr_on_best_grid_size

AICs Numeric vector of the same length as grid_sizes, listing the AIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

BICs Numeric vector of the same length as grid_sizes, listing the BIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

Author(s)

Stilianos Louca

References

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_parametric

fit_hbd_model_on_grid

fit_hbd_pdr_parametric

fit_hbd_pdr_on_grid

fit_hbd_psr_on_grid

fit_hbd_psr_on_best_grid_size

model_adequacy_hbd

evaluate_spline

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
sim = generate_random_tree(parameters = list(rarefaction=rho),

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree

fit_hbd_pdr_on_grid 119

root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit PDR on grid, with the grid size chosen automatically between 1 and 5
fit = fit_hbd_pdr_on_best_grid_size(tree,

max_PDR = 100,
grid_sizes = c(1:5),
exhaustive = FALSE,
uniform_grid = FALSE,
Ntrials = 10,
Nthreads = 4,
verbose = TRUE,
max_model_runtime = 1)

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
best_fit = fit$best_fit
cat(sprintf("Fitting succeeded:\nBest grid size=%d\n",length(best_fit$age_grid)))
plot fitted PDR
plot(x = best_fit$age_grid,

y = best_fit$fitted_PDR,
main = 'Fitted PDR',
xlab = 'age',
ylab = 'PDR',
type = 'b',
xlim = c(root_age,0))

get fitted PDR as a function of age
PDR_fun = approxfun(x=best_fit$age_grid, y=best_fit$fitted_PDR)

}

End(Not run)

fit_hbd_pdr_on_grid Fit pulled diversification rates of birth-death models on a time grid.

Description

Given an ultrametric timetree, estimate the pulled diversification rate of homogenous birth-death
(HBD) models that best explains the tree via maximum likelihood. Every HBD model is defined by
some speciation and extinction rates (λ and µ) over time, as well as the sampling fraction ρ (fraction
of extant species sampled). “Homogenous” refers to the assumption that, at any given moment in
time, all lineages exhibit the same speciation/extinction rates. For any given HBD model there exists
an infinite number of alternative HBD models that predict the same deterministic lineages-through-
time curve and yield the same likelihood for any given reconstructed timetree; these “congruent”
models cannot be distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled diversification rate” (PDR; Louca et al
2018), defined as PDR = λ−µ+λ−1dλ/dτ (where τ is time before present) as well as the product
ρλo (where λo is the present-day speciation rate). That is, two HBD models are congruent if and
only if they have the same PDR and the same product ρλo. This function is designed to estimate

120 fit_hbd_pdr_on_grid

the generating congruence class for the tree, by fitting the PDR on a grid of discrete times as well
as the product ρλo.

Usage

fit_hbd_pdr_on_grid(tree,
oldest_age = NULL,
age0 = 0,
age_grid = NULL,
min_PDR = -Inf,
max_PDR = +Inf,
min_rholambda0 = 1e-10,
max_rholambda0 = +Inf,
guess_PDR = NULL,
guess_rholambda0 = NULL,
fixed_PDR = NULL,
fixed_rholambda0 = NULL,
splines_degree = 1,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
Nthreads = 1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
verbose_prefix = "")

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rholambda0 is defined. If age0>0,
then rholambda0 refers to the product of the sampling fraction at age age0 and
the speciation rate at age age0. See below for more details.

age_grid Numeric vector, listing ages in ascending order at which the PDR is allowed to
vary independently. This grid must cover at least the age range from age0 to

fit_hbd_pdr_on_grid 121

oldest_age. If NULL or of length <=1 (regardless of value), then the PDR is
assumed to be time-independent.

min_PDR Numeric vector of length Ngrid (=max(1,length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PDR at each point in the age grid.
If a single numeric, the same lower bound applies at all ages. Use -Inf to omit
lower bounds.

max_PDR Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PDR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

min_rholambda0 Strictly positive numeric, specifying the lower bound for the fitted ρλo (sam-
pling fraction times present-day extinction rate).

max_rholambda0 Strictly positive numeric, specifying the upper bound for the fitted ρλo. Set to
+Inf to omit this upper bound.

guess_PDR Initial guess for the PDR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing the same PDR
at all ages) or a numeric vector of size Ngrid specifying a separate guess at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

guess_rholambda0

Numeric, specifying an initial guess for the product ρλo. If NULL, a guess will
be computed automatically.

fixed_PDR Optional fixed (i.e. non-fitted) PDR values on one or more age-grid points.
Either NULL (PDR is not fixed anywhere), or a single numeric (PDR fixed to the
same value at all grid points) or a numeric vector of size Ngrid (PDR fixed at
one or more age-grid points, use NA for non-fixed values).

fixed_rholambda0

Numeric, optionally specifying a fixed value for the product ρλo. If NULL or NA,
the product ρλo is estimated.

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of the
PDR between age-grid points. If 0, then the PDR is considered piecewise con-
stant, if 1 then the PDR is considered piecewise linear, if 2 or 3 then the PDR is
considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting

122 fit_hbd_pdr_on_grid

occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for
estimating standard errors and confidence intervals of maximum-likelihood fit-
ted parameters. If 0, no bootstrapping is performed. Typical values are 10-100.
At each bootstrap sampling, a random timetree is generated under the birth-
death model according to the fitted PDR and ρλo, the parameters are estimated
anew based on the generated tree, and subsequently compared to the original
fitted parameters. Each bootstrap sampling will use roughly the same informa-
tion and similar computational resources as the original maximum-likelihood fit
(e.g., same number of trials, same optimization parameters, same initial guess,
etc).

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

fit_hbd_pdr_on_grid 123

Details

If age0>0, the input tree is essentially trimmed at age0 (omitting anything younger than age0), and
the PDR and rholambda0 are fitted to this new (shorter) tree, with time shifted appropriately. The
fitted rholambda0 is thus the product of the sampling fraction at age0 and the speciation rate at
age0. Note that the sampling fraction at age0 is simply the fraction of lineages extant at age0 that
are represented in the timetree.

It is generally advised to provide as much information to the function fit_hbd_pdr_on_grid as
possible, including reasonable lower and upper bounds (min_PDR, max_PDR, min_rholambda0 and
max_rholambda0) and a reasonable parameter guess (guess_PDR and guess_rholambda0). It is
also important that the age_grid is sufficiently fine to capture the expected major variations of the
PDR over time, but keep in mind the serious risk of overfitting when age_grid is too fine and/or
the tree is too small.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

fitted_PDR Numeric vector of size Ngrid, listing fitted or fixed pulled diversification rates
(PDR) at each age-grid point. Between grid points the fitted PDR should be in-
terpreted as a piecewise polynomial function (natural spline) of degree splines_degree;
to evaluate this function at arbitrary ages use the castor routine evaluate_spline.

fitted_rholambda0

Numeric, specifying the fitted or fixed product ρλ(0).

guess_PDR Numeric vector of size Ngrid, specifying the initial guess for the PDR at each
age-grid point.

guess_rholambda0

Numeric, specifying the initial guess for ρλ(0).

age_grid The age-grid on which the PDR is defined. This will be the same as the provided
age_grid, unless the latter was NULL or of length <=1.

NFP Integer, number of fitted (i.e., non-fixed) parameters. If none of the PDRs or
ρλ0 were fixed, this will be equal to Ngrid+1.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

124 fit_hbd_pdr_on_grid

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

bootstrap_estimates

If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric matrix of size Nbootstraps x Ngrid, listing the fitted PDR at each grid
point and for each bootstrap) and rholambda0 (a numeric vector of size Nbootstraps,
listing the fitted ρλo for each bootstrap).

standard_errors

If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric vector of size Ngrid, listing bootstrap-estimated standard errors for the
fitted PDRs) and rholambda0 (a single numeric, bootstrap-estimated standard
error for the fitted ρλo).

medians If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric vector of size Ngrid, listing median fitted PDRs across bootstraps) and
rholambda0 (a single numeric, median fitted ρλo across bootstraps).

CI50lower If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric vector of size Ngrid, listing bootstrap-estimated lower bounds of the 50-
percent confidence intervals for the fitted PDRs) and rholambda0 (a single nu-
meric, bootstrap-estimated lower bound of the 50-percent confidence intervals
for the fitted ρλo).

CI50upper Similar to CI50lower, listing upper bounds of 50-percentile confidence inter-
vals.

CI95lower Similar to CI50lower, listing lower bounds of 95-percentile confidence inter-
vals.

CI95upper Similar to CI95lower, listing upper bounds of 95-percentile confidence inter-
vals.

Author(s)

Stilianos Louca

References

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

fit_hbd_pdr_on_grid 125

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_parametric

fit_hbd_model_on_grid

fit_hbd_pdr_parametric

model_adequacy_hbd

evaluate_spline

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
sim = generate_random_tree(parameters = list(rarefaction=rho),

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

calculate true PDR
lambda_slopes = diff(lambdas)/diff(time_grid);
lambda_slopes = c(lambda_slopes[1],lambda_slopes)
PDRs = lambdas - mus - (lambda_slopes/lambdas)

Fit PDR on grid
Ngrid = 10
age_grid = seq(from=0,to=root_age,length.out=Ngrid)
fit = fit_hbd_pdr_on_grid(tree,

age_grid = age_grid,
min_PDR = -100,
max_PDR = +100,
condition = "crown",
Ntrials = 10,# perform 10 fitting trials
Nthreads = 2,# use two CPUs
max_model_runtime = 1) # limit model evaluation to 1 second

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))

126 fit_hbd_pdr_parametric

plot fitted & true PDR
plot(x = fit$age_grid,

y = fit$fitted_PDR,
main = 'Fitted & true PDR',
xlab = 'age',
ylab = 'PDR',
type = 'b',
col = 'red',
xlim = c(root_age,0))

lines(x = sim$final_time-time_grid,
y = PDRs,
type = 'l',
col = 'blue');

get fitted PDR as a function of age
PDR_fun = approxfun(x=fit$age_grid, y=fit$fitted_PDR)

}

End(Not run)

fit_hbd_pdr_parametric

Fit parameterized pulled diversification rates of birth-death models.

Description

Given an ultrametric timetree, estimate the pulled diversification rate (PDR) of homogenous birth-
death (HBD) models that best explains the tree via maximum likelihood, assuming that the PDR
is given as a parameterized function of time before present. Every HBD model is defined by some
speciation and extinction rates (λ and µ) over time, as well as the sampling fraction ρ (fraction of
extant species sampled). “Homogenous” refers to the assumption that, at any given moment in time,
all lineages exhibit the same speciation/extinction rates. For any given HBD model there exists an
infinite number of alternative HBD models that generate extant trees with the same probability
distributions and yield the same likelihood for any given extant timetree; these “congruent” models
cannot be distinguished from one another solely based on an extant timetree.

Each congruence class is uniquely described by its PDR, defined as PDR = λ − µ + λ−1dλ/dτ
(where τ is time before present) as well as the product ρλo (where λo is the present-day speciation
rate). That is, two HBD models are congruent if and only if they have the same PDR and the same
product ρλo. This function is designed to estimate the generating congruence class for the tree, by
fitting a finite number of parameters defining the PDR and ρλo.

Usage

fit_hbd_pdr_parametric(tree,
param_values,
param_guess = NULL,
param_min = -Inf,

fit_hbd_pdr_parametric 127

param_max = +Inf,
param_scale = NULL,
oldest_age = NULL,
age0 = 0,
PDR,
rholambda0,
age_grid = NULL,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
max_start_attempts = 1,
Nthreads = 1,
max_model_runtime = NULL,
fit_control = list())

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

param_values Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or if
the functions PDR or rho query parameter values by name (as opposed to numeric
index).

param_guess Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

param_min Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

param_max Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

param_scale Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by

128 fit_hbd_pdr_parametric

Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rholambda0 is defined. If age0>0,
then rholambda0 refers to the product of the sampling fraction at age age0 and
the speciation rate at age age0. See below for more details.

PDR Function specifying the pulled diversification rate at any given age (time before
present) and for any given parameter values. This function must take exactly two
arguments, the 1st one being a numeric vector (one or more ages) and the 2nd
one being a numeric vector of size NP (parameter values), and return a numeric
vector of the same size as the 1st argument. Can also be a single number (i.e.,
PDR is fixed).

rholambda0 Function specifying the product ρλo (sampling fraction times speciation rate
at age0) for any given parameter values. This function must take exactly one
argument, a numeric vector of size NP (parameter values), and return a strictly
positive numeric. Can also be a single number (i.e., rholambda0 is fixed).

age_grid Numeric vector, specifying ages at which the PDR function should be evaluated.
This age grid must be fine enough to capture the possible variation in the PDR
over time, within the permissible parameter range. If of size 1, then the PDR
is assumed to be time-independent. Listed ages must be strictly increasing, and
must cover at least the full considered age interval (from age0 to oldest_age).
Can also be NULL or a vector of size 1, in which case the PDR is assumed to be
time-independent.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

fit_hbd_pdr_parametric 129

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., pn ∈ R) that determine
the PDR and the product ρλo (sampling fraction times present-dat extinction rate), by maximizing
the likelihood of observing a given timetree under the HBD model. For example, the investigator
may assume that the PDR varies exponentially over time, i.e. can be described by PDR(t) =
A · e−Bt (where A and B are unknown coefficients and t is time before present), and that the
product ρλo is unknown. In this case the model has 3 free parameters, p1 = A, p2 = B and
p3 = ρλo, each of which may be fitted to the tree.

If age0>0, the input tree is essentially trimmed at age0 (omitting anything younger than age0), and
the PDR and rholambda0 are fitted to this new (shorter) tree, with time shifted appropriately. The
fitted rholambda0 is thus the product of the sampling fraction at age0 and the speciation rate at
age0. Note that the sampling fraction at age0 is simply the fraction of lineages extant at age0 that
are represented in the timetree. Most users will typically want to leave age0=0.

It is generally advised to provide as much information to the function fit_hbd_pdr_parametric as
possible, including reasonable lower and upper bounds (param_min and param_max), a reasonable
parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of the PDR over time, since the likelihood is
calculated under the assumption that both vary linearly between grid points.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

130 fit_hbd_pdr_parametric

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model param-
eters in their standard order.

loglikelihood The log-likelihood of the fitted model for the given timetree.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

Author(s)

Stilianos Louca

fit_hbd_pdr_parametric 131

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_on_grid

fit_hbd_model_parametric

fit_hbd_pdr_on_grid

fit_hbd_psr_parametric

model_adequacy_hbd

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
tree = generate_random_tree(parameters = list(rarefaction=rho),

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)$tree

root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Define a parametric HBD congruence class, with exponentially varying PDR
The model thus has 3 parameters
PDR_function = function(ages,params){
return(params['A']*exp(-params['B']*ages));
}
rholambda0_function = function(params){
return(params['rholambda0'])
}

Define an age grid on which PDR_function shall be evaluated
Should be sufficiently fine to capture the variation in the PDR
age_grid = seq(from=0,to=100,by=0.01)

132 fit_hbd_psr_on_best_grid_size

Perform fitting
cat(sprintf("Fitting class to tree..\n"))
fit = fit_hbd_pdr_parametric(tree,

param_values = c(A=NA, B=NA, rholambda0=NA),
param_guess = c(1,0,1),
param_min = c(-10,-10,0),
param_max = c(10,10,10),
param_scale = 1, # all params are in the order of 1
PDR = PDR_function,
rholambda0 = rholambda0_function,
age_grid = age_grid,
Ntrials = 10, # perform 10 fitting trials
Nthreads = 2, # use 2 CPUs
max_model_runtime = 1, # limit model evaluation to 1 second
fit_control = list(rel.tol=1e-6))

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))
}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))
print(fit)
}

End(Not run)

fit_hbd_psr_on_best_grid_size

Fit pulled speciation rates of birth-death models on a time grid with
optimal size.

Description

Given an ultrametric timetree, estimate the pulled speciation rate of homogenous birth-death (HBD)
models that best explains the tree via maximum likelihood, automatically determining the optimal
time-grid size based on the data. Every HBD model is defined by some speciation and extinction
rates (λ and µ) over time, as well as the sampling fraction ρ (fraction of extant species sampled).
“Homogenous” refers to the assumption that, at any given moment in time, all lineages exhibit
the same speciation/extinction rates. For any given HBD model there exists an infinite number
of alternative HBD models that predict the same deterministic lineages-through-time curve and
yield the same likelihood for any given reconstructed timetree; these “congruent” models cannot be
distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled speciation rate” (PSR), defined as the
relative slope of the deterministic LTT over time, PSR = −M−1dM/dτ (where τ is time before
present). In other words, two HBD models are congruent if and only if they have the same PSR.
This function is designed to estimate the generating congruence class for the tree, by fitting the PSR
on a discrete time grid. Internally, the function uses fit_hbd_psr_on_grid to perform the fitting.
The "best" grid size is determined based on some optimality criterion, such as AIC.

fit_hbd_psr_on_best_grid_size 133

Usage

fit_hbd_psr_on_best_grid_size(tree,
oldest_age = NULL,
age0 = 0,
grid_sizes = c(1,10),
uniform_grid = FALSE,
criterion = "AIC",
exhaustive = TRUE,
min_PSR = 0,
max_PSR = +Inf,
guess_PSR = NULL,
fixed_PSR = NULL,
splines_degree = 1,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
Nthreads = 1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
verbose_prefix = "")

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age. If oldest_age is less than
the root age, the tree is split into multiple subtrees at that age by treating every
edge crossing that age as the stem of a subtree, and each subtree is considered
an independent realization of the HBD model stemming at that age. This can be
useful for avoiding points in the tree close to the root, where estimation uncer-
tainty is generally higher. If oldest_age==NULL, it is automatically set to the
root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting. If age0>0, the tree essentially is trimmed at age0, omitting any-
thing younger than age0, and the PSR is fitted to the trimmed tree while shifting
time appropriately.

grid_sizes Numeric vector, listing alternative grid sizes to consider.

uniform_grid Logical, specifying whether to use uniform time grids (equal time intervals) or
non-uniform time grids (more grid points towards the present, where more data
are available).

criterion Character, specifying which criterion to use for selecting the best grid. Options
are "AIC" and "BIC".

134 fit_hbd_psr_on_best_grid_size

exhaustive Logical, whether to try all grid sizes before choosing the best one. If FALSE,
the grid size is gradually increased until the selection criterio (e.g., AIC) starts
becoming worse, at which point the search is halted. This avoids fitting models
with excessive grid sizes when an optimum already seems to have been found at
a smaller grid size.

min_PSR Numeric vector of length Ngrid (=max(1,length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PSR at each point in the age grid.
If a single numeric, the same lower bound applies at all ages. Note that the PSR
is never negative.

max_PSR Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PSR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

guess_PSR Initial guess for the PSR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing a constant PSR
at all ages), or a function handle (for generating guesses at each grid point;
this function may also return NA at some time points for which a guess shall be
computed automatically).

fixed_PSR Optional fixed (i.e. non-fitted) PSR values. Either NULL (none of the PSR values
are fixed) or a function handle specifying the PSR for any arbitrary age (PSR
will be fixed at any age for which this function returns a finite number). The
function fixed_PSR() need not return finite values for all times, in fact doing
so would mean that the PSR is not fitted anywhere.

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of the
PSR between age-grid points. If 0, then the PSR is considered piecewise con-
stant, if 1 then the PSR is considered piecewise linear, if 2 or 3 then the PSR is
considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

fit_hbd_psr_on_best_grid_size 135

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for es-
timating standard errors and confidence intervals of maximum-likelihood fitted
parameters. If 0, no bootstrapping is performed. Typical values are 10-100. At
each bootstrap sampling, a random timetree is generated under the birth-death
model according to the fitted PSR, the parameters are estimated anew based on
the generated tree, and subsequently compared to the original fitted parameters.
Each bootstrap sampling will use roughly the same information and similar com-
putational resources as the original maximum-likelihood fit (e.g., same number
of trials, same optimization parameters, same initial guess, etc). Bootstrapping
is only performed for the best grid size.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

It is generally advised to provide as much information to the function fit_hbd_psr_on_best_grid_size
as possible, including reasonable lower and upper bounds (min_PSR and max_PSR) and a reasonable
parameter guess (guess_PSR).

Value

A list with the following elements:

136 fit_hbd_psr_on_best_grid_size

success Logical, indicating whether the function executed successfully. If FALSE, the
returned list will include an additional “error” element (character) providing a
description of the error; in that case all other return variables may be undefined.

best_fit A named list containing the fitting results for the best grid size. This list has the
same structure as the one returned by fit_hbd_psr_on_grid.

grid_sizes Numeric vector, listing the grid sizes as provided during the function call.

AICs Numeric vector of the same length as grid_sizes, listing the AIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

BICs Numeric vector of the same length as grid_sizes, listing the BIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

Author(s)

Stilianos Louca

References

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_parametric

fit_hbd_model_on_grid

fit_hbd_pdr_parametric

fit_hbd_pdr_on_grid

fit_hbd_psr_on_grid

fit_hbd_pdr_on_best_grid_size

model_adequacy_hbd

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
sim = generate_random_tree(parameters = list(rarefaction=rho),

fit_hbd_psr_on_grid 137

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit PSR on grid, with the grid size chosen automatically between 1 and 5
fit = fit_hbd_psr_on_best_grid_size(tree,

max_PSR = 100,
grid_sizes = c(1:5),
exhaustive = FALSE,
uniform_grid = FALSE,
Ntrials = 10,
Nthreads = 4,
verbose = TRUE,
max_model_runtime = 1)

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
best_fit = fit$best_fit
cat(sprintf("Fitting succeeded:\nBest grid size=%d\n",length(best_fit$age_grid)))
plot fitted PSR
plot(x = best_fit$age_grid,

y = best_fit$fitted_PSR,
main = 'Fitted PSR',
xlab = 'age',
ylab = 'PSR',
type = 'b',
xlim = c(root_age,0))

get fitted PSR as a function of age
PSR_fun = approxfun(x=best_fit$age_grid, y=best_fit$fitted_PSR)

}

End(Not run)

fit_hbd_psr_on_grid Fit pulled speciation rates of birth-death models on a time grid.

Description

Given an ultrametric timetree, estimate the pulled speciation rate of homogenous birth-death (HBD)
models that best explains the tree via maximum likelihood. Every HBD model is defined by some
speciation and extinction rates (λ and µ) over time, as well as the sampling fraction ρ (fraction of
extant species sampled). “Homogenous” refers to the assumption that, at any given moment in time,
all lineages exhibit the same speciation/extinction rates. For any given HBD model there exists an
infinite number of alternative HBD models that predict the same deterministic lineages-through-
time curve and yield the same likelihood for any given reconstructed timetree; these “congruent”
models cannot be distinguished from one another solely based on the tree.

138 fit_hbd_psr_on_grid

Each congruence class is uniquely described by the “pulled speciation rate” (PSR), defined as the
relative slope of the deterministic LTT over time, PSR = −M−1dM/dτ (where τ is time before
present). In other words, two HBD models are congruent if and only if they have the same PSR.
This function is designed to estimate the generating congruence class for the tree, by fitting the PSR
on a discrete time grid.

Usage

fit_hbd_psr_on_grid(tree,
oldest_age = NULL,
age0 = 0,
age_grid = NULL,
min_PSR = 0,
max_PSR = +Inf,
guess_PSR = NULL,
fixed_PSR = NULL,
splines_degree = 1,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
Nthreads = 1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting. If age0>0, the tree essentially is trimmed at age0, omitting any-
thing younger than age0, and the PSR is fitted to the trimmed tree while shifting
time appropriately.

age_grid Numeric vector, listing ages in ascending order at which the PSR is allowed to
vary independently. This grid must cover at least the age range from age0 to

fit_hbd_psr_on_grid 139

oldest_age. If NULL or of length <=1 (regardless of value), then the PSR is
assumed to be time-independent.

min_PSR Numeric vector of length Ngrid (=max(1,length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PSR at each point in the age grid.
If a single numeric, the same lower bound applies at all ages. Note that the PSR
is never negative.

max_PSR Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PSR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

guess_PSR Initial guess for the PSR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing the same PSR at
all ages) or a numeric vector of size Ngrid specifying a separate guess at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

fixed_PSR Optional fixed (i.e. non-fitted) PSR values on one or more age-grid points. Ei-
ther NULL (PSR is not fixed anywhere), or a single numeric (PSR fixed to the
same value at all grid points) or a numeric vector of size Ngrid (PSR fixed at
one or more age-grid points, use NA for non-fixed values).

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of the
PSR between age-grid points. If 0, then the PSR is considered piecewise con-
stant, if 1 then the PSR is considered piecewise linear, if 2 or 3 then the PSR is
considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

140 fit_hbd_psr_on_grid

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for es-
timating standard errors and confidence intervals of maximum-likelihood fitted
parameters. If 0, no bootstrapping is performed. Typical values are 10-100. At
each bootstrap sampling, a random timetree is generated under the birth-death
model according to the fitted PSR, the parameters are estimated anew based on
the generated tree, and subsequently compared to the original fitted parameters.
Each bootstrap sampling will use roughly the same information and similar com-
putational resources as the original maximum-likelihood fit (e.g., same number
of trials, same optimization parameters, same initial guess, etc).

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

It is generally advised to provide as much information to the function fit_hbd_psr_on_grid as
possible, including reasonable lower and upper bounds (min_PSR and max_PSR) and a reasonable
parameter guess (guess_PSR). It is also important that the age_grid is sufficiently fine to capture
the expected major variations of the PSR over time, but keep in mind the serious risk of overfitting
when age_grid is too fine and/or the tree is too small.

Value

A list with the following elements:

fit_hbd_psr_on_grid 141

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

fitted_PSR Numeric vector of size Ngrid, listing fitted or fixed pulled speciation rates (PSR)
at each age-grid point. Between grid points the fitted PSR should be interpreted
as a piecewise polynomial function (natural spline) of degree splines_degree;
to evaluate this function at arbitrary ages use the castor routine evaluate_spline.

guess_PSR Numeric vector of size Ngrid, specifying the initial guess for the PSR at each
age-grid point.

age_grid The age-grid on which the PSR is defined. This will be the same as the provided
age_grid, unless the latter was NULL or of length <=1.

NFP Integer, number of fitted (i.e., non-fixed) parameters. If none of the PSRs were
fixed, this will be equal to Ngrid.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters, and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

bootstrap_estimates

If Nbootstraps>0, this will be a numeric matrix of size Nbootstraps x Ngrid,
listing the fitted PSR at each grid point and for each bootstrap.

standard_errors

If Nbootstraps>0, this will be a numeric vector of size NGrid, listing bootstrap-
estimated standard errors for the fitted PSR at each grid point.

CI50lower If Nbootstraps>0, this will be a numeric vector of size Ngrid, listing bootstrap-
estimated lower bounds of the 50-percent confidence intervals for the fitted PSR
at each grid point.

CI50upper Similar to CI50lower, listing upper bounds of 50-percentile confidence inter-
vals.

142 fit_hbd_psr_on_grid

CI95lower Similar to CI50lower, listing lower bounds of 95-percentile confidence inter-
vals.

CI95upper Similar to CI95lower, listing upper bounds of 95-percentile confidence inter-
vals.

Author(s)

Stilianos Louca

References

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_parametric

fit_hbd_model_on_grid

fit_hbd_pdr_parametric

fit_hbd_pdr_on_grid

fit_hbd_psr_on_best_grid_size

model_adequacy_hbd

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
sim = generate_random_tree(parameters = list(rarefaction=rho),

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit PSR on grid
oldest_age=root_age/2 # only consider recent times when fitting

fit_hbd_psr_parametric 143

Ngrid = 10
age_grid = seq(from=0,to=oldest_age,length.out=Ngrid)
fit = fit_hbd_psr_on_grid(tree,

oldest_age = oldest_age,
age_grid = age_grid,
min_PSR = 0,
max_PSR = +100,
condition = "crown",
Ntrials = 10,
Nthreads = 4,
max_model_runtime = 1) # limit model evaluation to 1 second

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))
plot fitted PSR
plot(x = fit$age_grid,

y = fit$fitted_PSR,
main = 'Fitted PSR',
xlab = 'age',
ylab = 'PSR',
type = 'b',
xlim = c(root_age,0))

plot deterministic LTT of fitted model
plot(x = fit$age_grid,

y = fit$fitted_LTT,
main = 'Fitted dLTT',
xlab = 'age',
ylab = 'lineages',
type = 'b',
log = 'y',
xlim = c(root_age,0))

get fitted PSR as a function of age
PSR_fun = approxfun(x=fit$age_grid, y=fit$fitted_PSR)

}

End(Not run)

fit_hbd_psr_parametric

Fit parameterized pulled speciation rates of birth-death models.

Description

Given an ultrametric timetree, estimate the pulled speciation rate (PSR) of homogenous birth-death
(HBD) models that best explains the tree via maximum likelihood, assuming that the PSR is given as
a parameterized function of time before present. Every HBD model is defined by some speciation
and extinction rates (λ and µ) over time, as well as the sampling fraction ρ (fraction of extant

144 fit_hbd_psr_parametric

species sampled). “Homogenous” refers to the assumption that, at any given moment in time, all
lineages exhibit the same speciation/extinction rates. For any given HBD model there exists an
infinite number of alternative HBD models that generate extant trees with the same probability
distributions and yield the same likelihood for any given extant timetree; these “congruent” models
cannot be distinguished from one another solely based on an extant timetree.

Each congruence class is uniquely described by its PSR, defined as PSR = λ · (1 − E), where τ
is time before present and 1 − E(τ) is the probability that a lineage alive at age τ will survive to
the present and be included in the extant tree. That is, two HBD models are congruent if and only
if they have the same PSR profile. This function is designed to estimate the generating congruence
class for the tree, by fitting a finite number of parameters defining the PSR.

Usage

fit_hbd_psr_parametric(tree,
param_values,
param_guess = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
oldest_age = NULL,
age0 = 0,
PSR,
age_grid = NULL,
condition = "auto",
relative_dt = 1e-3,
Ntrials = 1,
max_start_attempts = 1,
Nthreads = 1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

param_values Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or
if the function PSR queries parameter values by name (as opposed to numeric
index).

fit_hbd_psr_parametric 145

param_guess Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

param_min Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

param_max Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

param_scale Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which PSR is defined. See below for more
details. Most users will typically keep age0=0.

PSR Function specifying the pulled speciation rate at any given age (time before
present) and for any given parameter values. This function must take exactly
two arguments, the 1st one being a numeric vector (one or more ages) and the
2nd one being a numeric vector of size NP (parameter values), and return a
numeric vector of the same size as the 1st argument.

age_grid Numeric vector, specifying ages at which the PSR function should be evaluated.
This age grid must be fine enough to capture the possible variation in the PSR
over time, within the permissible parameter range. If of size 1, then the PSR
is assumed to be time-independent. Listed ages must be strictly increasing, and
must cover at least the full considered age interval (from age0 to oldest_age).
Can also be NULL or a vector of size 1, in which case the PSR is assumed to be
time-independent.

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to

146 fit_hbd_psr_parametric

the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., pn ∈ R) that determine
the PSR and the product ρλo (sampling fraction times present-dat extinction rate), by maximizing
the likelihood of observing a given timetree under the HBD model. For example, the investigator
may assume that the PSR varies exponentially over time, i.e. can be described by PSR(t) =
A · e−Bt (where A and B are unknown coefficients and t is time before present); in this case the
model has 2 free parameters, p1 = A and p2 = B, each of which may be fitted to the tree. It
is also possible to include explicit dependencies on environmental parameters (e.g., temperature).

fit_hbd_psr_parametric 147

For example, the investigator may assume that the PSR depends exponentially on global average
temperature, i.e. can be described by PSR(t) = A · e−BT (t) (where A and B are unknown fitted
parameters and T (t) is temperature at time t). To incorporate such environmental dependencies,
one can simply define the function PSR appropriately.

If age0>0, the input tree is essentially trimmed at age0 (omitting anything younger than age0), and
the PSR is fitted to this new (shorter) tree, with time shifted appropriately. The fitted PSR(t) is thus
the product of the speciation rate at time t and the probability of a lineage being in the tree at time
age0. Most users will typically want to leave age0=0.

It is generally advised to provide as much information to the function fit_hbd_psr_parametric as
possible, including reasonable lower and upper bounds (param_min and param_max), a reasonable
parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of the PSR over time, since the likelihood is
calculated under the assumption that both vary linearly between grid points.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model param-
eters in their standard order.

loglikelihood The log-likelihood of the fitted model for the given timetree.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

148 fit_hbd_psr_parametric

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

Author(s)

Stilianos Louca

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

S. Louca (2020). Simulating trees with millions of species. Bioinformatics. 36:2907-2908.

See Also

simulate_deterministic_hbd

loglikelihood_hbd

fit_hbd_model_on_grid

fit_hbd_model_parametric

fit_hbd_pdr_on_grid

fit_hbd_pdr_parametric

model_adequacy_hbd

fit_hbd_psr_parametric 149

Examples

Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*exp(0.1*time_grid)
mus = 1.5*exp(0.09*time_grid)
tree = generate_random_tree(parameters = list(rarefaction=rho),

max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)$tree

root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Define a parametric HBD congruence class, with exponentially varying PSR
The model thus has 2 parameters
PSR_function = function(ages,params){
return(params['A']*exp(-params['B']*ages));
}

Define an age grid on which PSR_function shall be evaluated
Should be sufficiently fine to capture the variation in the PSR
age_grid = seq(from=0,to=100,by=0.01)

Perform fitting
cat(sprintf("Fitting class to tree..\n"))
fit = fit_hbd_psr_parametric(tree,

param_values = c(A=NA, B=NA),
param_guess = c(1,0),
param_min = c(-10,-10),
param_max = c(10,10),
param_scale = 1, # all params are in the order of 1
PSR = PSR_function,
age_grid = age_grid,
Ntrials = 10, # perform 10 fitting trials
Nthreads = 2, # use 2 CPUs
max_model_runtime = 1, # limit model evaluation to 1 second
fit_control = list(rel.tol=1e-6))

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))
}else{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))
print(fit)
}

End(Not run)

150 fit_mk

fit_mk Fit a Markov (Mk) model for discrete trait evolution.

Description

Estimate the transition rate matrix of a continuous-time Markov model for discrete trait evolution
("Mk model") via maximum-likelihood, based on one or more phylogenetic trees and its tips’ states.

Usage

fit_mk(trees,
Nstates,
tip_states = NULL,
tip_priors = NULL,
rate_model = "ER",
root_prior = "auto",
oldest_ages = NULL,
guess_transition_matrix = NULL,
Ntrials = 1,
Nscouts = NULL,
max_model_runtime = NULL,
optim_algorithm = "nlminb",
optim_max_iterations = 200,
optim_rel_tol = 1e-8,
check_input = TRUE,
Nthreads = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

trees Either a single phylogenetic tree of class "phylo", or a list of phylogenetic trees.
Edge lengths should correspond (or be analogous) to time. The trees don’t need
to be ultrametric.

Nstates Integer, specifying the number of possible discrete states that the trait can have.

tip_states Either an integer vector of size Ntips (only permitted if trees[] is a single tree) or
a list containing Ntrees such integer vectors (if trees[] is a list of trees), listing the
state of each tip in each tree. Note that tip_states cannot include NAs or NaNs;
if the states of some tips are uncertain, you should use the option tip_priors
instead. Can also be NULL, in which case tip_priors must be provided.

tip_priors Either a numeric matrix of size Ntips x Nstates (only permitted if trees[] is a
single tree), or a list containing Ntrees such matrixes (if trees[] is a list of trees),

fit_mk 151

listing the likelihood of each state at each tip in each tree. Can also be NULL,
in which case tip_states must be provided. Hence, tip_priors[t][i,s] is
the likelihood of the observed state of tip i in tree t, if the tip’s true state was
in state s. For example, if you know for certain that a tip is in state k, then set
tip_priors[t][i,s]=1 for s=k and tip_priors[t][i,s]=0 for all other s.

rate_model Rate model to be used for the transition rate matrix. Can be "ER" (all rates
equal), "SYM" (transition rate i–>j is equal to transition rate j–>i), "ARD" (all
rates can be different), "SUEDE" (only stepwise transitions i–>i+1 and i–>i-1
allowed, all ’up’ transitions are equal, all ’down’ transitions are equal) or "SRD"
(only stepwise transitions i–>i+1 and i–>i-1 allowed, and each rate can be differ-
ent). Can also be an index matrix that maps entries of the transition matrix to the
corresponding independent rate parameter to be fitted. Diagonal entries should
map to 0, since diagonal entries are not treated as independent rate parameters
but are calculated from the remaining entries in the transition rate matrix. All
other entries that map to 0 represent a transition rate of zero. The format of
this index matrix is similar to the format used by the ace function in the ape
package. rate_model is only relevant if transition_matrix==NULL.

root_prior Prior probability distribution of the root’s states, used to calculate the model’s
overall likelihood from the root’s marginal ancestral state likelihoods. Can
be "flat" (all states equal), "empirical" (empirical probability distribution
of states across the tree’s tips), "stationary" (stationary probability distribu-
tion of the transition matrix), "likelihoods" (use the root’s state likelihoods as
prior), "max_likelihood" (put all weight onto the state with maximum likeli-
hood) or “auto” (will be chosen automatically based on some internal logic). If
"stationary" and transition_matrix==NULL, then a transition matrix is first
fitted using a flat root prior, and then used to calculate the stationary distribution.
root_prior can also be a non-negative numeric vector of size Nstates and with
total sum equal to 1.

oldest_ages Optional numeric or numeric vector of size Ntrees, specifying the oldest age
(time before present) for each tree to consider when fitting the Mk model. If
NULL, the entire trees are considered from the present all the way to their root.
If non-NULL, then each tree is “cut” at the corresponding oldest age, yielding
multiple subtrees, each of which is assumed to be an independent realization of
the Mk process. If oldest_ages is a single numeric, then all trees are cut at the
same oldest age. This option may be useful if temporal variation is suspected in
the Mk rates, and only data near the present are to be used for fitting to avoid
violating the assumptions of a constant-rates Mk model.

guess_transition_matrix

Optional 2D numeric matrix, specifying a reasonable first guess for the transition
rate matrix. May contain NA. May also be NULL, in which case a reasonable first
guess is automatically generated.

Ntrials Integer, number of trials (starting points) for fitting the transition rate matrix. A
higher number may reduce the risk of landing in a local non-global optimum of
the likelihood function, but will increase computation time during fitting.

Nscouts Optional positive integer, number of randomly chosen starting points to consider
for all fitting trials except the first one. Among all "scouted" starting points, the
Ntrials-1 most promising ones will be considered. A greater number of scouts

152 fit_mk

increases the chances of finding a global likelihood maximum. Each scout costs
only one evaluation of the loglikelihood function. If NULL, Nscout is automat-
ically chosen based on the number of fitted parameters and Ntrials. Only
relevant if Ntrials>1, since the first trial always uses the default or provided
parameter guess.

max_model_runtime

Optional positive numeric, specifying the maximum time (in seconds) allowed
for a single evaluation of the likelihood function. If a specific Mk model takes
longer than this threshold to evaluate, then its likelihood is set to -Inf. This
option can be used to avoid badly parameterized models during fitting and can
thus reduce fitting time. If NULL or <=0, this option is ignored.

optim_algorithm

Either "optim" or "nlminb", specifying which optimization algorithm to use for
maximum-likelihood estimation of the transition matrix.

optim_max_iterations

Maximum number of iterations (per fitting trial) allowed for optimizing the like-
lihood function.

optim_rel_tol Relative tolerance (stop criterion) for optimizing the likelihood function.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Nthreads Number of parallel threads to use for running multiple fitting trials simultane-
ously. This only makes sense if your computer has multiple cores/CPUs and
if Ntrials>1. This option is ignored on Windows, because Windows does not
support forking.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated rate parameters. Set to
0 for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

verbose Logical, specifying whether to print progress reports and warnings to the screen.

diagnostics Logical, specifying whether to print detailed diagnostic messages, mainly for
debugging purposes.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

The trait’s states must be represented by integers within 1,..,Nstates, where Nstates is the total num-
ber of possible states. If the states are originally in some other format (e.g. characters or factors),
you should map them to a set of integers 1,..,Nstates. The order of states (if relevant) should be
reflected in their integer representation. For example, if your original states are "small", "medium"

fit_mk 153

and "large" and rate_model=="SUEDE", it is advised to represent these states as integers 1,2,3. You
can easily map any set of discrete states to integers using the function map_to_state_space.

This function allows the specification of the precise tip states (if these are known) using the vector
tip_states. Alternatively, if some tip states are not fully known, you can pass the state likeli-
hoods using the matrix tip_priors. Note that exactly one of the two arguments, tip_states or
tip_priors, must be non-NULL.

Tips must be represented in tip_states or tip_priors in the same order as in tree$tip.label.
None of the input vectors or matrixes need include row or column names; if they do, however, they
are checked for consistency (if check_input==TRUE).

The tree is either assumed to be complete (i.e. include all possible species), or to represent a random
subset of species chosen independently of their states. If the tree is not complete and tips are not
chosen independently of their states, then this method will not be valid.

fit_Mk uses maximum-likelihood to estimate each free parameter of the transition rate matrix.
The number of free parameters depends on the rate_model considered; for example, ER implies a
single free parameter, while ARD implies Nstates x (Nstates-1) free parameters. If multiple trees are
provided as input, the likelihood is the product of likelihoods for each tree, i.e. as if each tree was
an independent realization of the same Markov process.

This function is similar to asr_mk_model, but focused solely on fitting the transition rate matrix
(i.e., without estimating ancestral states) and with the ability to utilize multiple trees at once.

Value

A named list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, an additional
element error (of type character) is included containing an explanation of the
error; in that case the value of any of the other elements is undetermined.

Nstates Integer, the number of states assumed for the model.
transition_matrix

A matrix of size Nstates x Nstates, the fitted transition rate matrix of the model.
The [r,c]-th entry is the transition rate from state r to state c.

loglikelihood Numeric, the log-likelihood of the observed tip states under the fitted model.

Niterations Integer, the number of iterations required to reach the maximum log-likelihood.
Depending on the optimization algorithm used (see optim_algorithm), this
may be NA.

Nevaluations Integer, the number of evaluations of the likelihood function required to reach
the maximum log-likelihood. Depending on the optimization algorithm used
(see optim_algorithm), this may be NA.

converged Logical, indicating whether the fitting algorithm converged. Note that fit_Mk
may return successfully even if convergence was not achieved; if this happens,
the fitted transition matrix may not be reasonable. In that case it is recommended
to change the optimization options, for example increasing optim_max_iterations.

guess_rate Numeric, the initial guess used for the average transition rate, prior to fitting.

AIC Numeric, the Akaike Information Criterion for the fitted model, defined as 2k−
2 log(L), where k is the number of independent fitted parameters and L is the
maximized likelihood.

154 fit_mk

standard_errors

Numeric matrix of size Nstates x Nstates, estimated standard error of the fitted
transition rates, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric matrix of size Nstates x Nstates, lower bounds of the 50% confidence
intervals (25-75% percentile) for the fitted transition rates, based on parametric
bootstrapping. Only returned if Nbootstraps>0.

CI50upper Numeric matrix of size Nstates x Nstates, upper bounds of the 50% confidence
intervals for the fitted transition rates, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95lower Numeric matrix of size Nstates x Nstates, lower bounds of the 95% confidence
intervals (2.5-97.5% percentile) for the fitted transition rates, based on paramet-
ric bootstrapping. Only returned if Nbootstraps>0.

CI95upper Numeric matrix of size Nstates x Nstates, upper bounds of the 95% confidence
intervals for the fitted transition rates, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

Author(s)

Stilianos Louca

References

Z. Yang, S. Kumar and M. Nei (1995). A new method for inference of ancestral nucleotide and
amino acid sequences. Genetics. 141:1641-1650.

M. Pagel (1994). Detecting correlated evolution on phylogenies: a general method for the com-
parative analysis of discrete characters. Proceedings of the Royal Society of London B: Biological
Sciences. 255:37-45.

See Also

asr_mk_model, simulate_mk_model, fit_musse

Examples

Not run:
generate random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

create random transition matrix
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
cat(sprintf("Simulated ER transition rate=%g\n",Q[1,2]))

simulate the trait's evolution
simulation = simulate_mk_model(tree, Q)
tip_states = simulation$tip_states

fit Mk transition matrix

fit_musse 155

results = fit_mk(tree, Nstates, tip_states, rate_model="ER", Ntrials=2)

print Mk model fitting summary
cat(sprintf("Mk model: log-likelihood=%g\n",results$loglikelihood))
cat(sprintf("Fitted ER transition rate=%g\n",results$transition_matrix[1,2]))

End(Not run)

fit_musse Fit a discrete-state-dependent diversification model via maximum-
likelihood.

Description

The Binary State Speciation and Extinction (BiSSE) model (Maddison et al. 2007) and its extension
to Multiple State Speciation Extinction (MuSSE) models (FitzJohn et al. 2009, 2012), Hidden State
Speciation Extinction (HiSSE) models (Beaulieu and O’meara, 2016) or Several Examined and
Concealed States-dependent Speciation and Extinction (SecSSE) models (van Els et al. 2018),
describe a Poissonian cladogenic process whose birth/death (speciation/extinction) rates depend on
the states of an evolving discrete trait. Specifically, extant tips either go extinct or split continuously
in time at Poissonian rates, and birth/death rates at each extant tip depend on the current state of the
tip; lineages tansition stochastically between states acccording to a continuous-time Markov process
with fixed transition rates. At the end of the simulation (i.e., at "present-day"), extant lineages are
sampled according to some state-dependent probability ("sampling_fraction"), which may depend
on proxy state. Optionally, tips may also be sampled continuously over time according to some
Poissonian rate (which may depend on proxy state), in which case the resulting tree may not be
ultrametric.

This function takes as main input a phylogenetic tree (ultrametric unless Poissonian sampling is
included) and a list of tip proxy states, and fits the parameters of a BiSSE/MuSSE/HiSSE/SecSSE
model to the data via maximum-likelihood. Tips can have missing (unknown) proxy states, and the
function can account for biases in species sampling and biases in the identification of proxy states.
The likelihood is calculated using a mathematically equivalent, but computationally more efficient
variant, of the classical postorder-traversal BiSSE/MuSSE/HiSSE/SecSSE algorithm, as described
by Louca (2019). This function has been optimized for large phylogenetic trees, with a relatively
small number of states (i.e. Nstates«Ntips); its time complexity scales roughly linearly with Ntips.

If you use this function for your research please cite Louca and Pennell (2020), DOI:10.1093/sysbio/syz055.

Usage

fit_musse(tree,
Nstates,
NPstates = NULL,
proxy_map = NULL,
state_names = NULL,
tip_pstates = NULL,
tip_priors = NULL,
sampling_fractions = 1,

156 fit_musse

reveal_fractions = 1,
sampling_rates = 0,
transition_rate_model = "ARD",
birth_rate_model = "ARD",
death_rate_model = "ARD",
transition_matrix = NULL,
birth_rates = NULL,
death_rates = NULL,
first_guess = NULL,
lower = NULL,
upper = NULL,
root_prior = "auto",
root_conditioning = "auto",
oldest_age = NULL,
Ntrials = 1,
Nscouts = NULL,
optim_algorithm = "nlminb",
optim_max_iterations = 10000,
optim_max_evaluations = NULL,
optim_rel_tol = 1e-6,
check_input = TRUE,
include_ancestral_likelihoods = FALSE,
Nthreads = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
max_condition_number = 1e4,
relative_ODE_step = 0.1,
E_value_step = 1e-4,
D_temporal_resolution = 100,
max_model_runtime = NULL,
verbose = TRUE,
diagnostics = FALSE,
verbose_prefix = "")

Arguments

tree Phylogenetic tree of class "phylo", representing the evolutionary relationships
between sampled species/lineages. Unless Poissonian sampling is included in
the model (option sampling_rates), this tree should be ultrametric.

Nstates Integer, specifying the number of possible discrete states a tip can have, influ-
encing speciation/extinction rates. For example, if Nstates==2 then this corre-
sponds to the common Binary State Speciation and Extinction (BiSSE) model
(Maddison et al., 2007). In the case of a HiSSE/SecSSE model, Nstates refers
to the total number of diversification rate categories. For example, in the case of
the HiSSE model described by Beaulieu and O’meara (2016), Nstates=4.

NPstates Integer, optionally specifying a number of "proxy-states" that are observed in-
stead of the underlying speciation/extinction-modulating states. To fit a HiSSE/SecSSE
model, NPstates should be smaller than Nstates. Each state corresponds

fit_musse 157

to a different proxy-state, as defined using the variable proxy_map (see be-
low). For BiSSE/MuSSE with no hidden states, NPstates can be set to either
NULL or equal to Nstates; in either case, NPstates will be considered equal to
Nstates. For example, in the case of the HiSSE model described by Beaulieu
and O’meara (2016), NPstates=2.

proxy_map Integer vector of size Nstates and with values in 1,..NPstates, specifying the
correspondence between states (i.e. diversification-rate categories) and proxy-
states, in a HiSSE/SecSSE model. Specifically, proxy_map[s] indicates which
proxy-state the state s is represented by. Each proxy-state can represent multiple
states (i.e. proxies are ambiguous), but each state must be represented by exactly
one proxy-state. For example, to setup the HiSSE model described by Beaulieu
and O’meara (2016), use proxy_map=c(1,2,1,2). For non-HiSSE models, set
this to NULL or to c(1:Nstates). See below for more details.

state_names Optional character vector of size Nstates, specifying a name/description for
each state. This does not influence any of the calculations. It is merely used
to add human-readable row/column names (rather than integers) to the returned
vectors/matrices. If NULL, no row/column names are added.

tip_pstates Integer vector of size Ntips, listing the proxy state at each tip, in the same order
as tips are indexed in the tree. The vector may (but need not) include names; if it
does, these are checked for consistency with the tree (if check_input==TRUE).
Values must range from 1 to NPstates (which is assumed equal to Nstates in
the case of BiSSE/MuSSE). States may also be NA, corresponding to unknown
tip proxy states (no information available).

tip_priors Numeric matrix of size Ntips x Nstates (or of size Ntips x NPstates), listing
prior likelihoods of each state (or each proxy-state) at each tip. Can be provided
as an alternative to tip_pstates. Thus, tip_priors[i,s] is the likelihood of
observing the data (i.e., sampling tip i and observing the observed state) if the tip
i was at state s (or proxy-state s). Hence, tip_priors should account for sam-
pling fractions as well as reveal fractions. Either tip_pstates or tip_priors
must be non-NULL, but not both.

sampling_fractions

Numeric vector of size NPstates, with values between 0 and 1, listing the sam-
pling fractions of extant species depending on proxy-state. That is, sampling_fractions[p]
is the probability that an extant species, having proxy state p, is included in the
phylogeny at present-day. If all extant species are included in the tree with the
same probability (i.e., independent of state), this can also be a single number. If
NULL (default), all extant species are assumed to be included in the tree. Irrele-
vant if tip_priors is provided and valid for all tips.

reveal_fractions

Numeric vector of size NPstates, with values between 0 and 1, listing the
probabilities of proxy-state identification depending on proxy-state. That is,
reveal_fractions[p] is the probability that a species with proxy-state p will
have a known ("revealed") state, conditional upon being included in the tree.
This can be used to incorporate reveal biases for tips, depending on their proxy
state. Can also be NULL or a single number (in which case reveal fractions are
assumed to be independent of proxy-state). Note that only the relative values
in reveal_fractions matter, for example c(1,2,1) has the same effect as

158 fit_musse

c(0.5,1,0.5), because reveal_fractions is normalized internally anyway.
Irrelevant if tip_priors is provided and valid for all tips.

sampling_rates Numeric vector of size NPstates, listing Poissonian per-lineage sampling rates
over time. Hence, sampling_rates[p] is the rate at which lineages are sampled
over time when they are in proxy state p. Can also be a single numeric, in which
case sampling rates are the same for all proxy states. If NULL, Poissonian sam-
pling is assumed to not occur. Note that earlier MuSSE/HiSSE models (e.g., by
Beaulieu and O’Meara, 2016) do not include Poissonian sampling (i.e., all tips
are assumed to have been sampled at present-day). Poissonian sampling through
time is common in epidemiological models but uncommon in macroevolution
models.

transition_rate_model

Either a character or a 2D integer matrix of size Nstates x Nstates, specifying
the model for the transition rates between states. This option controls the para-
metric complexity of the state transition model, i.e. the number of independent
rates and the correspondence between independent and dependent rates. If a
character, then it must be one of "ER", "SYM", "ARD", "SUEDE" or "SRD", as
used for Mk models (see the function asr_mk_model for details). For example,
"ARD" (all rates different) specifies that all transition rates should be considered
as independent parameters with potentially different values.
If an integer matrix, then it defines a custom parametric structure for the tran-
sition rates, by mapping entries of the transition matrix to a set of indepen-
dent transition-rate parameters (numbered 1,2, and so on), similarly to the op-
tion rate_model in the function asr_mk_model, and as returned for example
by the function get_transition_index_matrix. Entries must be between 1
and Nstates, however 0 may also be used to denote a fixed value of zero. For
example, if transition_rate_model[1,2]=transition_rate_model[2,1],
then the transition rates 1->2 and 2->1 are assumed to be equal. Entries on the
diagonal are ignored, since the diagonal elements are always adjusted to en-
sure a valid Markov transition matrix. To construct a custom matrix with the
proper structure, it may be convenient to first generate an "ARD" matrix using
get_transition_index_matrix, and then modify individual entries to reduce
the number of independent rates.

birth_rate_model

Either a character or an integer vector of length Nstates, specifying the model
for the various birth (speciation) rates. This option controls the parametric com-
plexity of the possible birth rates, i.e. the number of independent birth rates and
the correspondence between independent and dependent birth rates. If a char-
acter, then it must be either "ER" (equal rates) or "ARD" (all rates different). If
an integer vector, it must map each state to an indepedent birth-rate parameter
(indexed 1,2,..). For example, the vector c(1,2,1) specifies that the birth-rates
λ1 and λ3 must be the same, but λ2 is independent.

death_rate_model

Either a character or an integer vector of length Nstates, specifying the model
for the various death (extinction) rates. Similar to birth_rate_model.

transition_matrix

Either NULL or a 2D matrix of size Nstates x Nstates, specifying known (and
thus fixed) transition rates between states. For example, setting some elements

fit_musse 159

to 0 specifies that these transitions cannot occur directly. May also contain NA,
indicating rates that are to be fitted. If NULL or empty, all rates are considered un-
known and are therefore fitted. Note that, unless transition_rate_model=="ARD",
values in transition_matrix are assumed to be consistent with the rate model,
that is, rates specified to be equal under the transition rate model are expected to
also have equal values in transition_matrix.

birth_rates Either NULL, or a single number, or a numeric vector of length Nstates, specify-
ing known (and thus fixed) birth rates for each state. May contain NA, indicating
rates that are to be fitted. For example, the vector c(5,0,NA) specifies that
λ1 = 5, λ2 = 0 and that λ3 is to be fitted. If NULL or empty, all birth rates are
considered unknown and are therefore fitted. If a single number, all birth rates
are considered fixed at that given value.

death_rates Either NULL, or a single number, or a numeric vector of length Nstates, specify-
ing known (and thus fixed) death rates for each state. Similar to birth_rates.

first_guess Either NULL, or a named list containing optional initial suggestions for various
model parameters, i.e. start values for fitting. The list can contain any or all of
the following elements:

• transition_matrix: A single number or a 2D numeric matrix of size
Nstates x Nstates, specifying suggested start values for the transition rates.
May contain NA, indicating rates that should be guessed automatically by
the function. If a single number, then that value is used as a start value for
all transition rates.

• birth_rates: A single number or a numeric vector of size Nstates, speci-
fying suggested start values for the birth rates. May contain NA, indicating
rates that should be guessed automatically by the function (by fitting a sim-
ple birth-death model, see fit_tree_model).

• death_rates: A single number or a numeric vector of size Nstates, speci-
fying suggested start values for the death rates. May contain NA, indicating
rates that should be guessed automatically by the function (by fitting a sim-
ple birth-death model, see fit_tree_model).

Start values are only relevant for fitted (i.e., non-fixed) parameters.
lower Either NULL or a named list containing optional lower bounds for various model

parameters. The list can contain any or all of the elements transition_matrix,
birth_rates and death_rates, structured similarly to first_guess. For ex-
ample, list(transition_matrix=0.1, birth_rates=c(5,NA,NA)) specifies
that all transition rates between states must be 0.1 or greater, that the birth rate
λ1 must be 5 or greater, and that all other model parameters have unspecified
lower bound. For parameters with unspecified lower bounds, zero is used as a
lower bound. Lower bounds only apply to fitted (i.e., non-fixed) parameters.

upper Either NULL or a named list containing optional upper bounds for various model
parameters. The list can contain any or all of the elements transition_matrix,
birth_rates and death_rates, structured similarly to upper. For example,
list(transition_matrix=2, birth_rates=c(10,NA,NA)) specifies that all
transition rates between states must be 2 or less, that the birth rate λ1 must be 10
or less, and that all other model parameters have unspecified upper bound. For
parameters with unspecified upper bounds, infinity is used as an upper bound.
Upper bounds only apply to fitted (i.e., non-fixed) parameters.

160 fit_musse

root_prior Either a character or a numeric vector of size Nstates, specifying the prior prob-
abilities of states for the root, i.e. the weights for obtaining a single model
likelihood by averaging the root’s state likelihoods. If a character, then it must
be one of "flat", "empirical", "likelihoods", "max_likelihood" or "auto". "empir-
ical" means the root’s prior is set to the proportions of (estimated) extant species
in each state (correcting for sampling fractions and reveal fractions, if appli-
cable). "likelihoods" means that the computed state-likelihoods of the root are
used, after normalizing to obtain a probability distribution; this is the approach
used in the package hisse::hisse v1.8.9 under the option root.p=NULL, and
the approach in the package diversitree::find.mle v0.9-10 under the op-
tion root=ROOT.OBS. If "max_likelihood", then the root’s prior is set to a Dirac
distribution, with full weight given to the maximum-likelihood state at the root
(after applying the conditioning). If a numeric vector, root_prior specifies
custom probabilities (weights) for each state. Note that if root_conditioning
is "madfitz" or "herr_als" (see below), then the prior is set before the condi-
tioning and not updated afterwards for consistency with other R packages.

root_conditioning

Character, specifying an optional modification to be applied to the root’s state
likelihoods prior to averaging. Can be "none" (no modification), "madfitz",
"herr_als", "crown" or "stem". "madfitz" and "herr_als" (after van Els, Etiene
and Herrera-Alsina 2018) are the options implemented in the package hisse
v1.8.9, conditioning the root’s state-likelihoods based on the birth-rates and the
computed extinction probability (after or before averaging, respectively). See
van Els (2018) for a comparison between "madfitz" and "herr_als". The option
"stem" conditions the state likelihoods on the probability that the stem lineage
would survive until the present. The option "crown" conditions the state like-
lihoods on the probability that a split occurred at oldest_age and that the two
child lineages survived until the present; this option is only recommended if
oldest_age is equal to the root age.

oldest_age Strictly positive numeric, specifying the oldest age (time before present) to con-
sider for fitting. If this is smaller than the tree’s root age, then the tree is split into
multiple subtrees at oldest_age, and each subtree is considered as an indepen-
dent realization of the same diversification/evolution process whose parameters
are to be estimated. The root_conditioning and root_prior are applied sep-
arately to each subtree, prior to calculating the joint (product) likelihood of all
subtrees. This option can be used to restrict the fitting to a small (recent) time
interval, during which the MuSSE/BiSSE assumptions (e.g., time-independent
speciation/extinction/transition rates) are more likely to hold. If oldest_age is
NULL, it is automatically set to the root age. In principle oldest_age may also
be older than the root age.

Ntrials Non-negative integer, specifying the number of trials for fitting the model, using
alternative (randomized) starting parameters at each trial. A larger Ntrials
reduces the risk of landing on a local non-global optimum of the likelihood
function, and thus increases the chances of finding the truly best fit. If 0, then
no fitting is performed, and only the first-guess (i.e., provided or guessed start
params) is evaluated and returned. Hence, setting Ntrials=0 can be used to
obtain a reasonable set of start parameters for subsequent fitting or for Markov
Chain Monte Carlo.

fit_musse 161

Nscouts Optional positive integer, number of randomly chosen starting points to consider
for all fitting trials except the first one. Among all "scouted" starting points, the
Ntrials-1 most promising ones will be considered. A greater number of scouts
increases the chances of finding a global likelihood maximum. Each scout costs
only one evaluation of the loglikelihood function. If NULL, Nscout is automat-
ically chosen based on the number of fitted parameters and Ntrials. Only
relevant if Ntrials>1, since the first trial always uses the default or provided
parameter guess.

optim_algorithm

Character, specifying the optimization algorithm for fitting. Must be one of
either "optim", "nlminb" or "subplex" (requires the nloptr package).

optim_max_iterations

Integer, maximum number of iterations allowed for fitting. Only relevant for
"optim" and "nlminb".

optim_max_evaluations

Integer, maximum number of function evaluations allowed for fitting. Only rel-
evant for "nlminb" and "subplex" (requires the nloptr package).

optim_rel_tol Numeric, relative tolerance for the fitted log-likelihood.

check_input Logical, specifying whether to check the validity of input variables. If you are
certain that all input variables are valid, you can set this to FALSE to reduce
computation.

include_ancestral_likelihoods

Logical, specifying whether to include the state likelihoods for each node, in
the returned variables. These are the “D” variables calculated as part of the
likelihood based on the subtree descending from each node, and may be used
for "local" ancestral state reconstructions.

Nthreads Integer, specifying the number of threads for running multiple fitting trials in
parallel. Only relevant if Ntrials>1. Should generally not exceed the number
of CPU cores on a machine. Must be a least 1.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for
estimating standard errors and confidence intervals of maximum-likelihood fit-
ted parameters. If 0, no bootstrapping is performed. Typical values are 10-100.
At each bootstrap sampling, a simulation of the fitted MuSSE/HiSSE model
is performed, the parameters are estimated anew based on the simulation, and
subsequently compared to the original fitted parameters. Each bootstrap sam-
pling will thus use roughly as many computational resources as the original
maximum-likelihood fit (e.g., same number of trials, same optimization param-
eters etc).

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

162 fit_musse

max_condition_number

Positive unitless number, specifying the maximum permissible condition num-
ber for the "G" matrix computed for the log-likelihood. A higher condition
number leads to faster computation (roughly on a log-scale) especially for large
trees, at the potential expense of lower accuracy. Typical values are 1e2-1e5.
See Louca (2019) for further details on the condition number of the G matrix.

relative_ODE_step

Positive unitless number, specifying the default relative time step for the ordi-
nary differential equation solvers.

E_value_step Positive unitless number, specifying the relative difference between subsequent
recorded and interpolated E-values, in the ODE solver for the extinction proba-
bilities E (Louca 2019). Typical values are 1e-2 to 1e-5. A smaller E_value_step
increases interpolation accuracy, but also increases memory requirements and
adds runtime (scaling with the tree’s age span, not Ntips).

D_temporal_resolution

Positive unitless number, specifying the relative resolution for interpolating G-
map over time (Louca 2019). This is relative to the typical time scales at which
G-map varies. For example, a resolution of 10 means that within a typical time
scale there will be 10 interpolation points. Typical values are 1-1000. A greater
resolution increases interpolation accuracy, but also increases memory require-
ments and adds runtime (scaling with the tree’s age span, not Ntips).

max_model_runtime

Numeric, optional maximum number of seconds for evaluating the likelihood of
a model, prior to cancelling the calculation and returning Inf. This may be use-
ful if extreme model parameters (e.g., reached transiently during fitting) require
excessive calculation time. Parameters for which the calculation of the likeli-
hood exceed this threshold, will be considered invalid and thus avoided during
fitting. For example, for trees with 1000 tips a time limit of 10 seconds may be
reasonable. If 0, no time limit is imposed.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
In any case, fatal errors are always reported.

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports, warnings and
errors to the screen.

Details

HiSSE/SecSSE models include two discrete traits, one trait that defines the rate categories of diver-
sification rates (as in BiSSE/MuSSE), and one trait that does not itself influence diversification but
whose states (here called "proxy states") each represent one or more of the diversity-modulating
states. HiSSE models (Beaulieu and O’meara, 2016) and SecSSE models (van Els et al., 2018)
are closely related to BiSSE/MuSSE models, the main difference being the fact that the actual
diversification-modulating states are not directly observed. In essence, a HiSSE/SecSSE model is
a BiSSE/MuSSE model, where the final tip states are replaced by their proxy states, thus "mask-
ing" the underlying diversity-modulating trait. This function is able to fit HiSSE/SecSSE models
with appropriate choice of the input variables Nstates, NPstates and proxy_map. Note that the

fit_musse 163

terminology and setup of HiSSE/SecSSE models followed here differs from their description in
the original papers by Beaulieu and O’meara (2016) and van Els et al. (2018), in order to achieve
what we think is a more intuitive unification of BiSSE/MuSSE/HiSSE/SecSSE. For ease of ter-
minology, when considering a BiSSE/MuSSE model, here we use the terms "states" and "proxy-
states" interchangeably, since under BiSSE/MuSSE the proxy trait can be considered identical to the
diversification-modulating trait. A distinction between "states" and "proxy-states" is only relevant
for HiSSE/SecSSE models.

As an example of a HiSSE model, Nstates=4, NPstates=2 and proxy_map=c(1,2,1,2) specifies
that states 1 and 3 are represented by proxy-state 1, and states 2 and 4 are represented by proxy-
state 2. This is the original case described by Beaulieu and O’Meara (2016); in their terminology,
there would be 2 "hidden"" states ("0" and "1") and 2 "observed" states ("A" and "B"), and the
4 diversification rate categories (Nstates=4) would be called "0A", "1A", "0B" and "1B". The
somewhat different terminology used here allows for easier generalization to an arbitrary number
of diversification-modulating states and an arbitrary number of proxy states. For example, if there
are 6 diversification modulating states, represented by 3 proxy-states as 1->A, 2->A, 3->B, 4->C,
5->C, 6->C, then one would set Nstates=6, NPstates=3 and proxy_map=c(1,1,2,3,3,3).

The run time of this function scales asymptotically linearly with tree size (Ntips), although run
times can vary substantially depending on model parameters. As a rule of thumb, the higher the
birth/death/transition rates are compared to the tree’s overall time span, the slower the calculation
becomes.

The following arguments control the tradeoff between accuracy and computational efficiency:

• max_condition_number: A smaller value means greater accuracy, at longer runtime and more
memory.

• relative_ODE_step: A smaller value means greater accuracy, at longer runtime.

• E_value_step: A smaller value means greater accuracy, at longer runtime and more memory.

• D_temporal_resolution: A greater value means greater accuracy, at longer runtime and
more memory.

Typically, the default values for these arguments should be fine. For smaller trees, where cladogenic
and sampling stochasticity is the main source of uncertainty, these parameters can probably be made
less stringent (i.e., leading to lower accuracy and faster computation), but then again for small trees
computational efficiency may not be an issue anyway.

Note that the old option max_start_attempts has been removed. Consider using Nscouts instead.

Value

A named list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, an additional
element error (of type character) is included containing an explanation of the
error; in that case the value of any of the other elements is undetermined.

Nstates Integer, the number of states assumed for the model.

NPstates Integer, the number of proxy states assumed for the model. Note that in the case
of a BiSSE/MuSSE model, this will be the same as Nstates.

root_prior Character, or numeric vector of length Nstates, specifying the root prior used.

164 fit_musse

parameters Named list containing the final maximum-likelihood fitted model parameters. If
Ntrials>1, then this contains the fitted parameters yielding the highest likeli-
hood. Will contain the following elements:

• transition_matrix: 2D numeric matrix of size Nstates x Nstates, listing
the fitted transition rates between states.

• birth_rates: Numeric vector of length Nstates, listing the fitted state-
dependent birth rates.

• death_rates: Numeric vector of length Nstates, listing the fitted state-
dependent death rates.

start_parameters

Named list containing the default start parameter values for the fitting. Struc-
tured similarly to parameters. Note that if Ntrials>1, only the first trial will
have used these start values, all other trials will have used randomized start
values. Will be defined even if Ntrials==0, and can thus be used to obtain a
reasonable guess for the start parameters without actually fitting the model.

loglikelihood Numeric, the maximized log-likelihood of the model, if fitting succeeded.
AIC Numeric, the Akaike Information Criterion for the fitted model, defined as 2k−

2 log(L), where k is the number of fitted parameters and L is the maximized
likelihood.

Niterations The number of iterations needed for the best fit. Only relevant if the optimization
method was "optim" or "nlminb".

Nevaluations Integer, the number of function evaluations needed for the best fit. Only relevant
if the optimization method was "nlminb" or "subplex".

converged Logical, indicating whether convergence was successful during fitting. If con-
vergence was not achieved, and the fitting was stopped due to one of the stopping
criteria optim_max_iterations or optim_max_evaluations, the final likeli-
hood will still be returned, but the fitted parameters may not be reasonable.

warnings Character vector, listing any warnings encountered during evaluation of the like-
lihood function at the fitted parameter values. For example, this vector may con-
tain warnings regarding the differential equation solvers or regarding the rank of
the G-matrix (Louca, 2019).

subroots Integer vector, listing indices of tips/nodes in the tree that were considered as
starting points of independent MuSSE processes. If oldest_age was equal to
or greater than the root age, then subroots will simply list the tree’s root.

ML_subroot_states

Integer vector, with values between 1 and Nstates, giving the maximum-likelihood
estimate of each subroot’s state.

ML_substem_states

Integer vector, with values between 1 and Nstates, giving the maximum-likelihood
estimate of the state at each subroot’s stem (i.e., exactly at oldest_age).

trial_start_loglikelihoods

Numeric vector of length Ntrials, listing the initial loglikelihoods (i.e., at the
starting parameter values) for each fitting trial.

trial_loglikelihoods

Numeric vector of length Ntrials, listing the maximized loglikelihoods for
each fitting trial. These may be used for diagnosing the robustness of maximum-
likelihood estimates and the assessing the needed for increasing Ntrials.

fit_musse 165

trial_Niterations

Integer vector of length Ntrials, listing the number of iterations of each trial.
Depending on the fitting algorithm used (option optim_algorithm), these may
be NA (not available).

trial_Nevaluations

Integer vector of length Ntrials, listing the number of likelihood evaluations of
each trial. Depending on the fitting algorithm used (option optim_algorithm),
these may be NA (not available).

standard_errors

Named list containing the elements "transition_matrix" (numeric matrix of size
Nstates x Nstates), "birth_rates" (numeric vector of size Nstates) and "death_rates"
(numeric vector of size Nstates), listing standard errors of all model parameters
estimated using parametric bootstrapping. Only included if Nbootstraps>0.
Note that the standard errors of non-fitted (i.e., fixed) parameters will be zero.

CI50lower Named list containing the elements "transition_matrix" (numeric matrix of size
Nstates x Nstates), "birth_rates" (numeric vector of size Nstates) and "death_rates"
(numeric vector of size Nstates), listing the lower end of the 50% confidence
interval (i.e. the 25% quantile) for each model parameter, estimated using para-
metric bootstrapping. Only included if Nbootstraps>0.

CI50upper Similar to CI50lower, but listing the upper end of the 50% confidence interval
(i.e. the 75% quantile) for each model parameter. For example, the confidence
interval for he birth-rate λ1 will be between CI50lower$birth_rates[1] and
CI50upper$birth_rates[1]. Only included if Nbootstraps>0.

CI95lower Similar to CI50lower, but listing the lower end of the 95% confidence in-
terval (i.e. the 2.5% quantile) for each model parameter. Only included if
Nbootstraps>0.

CI95upper Similar to CI50upper, but listing the upper end of the 95% confidence in-
terval (i.e. the 97.5% quantile) for each model parameter. Only included if
Nbootstraps>0.

CI 2D numeric matrix, listing maximum-likelihood estimates, standard errors and
confidence intervals for all model parameters (one row per parameter, one col-
umn for ML-estimates, one column for standard errors, two columns per con-
fidence interval). Standard errors and confidence intervals are as estimated
using parametric bootstrapping. This matrix contains the same information
as parameters, standard_errors, CI50lower, CI50upper, CI95lower and
CI95upper, but in a more compact format. Only included if Nbootstraps>0.

ancestral_likelihoods

2D matrix of size Nnodes x Nstates, listing the computed state-likelihoods for
each node in the tree. These may be used for "local" ancestral state reconstruc-
tions, based on the information contained in the subtree descending from each
node. Note that for each node the ancestral likelihoods have been normalized
for numerical reasons, however they should not be interpreted as actual prob-
abilities. For each node n and state s, ancestral_likelihoods[n,s] is pro-
portional to the likelihood of observing the descending subtree and associated tip
proxy states, if node n was at state s. Only included if include_ancestral_likelihoods==TRUE.

166 fit_musse

Author(s)

Stilianos Louca

References

W. P. Maddison, P. E. Midford, S. P. Otto (2007). Estimating a binary character’s effect on speciation
and extinction. Systematic Biology. 56:701-710.

R. G. FitzJohn, W. P. Maddison, S. P. Otto (2009). Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Systematic Biology. 58:595-611

R. G. FitzJohn (2012). Diversitree: comparative phylogenetic analyses of diversification in R.
Methods in Ecology and Evolution. 3:1084-1092

J. M. Beaulieu and B. C. O’Meara (2016). Detecting hidden diversification shifts in models of
trait-dependent speciation and extinction. Systematic Biology. 65:583-601.

D. Kuehnert, T. Stadler, T. G. Vaughan, A. J. Drummond (2016). Phylodynamics with migration: A
computational framework to quantify population structure from genomic data. Molecular Biology
and Evolution. 33:2102-2116.

P. van Els, R. S. Etiene, L. Herrera-Alsina (2018). Detecting the dependence of diversification on
multiple traits from phylogenetic trees and trait data. Systematic Biology. syy057.

S. Louca and M. W. Pennell (2020). A general and efficient algorithm for the likelihood of diversifi-
cation and discrete-trait evolutionary models. Systematic Biology. 69:545-556. DOI:10.1093/sysbio/syz055

See Also

simulate_dsse, asr_mk_model, fit_tree_model

Examples

EXAMPLE 1: BiSSE model
- - - - - - - - - - - - - -
Choose random BiSSE model parameters
Nstates = 2
Q = get_random_mk_transition_matrix(Nstates, rate_model="ARD", max_rate=0.1)
parameters = list(birth_rates = runif(Nstates,5,10),

death_rates = runif(Nstates,0,5),
transition_matrix = Q)

rarefaction = 0.5 # randomly omit half of the tips

Simulate a tree under the BiSSE model
simulation = simulate_musse(Nstates,

parameters = parameters,
max_tips = 1000,
sampling_fractions = rarefaction)

tree = simulation$tree
tip_states = simulation$tip_states

Not run:
fit BiSSE model to tree & tip data
fit = fit_musse(tree,

fit_musse 167

Nstates = Nstates,
tip_pstates = tip_states,
sampling_fractions = rarefaction)

if(!fit$success){
cat(sprintf("ERROR: Fitting failed"))

}else{
compare fitted birth rates to true values
errors = (fit$parameters$birth_rates - parameters$birth_rates)
relative_errors = errors/parameters$birth_rates
cat(sprintf("BiSSE relative birth-rate errors:\n"))
print(relative_errors)

}

End(Not run)

EXAMPLE 2: HiSSE model, with bootstrapping
- - - - - - - - - - - - - -
Choose random HiSSE model parameters
Nstates = 4
NPstates = 2
Q = get_random_mk_transition_matrix(Nstates, rate_model="ARD", max_rate=0.1)
rarefaction = 0.5 # randomly omit half of the tips
parameters = list(birth_rates = runif(Nstates,5,10),

death_rates = runif(Nstates,0,5),
transition_matrix = Q)

reveal the state of 30% & 60% of tips (in state 1 & 2, respectively)
reveal_fractions = c(0.3,0.6)

use proxy map corresponding to Beaulieu and O'Meara (2016)
proxy_map = c(1,2,1,2)

Simulate a tree under the HiSSE model
simulation = simulate_musse(Nstates,

NPstates = NPstates,
proxy_map = proxy_map,
parameters = parameters,
max_tips = 1000,
sampling_fractions = rarefaction,
reveal_fractions = reveal_fractions)

tree = simulation$tree
tip_states = simulation$tip_proxy_states

Not run:
fit HiSSE model to tree & tip data
run multiple trials to ensure global optimum
also estimate confidence intervals via bootstrapping
fit = fit_musse(tree,

Nstates = Nstates,
NPstates = NPstates,
proxy_map = proxy_map,
tip_pstates = tip_states,

168 fit_sbm_const

sampling_fractions = rarefaction,
reveal_fractions = reveal_fractions,
Ntrials = 5,
Nbootstraps = 10,
max_model_runtime = 0.1)

if(!fit$success){
cat(sprintf("ERROR: Fitting failed"))

}else{
compare fitted birth rates to true values
errors = (fit$parameters$birth_rates - parameters$birth_rates)
relative_errors = errors/parameters$birth_rates
cat(sprintf("HiSSE relative birth-rate errors:\n"))
print(relative_errors)

print 95%-confidence interval for first birth rate
cat(sprintf("CI95 for lambda1: %g-%g",

fit$CI95lower$birth_rates[1],
fit$CI95upper$birth_rates[1]))

}

End(Not run)

fit_sbm_const Fit a phylogeographic Spherical Brownian Motion model.

Description

Given one or more rooted phylogenetic trees and geographic coordinates (latitudes & longitudes) for
the tips of each tree, this function estimates the diffusivity of a Spherical Brownian Motion (SBM)
model for the evolution of geographic location along lineages (Perrin 1928; Brillinger 2012). Esti-
mation is done via maximum-likelihood and using independent contrasts between sister lineages.

Usage

fit_sbm_const(trees,
tip_latitudes,
tip_longitudes,
radius,
phylodistance_matrixes = NULL,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs = FALSE,
min_MRCA_time = 0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
min_diffusivity = NULL,

fit_sbm_const 169

max_diffusivity = NULL,
Nbootstraps = 0,
NQQ = 0,
SBM_PD_functor = NULL,
focal_diffusivities = NULL)

Arguments

trees Either a single rooted tree or a list of rooted trees, of class "phylo". The root of
each tree is assumed to be the unique node with no incoming edge. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance. When multiple trees are provided, it is either assumed that their roots
coincide in time (if align_trees_at_root=TRUE) or that each tree’s youngest
tip was sampled at present day (if align_trees_at_root=FALSE).

tip_latitudes Numeric vector of length Ntips, or a list of vectors, listing latitudes of tips in
decimal degrees (from -90 to 90). If trees is a list of trees, then tip_latitudes
should be a list of vectors of the same length as trees, listing tip latitudes for
each of the input trees.

tip_longitudes Numeric vector of length Ntips, or a list of vectors, listing longitudes of tips in
decimal degrees (from -180 to 180). If trees is a list of trees, then tip_longitudes
should be a list of vectors of the same length as trees, listing tip longitudes for
each of the input trees.

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

phylodistance_matrixes

Numeric matrix, or a list of numeric matrixes, listing phylogenetic distances be-
tween tips for each tree. If trees is a list of trees, then phylodistance_matrixes
should be a list of the same length as trees, whose n-th element should be
a numeric matrix comprising as many rows and columns as there are tips in
the n-th tree; the entry phylodistance_matrixes[[n]][i,j] is the phyloge-
netic distance between tips i and j in tree n. If trees is a single tree, then
phylodistance_matrixes can be a single numeric matrix. If NULL (default),
phylogenetic distances between tips are calculated based on the provided trees,
otherwise phylogenetic distances are taken from phylodistance_matrixes; in
the latter case the trees are only used for the topology (determining tip pairs for
independent contrasts), but not for calculating phylogenetic distances.

clade_states Either NULL, or an integer vector of length Ntips+Nnodes, or a list of integer
vectors, listing discrete states of every tip and node in the tree. If trees is a
list of trees, then clade_states should be a list of vectors of the same length
as trees, listing tip and node states for each of the input trees. For example,
clade_states[[2]][10] specifies the state of the 10-th tip or node in the 2nd
tree. States may be, for example, geographic regions, sub-types, discrete traits
etc, and can be used to restrict independent contrasts to tip pairs within the same
state (see option no_state_transitions).

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between

170 fit_sbm_const

tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips’ MRCA
has at least this distance from the root. Set min_MRCA_time<=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips’ MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

no_state_transitions

Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared. If TRUE, then clade_states must be provided.

only_state Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

min_diffusivity

Non-negative numeric, specifying the minimum possible diffusivity. If NULL,
this is automatically chosen.

max_diffusivity

Non-negative numeric, specifying the maximum possible diffusivity. If NULL,
this is automatically chosen.

Nbootstraps Non-negative integer, specifying an optional number of parametric bootstraps to
performs for estimating standard errors and confidence intervals.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

fit_sbm_const 171

focal_diffusivities

Optional numeric vector, listing diffusivities of particular interest and for which
the log-likelihoods should be returned. This may be used e.g. for diagnostic pur-
poses, e.g. to see how "sharp" the likelihood peak is at the maximum-likelihood
estimate.

Details

For short expected transition distances this function uses the approximation formula by Ghosh et
al. (2012). For longer expected transition distances the function uses a truncated approximation of
the series representation of SBM transition densities (Perrin 1928). It is assumed that tips are sam-
pled randomly without any biases for certain geographic regions. If you suspect strong geographic
sampling biases, consider using the function fit_sbm_geobiased_const.

This function can use multiple trees to fit the diffusivity under the assumption that each tree is an
independent realization of the same SBM process, i.e. all lineages in all trees dispersed with the
same diffusivity.

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

diffusivity Numeric, the estimated diffusivity, in units distance^2/time. Distance units are
the same as used for the radius, and time units are the same as the tree’s edge
lengths. For example, if the radius was specified in km and edge lengths are in
Myr, then the estimated diffusivity will be in km^2/Myr.

loglikelihood Numeric, the log-likelihood of the data at the estimated diffusivity.

Ncontrasts Integer, number of independent contrasts (i.e., tip pairs) used to estimate the
diffusivity. This is the number of independent data points used.

phylodistances Numeric vector of length Ncontrasts, listing the phylogenetic distances of the
independent contrasts used in the fitting.

geodistances Numeric vector of length Ncontrasts, listing the geographical distances of the
independent contrasts used in the fitting.

focal_loglikelihoods

Numeric vector of the same length as focal_diffusivities, listing the log-
likelihoods for the diffusivities provided in focal_diffusivities.

standard_error Numeric, estimated standard error of the estimated diffusivity, based on para-
metric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric, lower bound of the 50% confidence interval for the estimated diffu-
sivity (25-75% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

172 fit_sbm_const

CI50upper Numeric, upper bound of the 50% confidence interval for the estimated diffu-
sivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric, lower bound of the 95% confidence interval for the estimated diffusiv-
ity (2.5-97.5% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI95upper Numeric, upper bound of the 95% confidence interval for the estimated diffu-
sivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. If L denotes the loglikelihood of new data generated by the fitted model
(under the same model) andM denotes the expectation of L, then consistency
is the probability that |L −M | will be greater or equal to |X −M |, where X
is the loglikelihood of the original data under the fitted model. Only returned if
Nbootstraps>0. A low consistency (e.g., <0.05) indicates that the fitted model
is a poor description of the data. See Lindholm et al. (2019) for background.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

fit_sbm_geobiased_const, simulate_sbm, fit_sbm_parametric, fit_sbm_linear, fit_sbm_on_grid

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=500)$tree

simulate SBM on the tree

fit_sbm_geobiased_const 173

D = 1e4
simulation = simulate_sbm(tree, radius=6371, diffusivity=D)

fit SBM on the tree
fit = fit_sbm_const(tree,simulation$tip_latitudes,simulation$tip_longitudes,radius=6371)
cat(sprintf('True D=%g, fitted D=%g\n',D,fit$diffusivity))

End(Not run)

fit_sbm_geobiased_const

Fit a phylogeographic Spherical Brownian Motion model with geo-
graphic sampling bias.

Description

Given one or more rooted phylogenetic trees and geographic coordinates (latitudes & longitudes) for
the tips of each tree, this function estimates the diffusivity of a Spherical Brownian Motion (SBM)
model for the evolution of geographic location along lineages (Perrin 1928; Brillinger 2012), while
correcting for geographic sampling biases. Estimation is done via maximum-likelihood and using
independent contrasts between sister lineages, while correction for geographic sampling bias is
done through an iterative simulation+fitting process until convergence.

Usage

fit_sbm_geobiased_const(trees,
tip_latitudes,
tip_longitudes,
radius,
reference_latitudes = NULL,
reference_longitudes = NULL,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs = FALSE,
min_MRCA_time = 0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
min_diffusivity = NULL,
max_diffusivity = NULL,
rarefaction = 0.1,
Nsims = 100,
max_iterations = 100,
Nbootstraps = 0,
NQQ = 0,
Nthreads = 1,
include_simulations = FALSE,
SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix = "")

174 fit_sbm_geobiased_const

Arguments

trees Either a single rooted tree or a list of rooted trees, of class "phylo". The root of
each tree is assumed to be the unique node with no incoming edge. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance. When multiple trees are provided, it is either assumed that their roots
coincide in time (if align_trees_at_root=TRUE) or that each tree’s youngest
tip was sampled at present day (if align_trees_at_root=FALSE).

tip_latitudes Numeric vector of length Ntips, or a list of vectors, listing latitudes of tips in
decimal degrees (from -90 to 90). If trees is a list of trees, then tip_latitudes
should be a list of vectors of the same length as trees, listing tip latitudes for
each of the input trees.

tip_longitudes Numeric vector of length Ntips, or a list of vectors, listing longitudes of tips in
decimal degrees (from -180 to 180). If trees is a list of trees, then tip_longitudes
should be a list of vectors of the same length as trees, listing tip longitudes for
each of the input trees.

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

reference_latitudes

Optional numeric vector, listing latitudes of reference coordinates based on
which to calculate the geographic sampling density. If NULL, the geographic
sampling density is estimated based on tip_latitudes and tip_longitudes.

reference_longitudes

Optional numeric vector of the same length as reference_latitudes, listing
latitudes of reference coordinates based on which to calculate the geographic
sampling density. If NULL, the geographic sampling density is estimated based
on tip_latitudes and tip_longitudes.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips’ MRCA
has at least this distance from the root. Set min_MRCA_time<=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips’ MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

min_diffusivity

Non-negative numeric, specifying the minimum possible diffusivity. If NULL,
this is automatically chosen.

fit_sbm_geobiased_const 175

max_diffusivity

Non-negative numeric, specifying the maximum possible diffusivity. If NULL,
this is automatically chosen.

rarefaction Numeric, between 00 and 1, specifying the fraction of extant lineages to sample
from the simulated trees. Should be strictly smaller than 1, in order for geo-
graphic bias correction to have an effect. Note that regardless of rarefaction,
the simulated trees will have the same size as the original trees.

Nsims Integer, number of SBM simulatons to perform per iteration for assessing the
effects of geographic bias. Smaller trees require larger Nsims (due to higher
stochasticity). This must be at least 2, although values of 100-1000 are recom-
mended.

max_iterations Integer, maximum number of iterations (correction steps) to perform before giv-
ing up.

Nbootstraps Non-negative integer, specifying an optional number of parametric bootstraps to
performs for estimating standard errors and confidence intervals.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

Nthreads Integer, number of parallel threads to use. Ignored on Windows machines.
include_simulations

Logical, whether to include the trees and tip coordinates simulated under the
final fitted SBM model, in the returned results. May be useful e.g. for checking
model adequacy.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

verbose Logical, specifying whether to print progress reports and warnings to the screen.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function tries to estimate the true spherical diffusivity of an SBM model of geographic dif-
fusive dispersal, while correcting for geographic sampling biases. This is done using an iterative
refinement approach, by which trees and tip locations are repeatedly simulated under the current
true diffusivity estimate and the diffusivity estimated from those simulated data are compared to the
originally uncorrected diffusivity estimate. Trees are simulated according to a birth-death model
with constant rates, fitted to the original input trees (a congruent birth-death model is chosen to
match the requested rarefaction). Simulated trees are subsampled (rarefied) to match the original
input tree sizes, with sampled lineages chosen randomly but in a geographically biased way that re-
sembles the original geographic sampling density (e.g., as inferred from the reference_latitudes
and reference_longitudes). Internally, this function repeatedly applies fit_sbm_const and
simulate_sbm. If the true sampling fraction of the input trees is unknown, then it is advised to
perform the analysis with a few alternative rarefaction values (e.g., 0.01 and 0.1) to verify the
robustness of the estimates.

176 fit_sbm_geobiased_const

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

Nlat Integer, number of latitude-tiles used for building a map of the geographic sam-
pling biases.

Nlon Integer, number of longitude-tiles used for building a map of the geographic
sampling biases.

diffusivity Numeric, the estimated true diffusivity, i.e. accounting for geographic sampling
biases, in units distance^2/time. Distance units are the same as used for the
radius, and time units are the same as the tree’s edge lengths. For example, if
the radius was specified in km and edge lengths are in Myr, then the estimated
diffusivity will be in km^2/Myr.

correction_factor

Numeric, estimated ratio between the true diffusivity and the original (uncor-
rected) diffusivity estimate.

Niterations Integer, the number of iterations performed until convergence.
stopping_criterion

Character, a short description of the criterion by which the iteration was eventu-
ally halted.

uncorrected_fit_diffusivity

Numeric, the originally estimated (uncorrected) diffusivity.
last_sim_fit_diffusivity

Numeric, the mean uncorrected diffuvity estimated from the simulated data in
the last iteration. Convergence means that last_sim_fit_diffusivity came
close to uncorrected_fit_diffusivity.

all_correction_factors

Numeric vector of length Niterations, listing the estimated correction factors
in each iteration.

all_diffusivity_estimates

Numeric vector of length Niterations, listing the mean uncorrected diffusivity
estimated from the simulated data in each iteration.

Ntrees Integer, number of trees considered for the simulations. This might have smaller
than length(trees), if for some trees fitting a birth-death model was not pos-
sible.

lambda Numeric vector of length Ntrees, listing the birth rates used to simulate the
trees.

mu Numeric vector of length Ntrees, listing the death rates used to simulate the
trees.

fit_sbm_geobiased_const 177

rarefaction Numeric vector of length Ntrees, listing the rarefactions (sampling fractions)
used to simulate the trees. These will typically be equal to the rarefaction
provided by the function caller, but may differ for example if the congruence
class did not include a birth-death model with the requested rarefaction.

Ncontrasts Integer, number of independent contrasts (i.e., tip pairs) used to estimate the
diffusivity. This is the number of independent data points used.

standard_error Numeric, estimated standard error of the estimated true diffusivity, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric, lower bound of the 50% confidence interval for the estimated true dif-
fusivity (25-75% percentile), based on parametric bootstrapping. Only returned
if Nbootstraps>0.

CI50upper Numeric, upper bound of the 50% confidence interval for the estimated true dif-
fusivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric, lower bound of the 95% confidence interval for the estimated true
diffusivity (2.5-97.5% percentile), based on parametric bootstrapping. Only re-
turned if Nbootstraps>0.

CI95upper Numeric, upper bound of the 95% confidence interval for the estimated true dif-
fusivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the estimated
true diffusivity.

simulations List, containing the trees and tip coordinates simulated under the final fitted
SBM model, accounting for geographic biases. Each entry is itself a named list,
containing the simulations corresponding to a specific input tree. In particu-
lar, simulations[[t]]$sims[[r]] is the r-th simulation performed that corre-
sponds to the t-th input tree. Each simulation is again a named list, containing
the elements success (logical), tree (of class phylo), latitudes (numeric
vector) and longitudes (numeric vector). This data structure may be useful for
testing the adequacy of the fitted SBM model; only use this if you know what
you are doing. Only returned if include_simulations was TRUE.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes. Most users can ignore this.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

178 fit_sbm_geobiased_const

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

S. Louca (in review as of 2021). The rates of global microbial dispersal.

See Also

simulate_sbm, fit_sbm_parametric, fit_sbm_linear, fit_sbm_on_grid

Examples

Not run:
NFullTips = 10000
diffusivity = 1
radius = 6371

generate tree and run SBM on it
cat(sprintf("Generating tree and simulating SBM (true D=%g)..\n",diffusivity))
tree = castor::generate_tree_hbd_reverse(Ntips = NFullTips,

lambda = 5e-7,
mu = 2e-7,
rho = 1)$trees[[1]]

SBMsim = simulate_sbm(tree = tree, radius = radius, diffusivity = diffusivity)

select subset of tips only found in certain geographic regions
min_abs_lat = 30
max_abs_lat = 80
min_lon = 0
max_lon = 90
keep_tips = which((abs(SBMsim$tip_latitudes)<=max_abs_lat)

& (abs(SBMsim$tip_latitudes)>=min_abs_lat)
& (SBMsim$tip_longitudes<=max_lon)
& (SBMsim$tip_longitudes>=min_lon))

rarefaction = castor::get_subtree_with_tips(tree, only_tips = keep_tips)
tree = rarefaction$subtree
tip_latitudes = SBMsim$tip_latitudes[rarefaction$new2old_tip]
tip_longitudes = SBMsim$tip_longitudes[rarefaction$new2old_tip]
Ntips = length(tree$tip.label)
rarefaction = Ntips/NFullTips

fit SBM while correcting for geographic sampling biases
fit = castor:::fit_sbm_geobiased_const(trees = tree,

tip_latitudes = tip_latitudes,
tip_longitudes = tip_longitudes,
radius = radius,
rarefaction = Ntips/NFullTips,
Nsims = 10,
Nthreads = 4,
verbose = TRUE,
verbose_prefix = " ")

if(!fit$success){
cat(sprintf("ERROR: %s\n",fit$error))

}else{

fit_sbm_linear 179

cat(sprintf("Estimated true D = %g\n",fit$diffusivity))
}

End(Not run)

fit_sbm_linear Fit a phylogeographic Spherical Brownian Motion model with linearly
varying diffusivity.

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) for its tips, this
function estimates the diffusivity of a Spherical Brownian Motion (SBM) model for the evolution
of geographic location along lineages (Perrin 1928; Brillinger 2012), assuming that the diffusivity
varies linearly over time. Estimation is done via maximum-likelihood and using independent con-
trasts between sister lineages. This function is designed to estimate the diffusivity over time, by
fitting two parameters defining the diffusivity as a linear function of time. For fitting more general
functional forms see fit_sbm_parametric.

Usage

fit_sbm_linear(tree,
tip_latitudes,
tip_longitudes,
radius,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs= FALSE,
min_MRCA_time = 0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
time1 = 0,
time2 = NULL,
Ntrials = 1,
Nthreads = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
Nsignificance = 0,
NQQ = 0,
fit_control = list(),
SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix = "")

180 fit_sbm_linear

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge. Edge lengths are assumed to represent time intervals or a
similarly interpretable phylogenetic distance.

tip_latitudes Numeric vector of length Ntips, listing latitudes of tips in decimal degrees (from
-90 to 90). The order of entries must correspond to the order of tips in the tree
(i.e., as listed in tree$tip.label).

tip_longitudes Numeric vector of length Ntips, listing longitudes of tips in decimal degrees
(from -180 to 180). The order of entries must correspond to the order of tips in
the tree (i.e., as listed in tree$tip.label).

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

clade_states Optional integer vector of length Ntips+Nnodes, listing discrete states of every
tip and node in the tree. The order of entries must match the order of tips and
nodes in the tree. States may be, for example, geographic regions, sub-types,
discrete traits etc, and can be used to restrict independent contrasts to tip pairs
within the same state (see option no_state_transitions).

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips’ MRCA
has at least this distance from the root. Set min_MRCA_time=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips’ MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

no_state_transitions

Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared.

fit_sbm_linear 181

only_state Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

time1 Optional numeric, specifying the first time point at which to estimate the diffu-
sivity. By default this is set to root (i.e., time 0).

time2 Optional numeric, specifying the first time point at which to estimate the diffu-
sivity. By default this is set to the present day (i.e., the maximum distance of
any tip from the root).

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to 0 for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nsignificance Integer, specifying the number of simulations to perform under a const-diffusivity
model for assessing the statistical significance of the fitted slope. Set to 0 to not
calculate the significance of the slope.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

verbose Logical, specifying whether to print progress reports and warnings to the screen.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is essentially a wrapper for the more general function fit_sbm_parametric, with the
addition that it can estimate the statistical significance of the fitted linear slope.

182 fit_sbm_linear

The statistical significance of the slope is the probability that a constant-diffusivity SBM model
would generate data that would yield a fitted linear slope equal to or greater than the one fitted to
the original data; the significance is estimated by simulating Nsignificance constant-diffusivity
models and then fitting a linear-diffusivity model. The constant diffusivity assumed in these simu-
lations is the maximum-likelihood diffusivity fitted internally using fit_sbm_const.

Note that estimation of diffusivity at older times is only possible if the timetree includes extinct
tips or tips sampled at older times (e.g., as is often the case in viral phylogenies). If tips are only
sampled once at present-day, i.e. the timetree is ultrametric, reliable diffusivity estimates can only
be achieved near present times.

For short expected transition distances this function uses the approximation formula by Ghosh et al.
(2012) to calculate the probability density of geographical transitions along edges. For longer ex-
pected transition distances the function uses a truncated approximation of the series representation
of SBM transition densities (Perrin 1928).

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

times Numeric vector of size 2, listing the two time points at which the diffusivity was
estimated (time1 and time2).

diffusivities Numeric vector of size 2, listing the fitted diffusivity at time1 and time2. The
fitted model assumes that the diffusivity varied linearly between those two time
points.

loglikelihood The log-likelihood of the fitted linear model for the given data.

NFP Integer, number of fitted (i.e., non-fixed) model parameters. Will always be 2.

Ncontrasts Integer, number of independent contrasts used for fitting.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of independent contrasts), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum

fit_sbm_linear 183

likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors

Numeric vector of size 2, estimated standard error of the fitted diffusivity at the
root and present, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size 2, lower bound of the 50% confidence interval (25-75%
percentile) for the fitted diffusivity at the root and present, based on parametric
bootstrapping. Only returned if Nbootstraps>0.

CI50upper Numeric vector of size 2, upper bound of the 50% confidence interval for the fit-
ted diffusivity at the root and present, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95lower Numeric vector of size 2, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the fitted diffusivity at the root and present, based on para-
metric bootstrapping. Only returned if Nbootstraps>0.

CI95upper Numeric vector of size 2, upper bound of the 95% confidence interval for the fit-
ted diffusivity at the root and present, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. See the documentation of fit_sbm_const for an explanation. Only
returned if Nbootstraps>0.

significance Numeric between 0 and 1, estimate statistical significance of the fitted linear
slope. Only returned if Nsignificance>0.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

184 fit_sbm_linear

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_parametric, fit_sbm_on_grid

Examples

Not run:
generate a random tree, keeping extinct lineages
tree_params = list(birth_rate_factor=1, death_rate_factor=0.95)
tree = generate_random_tree(tree_params,max_tips=1000,coalescent=FALSE)$tree

calculate max distance of any tip from the root
max_time = get_tree_span(tree)$max_distance

simulate time-dependent SBM on the tree
we assume that diffusivity varies linearly with time
in this example we measure distances in Earth radii
radius = 1
diffusivity_functor = function(times, params){

return(params[1] + (times/max_time)*(params[2]-params[1]))
}
true_params = c(1, 2)
time_grid = seq(0,max_time,length.out=2)
simulation = simulate_sbm(tree,

radius = radius,
diffusivity = diffusivity_functor(time_grid,true_params),
time_grid = time_grid)

fit time-independent SBM to get a rough estimate
fit_const = fit_sbm_const(tree,simulation$tip_latitudes,simulation$tip_longitudes,radius=radius)

fit SBM model with linearly varying diffusivity
fit = fit_sbm_linear(tree,

simulation$tip_latitudes,
simulation$tip_longitudes,
radius = radius,
Ntrials = 10)

fit_sbm_on_grid 185

compare fitted & true params
print(true_params)
print(fit$diffusivities)

End(Not run)

fit_sbm_on_grid Fit a phylogeographic Spherical Brownian Motion model with
piecewise-linear diffusivity.

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) for its tips,
this function estimates the diffusivity of a Spherical Brownian Motion (SBM) model with time-
dependent diffusivity for the evolution of geographic location along lineages (Perrin 1928; Brillinger
2012). Estimation is done via maximum-likelihood and using independent contrasts between sister
lineages. This function is designed to estimate the diffusivity over time, approximated as a piece-
wise linear profile, by fitting the diffusivity on a discrete set of time points. The user thus provides a
set of time points (time_grid), and fit_sbm_on_grid estimates the diffusivity on each time point,
while assuming that the diffusivity varies linearly between time points.

Usage

fit_sbm_on_grid(tree,
tip_latitudes,
tip_longitudes,
radius,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs= FALSE,
min_MRCA_time = 0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
time_grid = 0,
guess_diffusivity = NULL,
min_diffusivity = NULL,
max_diffusivity = Inf,
Ntrials = 1,
Nthreads = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
NQQ = 0,
fit_control = list(),

186 fit_sbm_on_grid

SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix = "")

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge. Edge lengths are assumed to represent time intervals or a
similarly interpretable phylogenetic distance.

tip_latitudes Numeric vector of length Ntips, listing latitudes of tips in decimal degrees (from
-90 to 90). The order of entries must correspond to the order of tips in the tree
(i.e., as listed in tree$tip.label).

tip_longitudes Numeric vector of length Ntips, listing longitudes of tips in decimal degrees
(from -180 to 180). The order of entries must correspond to the order of tips in
the tree (i.e., as listed in tree$tip.label).

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

clade_states Optional integer vector of length Ntips+Nnodes, listing discrete states of every
tip and node in the tree. The order of entries must match the order of tips and
nodes in the tree. States may be, for example, geographic regions, sub-types,
discrete traits etc, and can be used to restrict independent contrasts to tip pairs
within the same state (see option no_state_transitions).

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips’ MRCA
has at least this distance from the root. Set min_MRCA_time=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips’ MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

fit_sbm_on_grid 187

no_state_transitions

Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared.

only_state Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

time_grid Numeric vector, specifying discrete time points (counted since the root) at which
the diffusivity should be fitted; between these time points the diffusivity is
assumed to vary linearly. This time grid should be fine enough to sufficiently
capture the variation in the diffusivity over time, but must not be too big to
avoid overfitting. If NULL or of size 1, then the diffusivity is assumed to be time-
independent. Listed times must be strictly increasing, and should cover at least
the full considered time interval (from 0 to the maximum distance of any tip
from the root); otherwise, constant extrapolation is used to cover missing times.
Note that time is measured in the same units as the tree’s edge lengths.

guess_diffusivity

Optional numeric vector, specifying a first guess for the diffusivity. Either of size
1 (the same first guess for all time points), or of the same length as time_grid
(different first guess for each time point, NA are replaced with an automatically
chosen first guess). If NULL, the first guess is chosen automatically.

min_diffusivity

Optional numeric vector, specifying lower bounds for the fitted diffusivity. Ei-
ther of size 1 (the same lower bound is assumed for all time points), or of the
same length as time_grid (different lower bound for each time point, NA are
replaced with an automatically chosen lower bound). If NULL, lower bounds are
chosen automatically.

max_diffusivity

Optional numeric vector, specifying upper bounds for the fitted diffusivity. Ei-
ther of size 1 (the same upper bound is assumed for all time points), or of the
same length as time_grid (different upper bound for each time point, NA are
replaced with infinity). If NULL, no upper bound is imposed.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to 0 for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap

188 fit_sbm_on_grid

will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate the diffusivity profile over time, approximated by a piecewise
linear function. Fitting is done by maximizing the likelihood of observing the given tip coordinates
under the SBM model. Internally, this function uses fit_sbm_parametric.

It is generally advised to provide as much information to the function fit_sbm_on_grid as possible,
including reasonable lower and upper bounds (min_diffusivity and max_diffusivity). It is
important that the time_grid is sufficiently fine to capture the variation of the true diffusivity over
time, since the likelihood is calculated under the assumption that the diffusivity varies linearly
between grid points. However, depending on the size of the tree, the grid size must not be too large,
since otherwise overfitting becomes very likely. The time_grid does not need to be uniform, i.e.,
you may want to use a finer grid in regions where there’s more data (tips) available.

Note that estimation of diffusivity at older times is only possible if the timetree includes extinct
tips or tips sampled at older times (e.g., as is often the case in viral phylogenies). If tips are only
sampled once at present-day, i.e. the timetree is ultrametric, reliable diffusivity estimates can only
be achieved near present times. If the tree is ultrametric, you should consider using fit_sbm_const
instead.

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

fit_sbm_on_grid 189

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

time_grid Numeric vector, the time-grid on which the diffusivity was fitted.

diffusivity Numeric vector of size Ngrid (length of time_grid), listing the fitted diffusivi-
ties at the various time-grid points.

loglikelihood The log-likelihood of the fitted model for the given data.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

Ncontrasts Integer, number of independent contrasts used for fitting.

phylodistances Numeric vector of length Ncontrasts, listing phylogenetic (patristic) distances
of the independent contrasts.

geodistances Numeric vector of length Ncontrasts, listing geographic (great circle) distances
of the independent contrasts.

child_times1 Numeric vector of length Ncontrasts, listing the times (distance from root) of
the first tip in each independent contrast.

child_times2 Numeric vector of length Ncontrasts, listing the times (distance from root) of
the second tip in each independent contrast.

MRCA_times Numeric vector of length Ncontrasts, listing the times (distance from root) of
the MRCA of the two tips in each independent contrast.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of independent contrasts), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

190 fit_sbm_on_grid

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors

Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI50upper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. See the documentation of fit_sbm_const for an explanation.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_parametric, fit_sbm_linear

fit_sbm_parametric 191

Examples

Not run:
generate a random tree, keeping extinct lineages
tree_params = list(birth_rate_factor=1, death_rate_factor=0.95)
tree = generate_random_tree(tree_params,max_tips=2000,coalescent=FALSE)$tree

calculate max distance of any tip from the root
max_time = get_tree_span(tree)$max_distance

simulate time-dependent SBM on the tree
using a diffusivity that varies roughly exponentially with time
In this example we measure distances in Earth radii
radius = 1
fine_time_grid = seq(from=0, to=max_time, length.out=10)
fine_D = 0.01 + 0.03*exp(-2*fine_time_grid/max_time)
simul = simulate_sbm(tree,

radius = radius,
diffusivity= fine_D,
time_grid = fine_time_grid)

fit time-dependent SBM on a time-grid of size 4
fit = fit_sbm_on_grid(tree,

simul$tip_latitudes,
simul$tip_longitudes,
radius = radius,
time_grid = seq(from=0,to=max_time,length.out=4),
Nthreads = 3, # use 3 CPUs
Ntrials = 30) # avoid local optima through multiple trials

visually compare fitted & true params
plot(x = fine_time_grid,

y = fine_D,
type = 'l',
col = 'black',
xlab = 'time',
ylab = 'D',
ylim = c(0,max(fine_D)))

lines(x = fit$time_grid,
y = fit$diffusivity,
type = 'l',
col = 'blue')

End(Not run)

fit_sbm_parametric Fit a time-dependent phylogeographic Spherical Brownian Motion
model.

192 fit_sbm_parametric

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) for its tips,
this function estimates the diffusivity of a Spherical Brownian Motion (SBM) model with time-
dependent diffusivity for the evolution of geographic location along lineages (Perrin 1928; Brillinger
2012). Estimation is done via maximum-likelihood and using independent contrasts between sister
lineages. This function is designed to estimate the diffusivity over time, by fitting a finite number of
parameters defining the diffusivity as a function of time. The user thus provides the general func-
tional form of the diffusivity that depends on time and NP parameters, and fit_sbm_parametric
estimates each of the free parameters.

Usage

fit_sbm_parametric(tree,
tip_latitudes,
tip_longitudes,
radius,
param_values,
param_guess,
diffusivity,
time_grid = NULL,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs= FALSE,
min_MRCA_time = 0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
Ntrials = 1,
max_start_attempts = 1,
Nthreads = 1,
Nbootstraps = 0,
Ntrials_per_bootstrap = NULL,
NQQ = 0,
fit_control = list(),
SBM_PD_functor = NULL,
focal_param_values = NULL,
verbose = FALSE,
verbose_prefix = "")

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge. Edge lengths are assumed to represent time intervals or a

fit_sbm_parametric 193

similarly interpretable phylogenetic distance.
tip_latitudes Numeric vector of length Ntips, listing latitudes of tips in decimal degrees (from

-90 to 90). The order of entries must correspond to the order of tips in the tree
(i.e., as listed in tree$tip.label).

tip_longitudes Numeric vector of length Ntips, listing longitudes of tips in decimal degrees
(from -180 to 180). The order of entries must correspond to the order of tips in
the tree (i.e., as listed in tree$tip.label).

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

param_values Numeric vector of length NP, specifying fixed values for a some or all model pa-
rameters. For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the
vector c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed
at the values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or
if the diffusivity function queries parameter values by name (as opposed to
numeric index).

param_guess Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

diffusivity Function specifying the diffusivity at any given time (time since the root) and
for any given parameter values. This function must take exactly two arguments,
the 1st one being a numeric vector (one or more times) and the 2nd one being
a numeric vector of size NP (parameter values), and return a numeric vector of
the same size as the 1st argument.

time_grid Numeric vector, specifying times (counted since the root) at which the diffusivity
function should be evaluated. This time grid must be fine enough to capture the
possible variation in the diffusivity over time, within the permissible parame-
ter range. If of size 1, then the diffusivity is assumed to be time-independent.
Listed times must be strictly increasing, and should cover at least the full con-
sidered time interval (from 0 to the maximum distance of any tip from the root);
otherwise, constant extrapolation is used to cover missing times. Can also be
NULL or a vector of size 1, in which case the diffusivity is assumed to be time-
independent. Note that time is measured in the same units as the tree’s edge
lengths.

clade_states Optional integer vector of length Ntips+Nnodes, listing discrete states of every
tip and node in the tree. The order of entries must match the order of tips and
nodes in the tree. States may be, for example, geographic regions, sub-types,
discrete traits etc, and can be used to restrict independent contrasts to tip pairs
within the same state (see option no_state_transitions).

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

194 fit_sbm_parametric

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips’ MRCA
has at least this distance from the root. Set min_MRCA_time=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips’ MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

no_state_transitions

Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared.

only_state Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

param_min Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

param_max Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

param_scale Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

fit_sbm_parametric 195

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to 0 for no bootstrapping.

Ntrials_per_bootstrap

Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max(1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

focal_param_values

Optional numeric matrix having NP columns and an arbitrary number of rows,
listing combinations of parameter values of particular interest and for which
the log-likelihoods should be returned. This may be used e.g. for diagnostic
purposes, e.g. to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., pn ∈ R) that determine
the diffusivity over time, by maximizing the likelihood of observing the given tip coordinates under
the SBM model. For example, the investigator may assume that the diffusivity exponentially over
time, i.e. can be described by D(t) = A · e−Bt (where A and B are unknown coefficients and t
is time since the root). In this case the model has 2 free parameters, p1 = A and p2 = B, each of
which may be fitted to the tree.

It is generally advised to provide as much information to the function fit_sbm_parametric as
possible, including reasonable lower and upper bounds (param_min and param_max), a reasonable
parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that

196 fit_sbm_parametric

they vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that
the time_grid is sufficiently fine to capture the variation of the diffusivity over time, since the
likelihood is calculated under the assumption that the diffusivity varies linearly between grid points.

Estimation of diffusivity at older times is only possible if the timetree includes extinct tips or tips
sampled at older times (e.g., as is often the case in viral phylogenies). If tips are only sampled once
at present-day, i.e. the timetree is ultrametric, reliable diffusivity estimates can only be achieved
near present times. If the tree is ultrametric, you should consider using fit_sbm_const instead.

For short expected transition distances this function uses the approximation formula by Ghosh et al.
(2012) to calculate the probability density of geographical transitions along edges. For longer ex-
pected transition distances the function uses a truncated approximation of the series representation
of SBM transition densities (Perrin 1928).

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above).

loglikelihood The log-likelihood of the fitted model for the given data.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

Ncontrasts Integer, number of independent contrasts used for fitting.

phylodistances Numeric vector of length Ncontrasts, listing phylogenetic (patristic) distances
of the independent contrasts.

geodistances Numeric vector of length Ncontrasts, listing geographic (great circle) distances
of the independent contrasts.

child_times1 Numeric vector of length Ncontrasts, listing the times (distance from root) of
the first tip in each independent contrast.

child_times2 Numeric vector of length Ncontrasts, listing the times (distance from root) of
the second tip in each independent contrast.

MRCA_times Numeric vector of length Ncontrasts, listing the times (distance from root) of
the MRCA of the two tips in each independent contrast.

AIC The Akaike Information Criterion for the fitted model, defined as 2k−2 log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

fit_sbm_parametric 197

BIC The Bayesian information criterion for the fitted model, defined as log(n)k −
2 log(L), where k is the number of fitted parameters, n is the number of data
points (number of independent contrasts), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

guess_loglikelihood

The loglikelihood of the data for the initial parameter guess (param_guess).
focal_loglikelihoods

A numeric vector of the same size as nrow(focal_param_values), listing log-
likelihoods for each of the focal parameter conbinations listed in focal_loglikelihoods.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors

Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI50upper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

198 fit_sbm_parametric

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. See the documentation of fit_sbm_const for an explanation.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_linear

Examples

Not run:
generate a random tree, keeping extinct lineages
tree_params = list(birth_rate_factor=1, death_rate_factor=0.95)
tree = generate_random_tree(tree_params,max_tips=1000,coalescent=FALSE)$tree

calculate max distance of any tip from the root
max_time = get_tree_span(tree)$max_distance

simulate time-dependent SBM on the tree
we assume that diffusivity varies linearly with time
in this example we measure distances in Earth radii
radius = 1
diffusivity_functor = function(times, params){
return(params[1] + (times/max_time)*(params[2]-params[1]))
}
true_params = c(1, 2)
time_grid = seq(0,max_time,length.out=2)
simulation = simulate_sbm(tree,

radius = radius,

fit_tree_model 199

diffusivity = diffusivity_functor(time_grid,true_params),
time_grid = time_grid)

fit time-independent SBM to get a rough estimate
fit_const = fit_sbm_const(tree,simulation$tip_latitudes,simulation$tip_longitudes,radius=radius)

fit time-dependent SBM, i.e. fit the 2 parameters of the linear form
fit = fit_sbm_parametric(tree,

simulation$tip_latitudes,
simulation$tip_longitudes,
radius = radius,
param_values = c(NA,NA),
param_guess = c(fit_const$diffusivity,fit_const$diffusivity),
diffusivity = diffusivity_functor,
time_grid = time_grid,
Ntrials = 10)

compare fitted & true params
print(true_params)
print(fit$param_fitted)

End(Not run)

fit_tree_model Fit a cladogenic model to an existing tree.

Description

Fit the parameters of a tree generation model to an existing phylogenetic tree; branch lengths
are assumed to be in time units. The fitted model is a stochastic cladogenic process in which
speciations (births) and extinctions (deaths) are Poisson processes, as simulated by the function
generate_random_tree. The birth and death rates of tips can each be constant or power-law func-
tions of the number of extant tips. For example,

B = I + F ·NE ,

where B is the birth rate, I is the intercept, F is the power-law factor, N is the current number of
extant tips and E is the power-law exponent. Each of the parameters I, F, E can be fixed or fitted.

Fitting can be performed via maximum-likelihood estimation, based on the waiting times between
subsequent speciation and/or extinction events represented in the tree. Alternatively, fitting can
be performed using least-squares estimation, based on the number of lineages represented in the
tree over time ("diversity-vs-time" curve, a.k.a. "lineages-through-time"" curve). Note that the
birth and death rates are NOT per-capita rates, they are absolute rates of species appearance and
disappearance per time.

Usage

fit_tree_model(tree,
parameters = list(),

200 fit_tree_model

first_guess = list(),
min_age = 0,
max_age = 0,
age_centile = NULL,
Ntrials = 1,
Nthreads = 1,
coalescent = FALSE,
discovery_fraction = NULL,
fit_control = list(),
min_R2 = -Inf,
min_wR2 = -Inf,
grid_size = 100,
max_model_runtime = NULL,
objective = 'LL')

Arguments

tree A phylogenetic tree, in which branch lengths are assumed to be in time units.
The tree may be a coalescent tree (i.e. only include extant clades) or a tree
including extinct clades; the tree type influences what type of models can be
fitted with each method.

parameters A named list specifying fixed and/or unknown birth-death model parameters,
with one or more of the following elements:

• birth_rate_intercept: Non-negative number. The intercept of the Pois-
sonian rate at which new species (tips) are added. In units 1/time.

• birth_rate_factor: Non-negative number. The power-law factor of the
Poissonian rate at which new species (tips) are added. In units 1/time.

• birth_rate_exponent: Numeric. The power-law exponent of the Poisso-
nian rate at which new species (tips) are added. Unitless.

• death_rate_intercept: Non-negative number. The intercept of the Pois-
sonian rate at which extant species (tips) go extinct. In units 1/time.

• death_rate_factor: Non-negative number. The power-law factor of the
Poissonian rate at which extant species (tips) go extinct. In units 1/time.

• death_rate_exponent: Numeric. The power-law exponent of the Poisso-
nian rate at which extant species (tips) go extinct. Unitless.

• resolution: Numeric. Resolution at which the tree was collapsed (i.e.
every node of age smaller than this resolution replaced by a single tip). In
units time. A resolution of 0 means the tree was not collapsed.

• rarefaction: Numeric. Species sampling fraction, i.e. fraction of extant
species represented (as tips) in the tree. A rarefaction of 1, for example,
implies that the tree is complete, i.e. includes all extant species. Rarefaction
is assumed to have occurred after collapsing.

• extant_diversity: The current total extant diversity, regardless of the rar-
efaction and resolution of the tree at hand. For example, if resolution==0
and rarefaction==0.5 and the tree has 1000 tips, then extant_diversity
should be 2000. If resolution is fixed at 0 and rarefaction is also fixed,
this can be left NULL and will be inferred automatically by the function.

fit_tree_model 201

Each of the above elements can also be NULL, in which case the parameter is
fitted. Elements can also be vectors of size 2 (specifying constraint intervals), in
which case the parameters are fitted and constrained within the intervals speci-
fied. For example, to fit death_rate_factor while constraining it to the inter-
val [1,2], set its value to c(1,2).

first_guess A named list (with entries named as in parameters) specifying starting values
for any of the fitted model parameters. Note that if Ntrials>1, then start values
may be randomly modified in all but the first trial. For any parameters missing
from first_guess, initial values are always randomly chosen. first_guess
can also be NULL.

min_age Numeric. Minimum distance from the tree crown, for a node/tip to be considered
in the fitting. If <=0 or NULL, this constraint is ignored. Use this option to omit
most recent nodes.

max_age Numeric. Maximum distance from the tree crown, for a node/tip to be consid-
ered in the fitting. If <=0 or NULL, this constraint is ignored. Use this option to
omit old nodes, e.g. with highly uncertain placements.

age_centile Numeric within 0 and 1. Fraction of youngest nodes/tips to consider for the
fitting. This can be used as an alternative to max_age. E.g. if set to 0.6, then the
60% youngest nodes/tips are considered. Either age_centile or max_age must
be non-NULL, but not both.

Ntrials Integer. Number of fitting attempts to perform, each time using randomly varied
start values for fitted parameters. The returned fitted parameter values will be
taken from the trial with greatest achieved fit objective. A larger number of trials
will decrease the chance of hitting a local non-global optimum during fitting.

Nthreads Number of threads to use for parallel execution of multiple fitting trials. On
Windows, this option has no effect because Windows does not support forks.

coalescent Logical, specifying whether the input tree is a coalescent tree (and thus the coa-
lescent version of the model should be fitted). Only available if objective=='R2'.

discovery_fraction

Function handle, mapping age to the fraction of discovered lineages in a tree.
That is, discovery_fraction(tau) is the probability that a lineage at age tau,
that has an extant descendant today, will be represented (discovered) in the co-
alescent tree. In particular, discovery_fraction(0) equals the fraction of ex-
tant lineages represented in the tree. If this is provided, then parameters$rarefaction
is fixed to 1, and discovery_fraction is applied after simulation. Only rele-
vant if coalescent==TRUE. Experimental, so leave this NULL if you don’t know
what it means.

fit_control Named list containing options for the stats::nlminb optimization routine,
such as eval.max (max number of evaluations), iter.max (max number of it-
erations) and rel.tol (relative tolerance for convergence).

min_R2 Minimum coefficient of determination of the diversity curve (clade counts vs
time) of the model when compared to the input tree, for a fitted model to be
accepted. For example, if set to 0.5 then only fit trials achieving an R2 of at
least 0.5 will be considered. Set this to -Inf to not filter fitted models based on
the R2.

202 fit_tree_model

min_wR2 Similar to min_R2, but applying to the weighted R2, where squared-error weights
are proportional to the inverse squared diversities.

grid_size Integer. Number of equidistant time points to consider when calculating the R2
of a model’s diversity-vs-time curve.

max_model_runtime

Numeric. Maximum runtime (in seconds) allowed for each model evaluation
during fitting. Use this to escape from badly parameterized models during fitting
(this will likely cause the affected fitting trial to fail). If NULL or <=0, this option
is ignored.

objective Character. Objective function to optimize during fitting. Can be either "LL"
(log-likelihood of waiting times between speciation events and between ex-
tinction events), "R2" (coefficient of determination of diversity-vs-time curve),
"wR2" (weighted R2, where weights of squared errors are proportional to the
inverse diversities observed in the tree) or "lR2" (logarithmic R2, i.e. R2 cal-
culated for the logarithm of the diversity-vs-time curve). Note that "wR2" will
weight errors at lower diversities more strongly than "R2".

Value

A named list with the following elements:

success Logical, indicating whether the fitting was successful.
objective_value

Numeric. The achieved maximum value of the objective function (log-likelihood,
R2 or weighted R2).

parameters A named list listing all model parameters (fixed and fitted).
start_parameters

A named list listing the start values of all model parameters. In the case of
multiple fitting trials, this will list the initial (non-randomized) guess.

R2 Numeric. The achieved coefficient of determination of the fitted model, based
on the diversity-vs-time curve.

wR2 Numeric. The achieved weighted coefficient of determination of the fitted model,
based on the diversity-vs-time curve. Weights of squared errors are proportional
to the inverse squared diversities observed in the tree.

lR2 Numeric. The achieved coefficient of determination of the fitted model on a log
axis, i.e. based on the logarithm of the diversity-vs-time curve.

Nspeciations Integer. Number of speciation events (=nodes) considered during fitting. This
only includes speciations visible in the tree.

Nextinctions Integer. Number of extinction events (=non-crown tips) considered during fit-
ting. This only includes extinctions visible in the tree, i.e. tips whose distance
from the root is lower than the maximum.

grid_times Numeric vector. Time points considered for the diversity-vs-time curve. Times
will be constrained between min_age and max_age if these were specified.

tree_diversities

Number of lineages represented in the tree through time, calculated for each of
grid_times.

fit_tree_model 203

model_diversities

Number of lineages through time as predicted by the model (in the deterministic
limit), calculated for each of grid_times. If coalescent==TRUE then these are
the number of lineages expected to be represented in the coalescent tree (this
may be lower than the actual number of extant clades at any given time point, if
the model includes extinctions).

fitted_parameter_names

Character vector, listing the names of fitted (i.e. non-fixed) parameters.
locally_fitted_parameters

Named list of numeric vectors, listing the fitted values for each parameter and
for each fitting trial. For example, if birth_rate_factor was fitted, then
locally_fitted_parameters$birth_rate_factor will be a numeric vector
of size Ntrials (or less, if some trials failed or omitted), listing the locally-
optimized values of the parameter for each considered fitting trial. Mainly useful
for diagnostic purposes.

objective Character. The name of the objective function used for fitting ("LL", "R2" or
"wR2").

Ntips The number of tips in the input tree.

Nnodes The number of nodes in the input tree.

min_age The minimum age of nodes/tips considered during fitting.

max_age The maximum age of nodes/tips considered during fitting.

age_centile Numeric or NULL, equal to the age_centile specified as input to the function.

Author(s)

Stilianos Louca

See Also

generate_random_tree, simulate_diversification_model reconstruct_past_diversification

Examples

Generate a tree using a simple speciation model
parameters = list(birth_rate_intercept = 1,

birth_rate_factor = 0,
birth_rate_exponent = 0,
death_rate_intercept = 0,
death_rate_factor = 0,
death_rate_exponent = 0,
resolution = 0,
rarefaction = 1)

tree = generate_random_tree(parameters, max_tips=100)

Fit model to the tree
fitting_parameters = parameters
fitting_parameters$birth_rate_intercept = NULL # fit only this parameter
fitting = fit_tree_model(tree,fitting_parameters)

204 gamma_statistic

compare fitted to true value
T = parameters$birth_rate_intercept
F = fitting$parameters$birth_rate_intercept
cat(sprintf("birth_rate_intercept: true=%g, fitted=%g\n",T,F))

gamma_statistic Calculate the gamma-statistic of a tree.

Description

Given a rooted ultrametric phylogenetic tree, calculate the gamma-statistic (Pybus and Harevy,
2000).

Usage

gamma_statistic(tree)

Arguments

tree A rooted tree of class "phylo". The tree is assumed to be ultrametric; any devia-
tions from ultrametricity are ignored.

Details

The tree may include multifurcations and monofurcations. If edge lengths are missing (i.e. edge.length=NULL),
then each edge is assumed to have length 1.

This function is similar to the function gammaStat in the R package ape v5.3.

Value

Numeric, the gamma-statistic of the tree.

Author(s)

Stilianos Louca

References

O. G. Pybus and P. H. Harvey (2000). Testing macro-evolutionary models using incomplete molec-
ular phylogenies. Proceedings of the Royal Society of London. Series B: Biological Sciences.
267:2267-2272.

generate_gene_tree_msc 205

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

calculate & print gamma statistic
gammastat = gamma_statistic(tree)
cat(sprintf("Tree has gamma-statistic %g\n",gammastat))

generate_gene_tree_msc

Generate a gene tree based on the multi-species coalescent model.

Description

Generate a random gene tree within a given species timetree, based on the multi-species coalescent
(MSC) model. In this implementation of the MSC, every branch of the species tree has a specific ef-
fective population size (Ne) and a specific generation time (T), and gene alleles coalesce backward
in time according to the Wright-Fisher model. This model does not account for gene duplica-
tion/loss, nor for hybridization or horizontal gene transfer. It is only meant to model "incomplete
lineage sorting", otherwise known as "deep coalescence", which is one of the many mechanisms
that can cause discordance between gene trees and species trees.

Usage

generate_gene_tree_msc(species_tree,
allele_counts = 1,
population_sizes = 1,
generation_times = 1,
mutation_rates = 1,
gene_edge_unit = "time",
Nsites = 1,
bottleneck_at_speciation = FALSE,
force_coalescence_at_root = FALSE,
ploidy = 1,
gene_tip_labels = NULL)

Arguments

species_tree Rooted timetree of class "phylo". The tree can include multifurcations and
monofurcations. The tree need not necessarily be ultrametric, i.e. it may in-
clude extinct species. Edge lengths are assumed to be in time units.

allele_counts Integer vector, listing the number of alleles sampled per species. Either NULL (1
allele per species), or a single integer (same number of alleles per species), or
a vector of length Ntips listing the numbers of alleles sampled per species. In
the latter case, the total number of tips in the returned gene tree will be equal to
the sum of entries in allele_counts. Some entries in allele_counts may be
zero (no alleles sampled from those species).

206 generate_gene_tree_msc

population_sizes

Integer vector, listing the effective population size on the edge leading into
each tip/node in the species tree. Either NULL (all population sizes are 1), or
a single integer (same population sizes for all edges), or a vector of length
Ntips+Nnodes, listing population sizes for each clade’s incoming edge (includ-
ing the root). The population size for the root’s incoming edge corresponds to
the population size at the tree’s stem (only relevant if force_coalescence_at_root=FALSE).

generation_times

Numeric vector, listing the generation time along the edge leading into each
clade. Either NULL (all generation times are 1), or a single integer (same gener-
ation time for all edges) or a vector of length Ntips+Nnodes, listing generation
times for each clade’s incoming edge (including the root). The generation time
for the root’s incoming edge corresponds to the generation time at the tree’s stem
(only relevant if force_coalescence_at_root=FALSE).

mutation_rates Numeric vector, listing the mutation rate (per site and per generation) along the
edge leading into each clade. Either NULL (all mutation rates are 1), or a single
integer (same mutation rate for all edges) or a vector of length Ntips+Nnodes,
listing mutation rates for each clade’s incoming edge (including the root). The
mutation rate for the root’s incoming edge corresponds to the mutation rate at the
tree’s stem (only relevant if force_coalescence_at_root=FALSE). The value
of mutation_rates is only relevant if gene_edge_unit is "mutations_expected"
or "mutations_random". Mutation rates represent probabilities, and so they must
be between 0 and 1.

gene_edge_unit Character, either "time", "generations", "mutations_expected" (expected mean
number of mutations per site), or "mutations_random" (randomly generated
mean number of mutations per site), specifying how edge lengths in the gene
tree should be measured. By default, gene-tree edges are measured in time, as
is the case for the input species tree.

Nsites Integer, specifying the number of sites (nucleotides) in the gene. Only rele-
vant when generating edge lengths in terms of random mutation counts, i.e. if
gene_edge_unit=="mutations_random".

bottleneck_at_speciation

Logical. If TRUE, then all but one children at each node are assumed to have
emerged from a single mutant individual, and thus all gene lineages within these
bottlenecked species lineages must coalesce at a younger or equal age as the spe-
ciation event. Only the first child at each node is excluded from this assumption,
corresponding to the "resident population" during the speciation event. This
option deviates from the classical MSC model, and is experimental.

force_coalescence_at_root

Logical. If TRUE, all remaining orphan gene lineages that haven’t coalesced
before reaching the species-tree’s root, will be combined at the root (via multiple
adjacent bifurcations). If FALSE, coalescence events may extend beyond the
species-tree’s root into the stem lineage, as long as it takes until all gene lineages
have coalesced.

ploidy Integer, specifying the assumed genetic ploidy, i.e. number of gene copies per
individual. Typically 1 for haploids, or 2 for diploids.

generate_gene_tree_msc 207

gene_tip_labels

Character vector specifying tip labels for the gene tree (i.e., for each of the
sampled alleles) in the order of the corresponding species tips. Can also be
NULL, in which case gene tips will be set to <species_tip_label>.<allele index>.

Details

This function assumes that Kingman’s coalescent assumption is met, i.e. that the effective popula-
tion size is much larger than the number of allele lineages coalescing within any given branch.

The function assumes that the species tree is a time tree, i.e. with edge lengths given in actual
time units. To simulate gene trees in coalescence time units, choose population_sizes and
generation_times accordingly (this only makes sense if the product of population_sizes ×
generation_times is the same everywhere). If species_tree is ultrametric and gene_edge_unit=="time",
then the gene tree will be ultrametric as well.

If gene_edge_unit is "mutations_random", then the number of generations elapsed along each time
segment is translated into a randomly distributed number of accumulated mutations, according to a
binomial distribution where the probability of success is equal to the mutation rate and the number
of trials is equal to the number of generations multiplied by Nsites; this number of mutations is
averaged across all sites, i.e. the edge lengths in the returned gene tree always refer to the mean
number of mutations per site. In cases where the mutation rate varies across the species tree and
a single gene edge spans multiple species edges, the gene edge length will be a sum of multiple
binomially distributed mutation counts (again, divided by the number of sites), corresponding to
the times spent in each species edge.

Value

A named list with the following elements:

success Logical, indicating whether the gene tree was successfully generated. If FALSE,
the only other value returned is error.

tree The generated gene tree, of class "phylo". This tree will be rooted and bifurcat-
ing. It is only guaranteed to be ultrametric if species_tree was ultrametric.

gene_tip2species_tip

Integer vector of length NGtips (where NGtips is the number of tips in the gene
tree), mapping gene-tree tips to species-tree tips.

gene_node2species_edge

Integer vector of length NGnodes (where NGnodes is the number of internal
nodes in the gene tree), mapping gene-tree nodes (=coalescence events) to the
species-tree edges where the coalescences took place.

gene_clade_times

Numeric vector of size NGtips+NGnodes, listing the time (total temporal dis-
tance from species root) of each tip and node in the gene tree. The units will
be the same as the time units assumed for the species tree. Note that this may
include negative values, if some gene lineages coalesce at a greater age than the
root.

error Character, containing an explanation of the error that occurred. Only included
if success==FALSE.

208 generate_gene_tree_msc_hgt_dl

Author(s)

Stilianos Louca

References

J. H. Degnan, N. A. Rosenberg (2009). Gene tree discordance, phylogenetic inference and the
multispecies coalescent. Trends in Ecology & Evolution. 24:332-340.

B. Rannala, Z. Yang (2003). Bayes estimation of species divergence times and ancestral population
sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656.

See Also

generate_random_tree, generate_gene_tree_msc_hgt_dl

Examples

Simulate a simple species tree
parameters = list(birth_rate_factor=1)
Nspecies = 10
species_tree = generate_random_tree(parameters,max_tips=Nspecies)$tree

Simulate a haploid gene tree within the species tree
Assume the same population size and generation time everywhere
Assume the number of alleles samples per species is poisson-distributed
results = generate_gene_tree_msc(species_tree,

allele_counts = rpois(Nspecies,3),
population_sizes = 1000,
generation_times = 1,
ploidy = 1);

if(!results$success){
simulation failed
cat(sprintf(" ERROR: %s\n",results$error))

}else{
simulation succeeded
gene_tree = results$tree
cat(sprintf(" Gene tree has %d tips\n",length(gene_tree$tip.label)))

}

generate_gene_tree_msc_hgt_dl

Generate gene trees based on the multi-species coalescent, horizontal
gene transfers and duplications/losses.

Description

Generate a random gene tree within a given species timetree, based on an extension of the multi-
species coalescent (MSC) model that includes horizontal gene transfers (HGT, incorporation of
non-homologous genes as new loci), gene duplication and gene loss. The simulation consists of

generate_gene_tree_msc_hgt_dl 209

two phases. In the first phase a random "locus tree" is generated in forward time, according to
random HGT, duplication and loss events. In the 2nd phase, alleles picked randomly from each
locus are coalesced in backward time according to the multispecies coalescent, an extension of the
Wright-Fisher model to multiple species. This function does not account for hybridization.

Usage

generate_gene_tree_msc_hgt_dl(species_tree,
allele_counts = 1,
population_sizes = 1,
generation_times = 1,
mutation_rates = 1,
HGT_rates = 0,
duplication_rates = 0,
loss_rates = 0,
gene_edge_unit = "time",
Nsites = 1,
bottleneck_at_speciation = FALSE,
force_coalescence_at_root = FALSE,
ploidy = 1,
HGT_source_by_locus = FALSE,
HGT_only_to_empty_clades = FALSE,
no_loss_before_time = 0,
max_runtime = NULL,
include_event_times = TRUE)

Arguments

species_tree Rooted timetree of class "phylo". The tree can include multifurcations and
monofurcations. The tree need not necessarily be ultrametric, i.e. it may in-
clude extinct species. Edge lengths are assumed to be in time units.

allele_counts Integer vector, listing the number of alleles sampled per species and per locus.
This can be interpreted as the number if individual organisms surveyed from
each species, assuming that all loci are included once from each individual. The
number of tips in the generated gene tree will be equal to the sum of allele counts
across all species. allele_counts can either be NULL (1 allele per species), or
a single integer (same number of alleles per species), or a vector of length Ntips
listing the numbers of alleles sampled per species. In the latter case, the total
number of tips in the returned gene tree will be equal to the sum of entries
in allele_counts. Some entries in allele_counts may be zero (no alleles
sampled from those species).

population_sizes

Integer vector, listing the effective population size on the edge leading into
each tip/node in the species tree. Either NULL (all population sizes are 1), or
a single integer (same population sizes for all edges), or a vector of length
Ntips+Nnodes, listing population sizes for each clade’s incoming edge (includ-
ing the root). The population size for the root’s incoming edge corresponds to
the population size at the tree’s stem (only relevant if force_coalescence_at_root=FALSE).

210 generate_gene_tree_msc_hgt_dl

generation_times

Numeric vector, listing the generation time along the edge leading into each
clade. Either NULL (all generation times are 1), or a single integer (same gener-
ation time for all edges) or a vector of length Ntips+Nnodes, listing generation
times for each clade’s incoming edge (including the root). The generation time
for the root’s incoming edge corresponds to the generation time at the tree’s stem
(only relevant if force_coalescence_at_root=FALSE).

mutation_rates Numeric vector, listing the probability of mutation per site and per generation
along the edge leading into each clade. Either NULL (all mutation rates are
1), or a single integer (same mutation rate for all edges) or a vector of length
Ntips+Nnodes, listing mutation rates for each clade’s incoming edge (including
the root). The mutation rate for the root’s incoming edge corresponds to the mu-
tation rate at the tree’s stem (only relevant if force_coalescence_at_root=FALSE).
The value of mutation_rates is only relevant if gene_edge_unit is "muta-
tions_expected" or "mutations_random". Mutation rates represent probabilities,
and so they must be between 0 and 1.

HGT_rates Numeric vector, listing horizontal gene transfer rates per lineage per time, along
the edge leading into each clade. Either NULL (all HGT rates are 0) or a single
integer (same HGT rate for all edges) or a vector of length Ntips+Nnodes, listing
HGT rates for each clade’s incoming edge (including the root).

duplication_rates

Numeric vector, listing gene duplication rates per locus per lineage per time,
along the edge leading into each clade. Either NULL (all duplication rates are
0) or a single integer (same duplication rate for all edges) or a vector of length
Ntips+Nnodes listing duplication rates for each clade’s incoming edge (includ-
ing the root).

loss_rates Numeric vector, listing gene loss rates per locus per lineage per time, along the
edge leading into each clade. Either NULL (all loss rates are 0) or a single integer
(same loss rate for all edges) or a vector of length Ntips+Nnodes listing loss
rates for each clade’s incoming edge (including the root).

gene_edge_unit Character, either "time", "generations", "mutations_expected" (expected mean
number of mutations per site), or "mutations_random" (randomly generated
mean number of mutations per site), specifying how edge lengths in the gene
tree should be measured. By default, gene-tree edges are measured in time, as
is the case for the input species tree.

Nsites Integer, specifying the number of sites (nucleotides) in the gene. Only rele-
vant when generating edge lengths in terms of random mutation counts, i.e. if
gene_edge_unit=="mutations_random".

bottleneck_at_speciation

Logical. If TRUE, then all but one children at each node are assumed to have
emerged from a single mutant individual, and thus all gene lineages within these
bottlenecked species lineages must coalesce at a younger or equal age as the spe-
ciation event. Only the first child at each node is excluded from this assumption,
corresponding to the "resident population" during the speciation event. This
option deviates from the classical MSC model, and is experimental.

force_coalescence_at_root

Logical. If TRUE, all remaining orphan gene lineages that haven’t coalesced
before reaching the species-tree’s root, will be combined at the root (via multiple

generate_gene_tree_msc_hgt_dl 211

adjacent bifurcations). If FALSE, coalescence events may extend beyond the
species-tree’s root into the stem lineage, as long as it takes until all gene lineages
have coalesced.

ploidy Integer, specifying the assumed genetic ploidy, i.e. number of gene copies per
individual. Typically 1 for haploids, or 2 for diploids.

HGT_source_by_locus

Logical. If TRUE, then at any HGT event, every extant locus is chosen as source
locus with the same probability (hence the probability of a lineage to be a source
is proportional to the number of current loci in it). If FALSE, source lineages are
chosen with the same probability (regardless of the number of current loci in
them) and the source locus within the source lineage is chosen randomly.

HGT_only_to_empty_clades

Logical, specifying whether HGT transfers only occur into clades with no cur-
rent loci.

no_loss_before_time

Numeric, optional time since the root during which no gene losses shall occur
(even if loss_rate>0). This option can be used to reduce the probability of an
early extinction of the entire gene tree, by giving the gene tree some "startup
time" to spread into various species lineages. If zero, gene losses are possible
right from the start of the simulation.

max_runtime Numeric, optional maximum computation time (in seconds) to allow for the
simulation. Use this to avoid occasional explosions of runtimes, for example
due to very large generated trees. Aborted simulations will return with the flag
success=FALSE (i.e., no tree is returned at all).

include_event_times

Logical, specifying whether the times of HGT, duplication and loss events should
be returned as well. If these are not needed, then set include_event_times=FALSE
for efficiency.

Details

This function assumes that the species tree is a time tree, i.e. with edge lengths given in actual time
units. If species_tree is ultrametric and gene_edge_unit=="time", then the gene tree (but not
necessarily the locus tree) will be ultrametric as well. The root of the locus and gene tree coincides
with the root of the species tree.

The meaning of gene_edge_unit is the same as for the function generate_gene_tree_msc.

Value

A named list with the following elements:

success Logical, indicating whether the gene tree was successfully generated. If FALSE,
the only other value returned is error.

locus_tree The generated locus timetree, of class "phylo". The locus tree describes the
genealogy of loci due to HGT, duplication and loss events. Each tip and node of
the locus tree is embedded within a specific species edge. For example, tips of
the locus tree either coincide with tips of the species tree (if the locus persisted

212 generate_gene_tree_msc_hgt_dl

until the species went extinct or until the present) or they correspond to gene
loss events. In the absence of any HGT, duplication and loss events, the locus
tree will resemble the species tree.

locus_type Character vector of length NLtips + NLnodes (where NLtips and NLnodes are
the number of tips and nodes in the locus tree, respectively), specifying the
type/origin of each tip and node in the locus tree. For nodes, type ’h’ corre-
sponds to an HGT event, type ’d’ to a duplication event, and type ’s’ to a specia-
tion event. For tips, type ’l’ represents a loss event, and type ’t’ a terminal locus
(i.e., coinciding with a species tip). For example, if the input species tree was an
ultrametric tree representing only extant species, then the locus tree tips of type
’t’ are the loci that could potentially be sampled from those extant species.

locus2clade Integer vector of length NLtips + NLnodes, with values in NStips+NSnodes,
specifying for every locus tip or node the correspondng "host" species tip or
node.

HGT_times Numeric vector, listing HGT event times (counted since the root) in ascending
order. Only included if include_event_times==TRUE.

HGT_source_clades

Integer vector of the same length as HGT_times and with values in 1,..,Ntips+Nnodes,
listing the "source" species tip/node of each HGT event (in order of occurrence).
The source tip/node is the tip/node from whose incoming edge a locus originated
at the time of the transfer. Only included if include_event_times==TRUE.

HGT_target_clades

Integer vector of the same length as HGT_times and with values in 1,..,Ntips+Nnodes,
listing the "target" species tip/node of each HGT event (in order of occurrence).
The target (aka. recipient) tip/node is the tip/node within whose incoming edge a
locus was created by the transfer. Only included if include_event_times==TRUE.

duplication_times

Numeric vector, listing gene duplication event times (counted since the root) in
ascending order. Only included if include_event_times==TRUE.

duplication_clades

Integer vector of the same length as duplication_times and with values in
1,..,Ntips+Nnodes, listing the species tip/node in whose incoming edge each du-
plication event occurred (in order of occurrence). Only included if include_event_times==TRUE.

loss_times Numeric vector, listing gene loss event times (counted since the root) in ascend-
ing order. Only included if include_event_times==TRUE.

loss_clades Integer vector of the same length as loss_times and with values in 1,..,Ntips+Nnodes,
listing the species tip/node in whose incoming edge each loss event occurred (in
order of occurrence). Only included if include_event_times==TRUE.

gene_tree The generated gene tree, of type "phylo".
gene_tip2species_tip

Integer vector of length NGtips (where NGtips is the number of tips in the gene
tree) with values in 1,..,Ntips+Nnodes, mapping gene-tree tips to species-tree
tips.

gene_tip2locus_tip

Integer vector of length NGtips with values in 1,..,NLtips, mapping gene-tree
tips to locus-tree tips.

generate_gene_tree_msc_hgt_dl 213

gene_node2locus_edge

Integer vector of length NGnodes with values in 1,..,NLedges, mapping gene-
tree nodes to locus-tree edges.

gene_clade_times

Numeric vector of size NGtips+NGnodes, listing the time (temporal distance
from species root) of each tip and node in the gene tree. The units will be the
same as the time units of the species tree. Note that this may include negative
values, if some gene lineages coalesce at a greater age than the root.

error Character, containing an explanation of the error that occurred. Only included
if success==FALSE.

Author(s)

Stilianos Louca

References

J. H. Degnan, N. A. Rosenberg (2009). Gene tree discordance, phylogenetic inference and the
multispecies coalescent. Trends in Ecology & Evolution. 24:332-340.

B. Rannala, Z. Yang (2003). Bayes estimation of species divergence times and ancestral population
sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656.

See Also

generate_random_tree, generate_gene_tree_msc

Examples

Simulate a simple species tree
parameters = list(birth_rate_factor=1)
Nspecies = 10
species_tree = generate_random_tree(parameters,max_tips=Nspecies)$tree

Simulate a haploid gene tree within the species tree, including HGTs and gene loss
Assume the same population size and generation time everywhere
Assume the number of alleles samples per species is poisson-distributed
results = generate_gene_tree_msc_hgt_dl(species_tree,

allele_counts = rpois(Nspecies,3),
population_sizes = 1000,
generation_times = 1,
ploidy = 1,
HGT_rates = 0.1,
loss_rates = 0.05);

if(!results$success){
simulation failed
cat(sprintf(" ERROR: %s\n",results$error))

}else{
simulation succeeded
gene_tree = results$gene_tree
cat(sprintf(" Gene tree has %d tips\n",length(gene_tree$tip.label)))

}

214 generate_random_tree

generate_random_tree Generate a tree using a Poissonian speciation/extinction model.

Description

Generate a random timetree via simulation of a Poissonian speciation/extinction (birth/death) pro-
cess. New species are added (born) by splitting of a randomly chosen extant tip. The tree-wide
birth and death rates of tips can each be constant or power-law functions of the number of extant
tips. For example,

B = I + F ·NE ,

where B is the tree-wide birth rate (species generation rate), I is the intercept, F is the power-law
factor, N is the current number of extant tips and E is the power-law exponent. Optionally, the per-
capita (tip-specific) birth and death rates can be extended by adding a custom time series provided
by the user.

Usage

generate_random_tree(parameters = list(),
max_tips = NULL,
max_extant_tips = NULL,
max_time = NULL,
max_time_eq = NULL,
coalescent = TRUE,
as_generations = FALSE,
no_full_extinction = TRUE,
Nsplits = 2,
added_rates_times = NULL,
added_birth_rates_pc = NULL,
added_death_rates_pc = NULL,
added_periodic = FALSE,
tip_basename = "",
node_basename = NULL,
edge_basename = NULL,
include_birth_times = FALSE,
include_death_times = FALSE)

Arguments

parameters A named list specifying the birth-death model parameters, with one or more of
the following entries:
birth_rate_intercept: Non-negative number. The intercept of the Poisso-
nian rate at which new species (tips) are added. In units 1/time. By default this
is 0.
birth_rate_factor: Non-negative number. The power-law factor of the Pois-
sonian rate at which new species (tips) are added. In units 1/time. By default
this is 0.

generate_random_tree 215

birth_rate_exponent: Numeric. The power-law exponent of the Poissonian
rate at which new species (tips) are added. Unitless. By default this is 1.
death_rate_intercept: Non-negative number. The intercept of the Poisso-
nian rate at which extant species (tips) go extinct. In units 1/time. By default
this is 0.
death_rate_factor: Non-negative number. The power-law factor of the Pois-
sonian rate at which extant species (tips) go extinct. In units 1/time. By default
this is 0.
death_rate_exponent: Numeric. The power-law exponent of the Poissonian
rate at which extant species (tips) go extinct. Unitless. By default this is 1.
resolution: Non-negative numeric, specifying the resolution (in time units)
at which to collapse the final tree by combining closely related tips. Any node
whose age is smaller than this threshold, will be represented by a single tip. Set
resolution=0 to not collapse tips (default).
rarefaction: Numeric between 0 and 1. Rarefaction to be applied to the final
tree (fraction of random tips kept in the tree). Note that if coalescent==FALSE,
rarefaction may remove both extant as well as extinct clades. Set rarefaction=1
to not perform any rarefaction (default).

max_tips Integer, maximum number of tips of the tree to be generated. If coalescent=TRUE,
this refers to the number of extant tips. Otherwise, it refers to the number of ex-
tinct + extant tips. If NULL or <=0, this halting condition is ignored.

max_extant_tips

Integer, maximum number of extant lineages allowed at any moment during the
simulation. If this number is reached, the simulation is halted. If NULL or <=0,
this halting condition is ignored.

max_time Numeric, maximum duration of the simulation. If NULL or <=0, this constraint
is ignored.

max_time_eq Maximum duration of the simulation, counting from the first point at which
speciation/extinction equilibrium is reached, i.e. when (birth rate - death rate)
changed sign for the first time. If NULL or <0, this constraint is ignored.

coalescent Logical, specifying whether only the coalescent tree (i.e. the tree spanning the
extant tips) should be returned. If coalescent==FALSE and the death rate is
non-zero, then the tree may include non-extant tips (i.e. tips whose distance
from the root is less than the total time of evolution). In that case, the tree will
not be ultrametric.

as_generations Logical, specifying whether edge lengths should correspond to generations. If
FALSE, then edge lengths correspond to time.

no_full_extinction

Logical, specifying whether to prevent complete extinction of the tree. Full ex-
tinction is prevented by temporarily disabling extinctions whenever the number
of extant tips is 1. Note that, strictly speaking, the trees generated do not exactly
follow the proper probability distribution when no_full_extinction is TRUE.

Nsplits Integer greater than 1. Number of child-tips to generate at each diversification
event. If set to 2, the generated tree will be bifurcating. If >2, the tree will be
multifurcating.

216 generate_random_tree

added_rates_times

Numeric vector, listing time points (in ascending order) for the custom per-
capita birth and/or death rates time series (see added_birth_rates_pc and
added_death_rates_pc below). Can also be NULL, in which case the custom
time series are ignored.

added_birth_rates_pc

Numeric vector of the same size as added_rates_times, listing per-capita birth
rates to be added to the power law part. Can also be NULL, in which case this
option is ignored and birth rates are purely described by the power law.

added_death_rates_pc

Numeric vector of the same size as added_rates_times, listing per-capita death
rates to be added to the power law part. Can also be NULL, in which case this
option is ignored and death rates are purely described by the power law.

added_periodic Logical, indicating whether added_birth_rates_pc and added_death_rates_pc
should be extended periodically if needed (i.e. if not defined for the entire sim-
ulation time). If FALSE, added birth & death rates are extended with zeros.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

edge_basename Character. Prefix to be used for edge labels (e.g. "edge."). Edge labels (if
included) are stored in the character vector edge.label. If NULL, no edge labels
will be included in the tree.

include_birth_times

Logical. If TRUE, then the times of speciation events (in order of occurrence)
will also be returned.

include_death_times

Logical. If TRUE, then the times of extinction events (in order of occurrence)
will also be returned.

Details

If max_time==NULL, then the returned tree will always contain max_tips tips. In particular, if at any
moment during the simulation the tree only includes a single extant tip, the death rate is temporarily
set to zero to prevent the complete extinction of the tree. If max_tips==NULL, then the simulation
is ran as long as specified by max_time. If neither max_time nor max_tips is NULL, then the simu-
lation halts as soon as the time exceeds max_time or the number of tips (extant tips if coalescent
is TRUE) exceeds max_tips. If max_tips!=NULL and Nsplits>2, then the last diversification even
may generate fewer than Nsplits children, in order to keep the total number of tips within the
specified limit.

If rarefaction<1 and resolution>0, collapsing of closely related tips (at the resolution specified)
takes place prior to rarefaction (i.e., subsampling applies to the already collapsed tips).

Both the per-capita birth and death rates can be made into completely arbitrary functions of time, by
setting all power-law coefficients to zero and providing custom time series added_birth_rates_pc
and added_death_rates_pc.

generate_random_tree 217

Value

A named list with the following elements:

success Logical, indicating whether the tree was successfully generated. If FALSE, the
only other value returned is error.

tree A rooted bifurcating (if Nsplits==2) or multifurcating (if Nsplits>2) tree of
class "phylo", generated according to the specified birth/death model. If coalescent==TRUE
or if all death rates are zero, and only if as_generations==FALSE, then the tree
will be ultrametric. If as_generations==TRUE and coalescent==FALSE, all
edges will have unit length.

root_time Numeric, giving the time at which the tree’s root was first split during the simu-
lation. Note that if coalescent==TRUE, this may be later than the first speciation
event during the simulation.

final_time Numeric, giving the final time at the end of the simulation. Note that if coalescent==TRUE,
then this may be greater than the total time span of the tree (since the root of the
coalescent tree need not correspond to the first speciation event).

root_age Numeric, giving the age (time before present) at the tree’s root. This is equal to
final_time-root_time.

equilibrium_time

Numeric, giving the first time where the sign of (death rate - birth rate) changed
from the beginning of the simulation, i.e. when speciation/extinction equilib-
rium was reached. May be infinite if the simulation stoped before reaching this
point.

extant_tips Integer vector, listing indices of extant tips in the tree. If coalescent==TRUE,
all tips will be extant.

Nbirths Total number of birth events (speciations) that occurred during tree growth. This
may be lower than the total number of tips in the tree if death rates were non-zero
and coalescent==TRUE, or if Nsplits>2.

Ndeaths Total number of deaths (extinctions) that occurred during tree growth.

Ncollapsed Number of tips removed from the tree while collapsing at the resolution speci-
fied.

Nrarefied Number of tips removed from the tree due to rarefaction.

birth_times Numeric vector, listing the times of speciation events during tree growth, in
order of occurrence. Note that if coalescent==TRUE, then speciation_times
may be greater than the phylogenetic distance to the coalescent root.

death_times Numeric vector, listing the times of extinction events during tree growth, in order
of occurrence. Note that if coalescent==TRUE, then speciation_times may
be greater than the phylogenetic distance to the coalescent root.

error Character, containing an explanation of ther error that occurred. Only included
if success==FALSE.

Author(s)

Stilianos Louca

218 generate_tree_hbds

References

D. J. Aldous (2001). Stochastic models and descriptive statistics for phylogenetic trees, from Yule
to today. Statistical Science. 16:23-34.

M. Steel and A. McKenzie (2001). Properties of phylogenetic trees generated by Yule-type specia-
tion models. Mathematical Biosciences. 170:91-112.

Examples

Simple speciation model
parameters = list(birth_rate_intercept=1)
tree = generate_random_tree(parameters,max_tips=100)$tree

Exponential growth rate model
parameters = list(birth_rate_factor=1)
tree = generate_random_tree(parameters,max_tips=100)$tree

generate_tree_hbds Generate a tree from a birth-death-sampling model in forward time.

Description

Generate a random timetree according to a homogenous birth-death-sampling model with arbitrary
time-varying speciation/extinction/sampling rates. Lineages split (speciate) or die (go extinct) at
Poissonian rates and independently of each other. Lineages are sampled continuously (i.e., at Pois-
sonian rates) in time and/or during concentrated sampling attempts (i.e., at specific time points).
Sampled lineages are assumed to continue in the pool of extant lineages at some given "retention
probability". The final tree can be restricted to sampled lineages only, but may optionally include
extant (non-sampled) as well as extinct lineages. Speciation, extinction and sampling rates as well
as retention probabilities may depend on time. This function may be used to simulate trees com-
monly encountered in viral epidemiology, where sampled patients are assumed to exit the pool of
infectious individuals.

Usage

generate_tree_hbds(max_sampled_tips = NULL,
max_sampled_nodes = NULL,
max_extant_tips = NULL,
max_extinct_tips = NULL,
max_tips = NULL,
max_time = NULL,
include_extant = FALSE,
include_extinct = FALSE,
as_generations = FALSE,
time_grid = NULL,
lambda = NULL,
mu = NULL,
psi = NULL,

generate_tree_hbds 219

kappa = NULL,
splines_degree = 1,
CSA_times = NULL,
CSA_probs = NULL,
CSA_kappas = NULL,
no_full_extinction = FALSE,
max_runtime = NULL,
tip_basename = "",
node_basename = NULL,
edge_basename = NULL,
include_birth_times = FALSE,
include_death_times = FALSE)

Arguments

max_sampled_tips

Integer, maximum number of sampled tips. The simulation is halted once this
number is reached. If NULL or <=0, this halting criterion is ignored.

max_sampled_nodes

Integer, maximum number of sampled nodes, i.e., of lineages that were sampled
but kept in the pool of extant lineages. The simulation is halted once this number
is reached. If NULL or <=0, this halting criterion is ignored.

max_extant_tips

Integer, maximum number of extant tips. The simulation is halted once the
number of concurrently extant tips reaches this threshold. If NULL or <=0, this
halting criterion is ignored.

max_extinct_tips

Integer, maximum number of extant tips. The simulation is halted once this
number is reached. If NULL or <=0, this halting criterion is ignored.

max_tips Integer, maximum number of tips (extant+extinct+sampled). The simulation is
halted once this number is reached. If NULL or <=0, this halting criterion is
ignored.

max_time Numeric, maximum duration of the simulation. If NULL or <=0, this halting
criterion is ignored.

include_extant Logical, specifying whether to include extant tips (i.e., neither extinct nor sam-
pled) in the final tree.

include_extinct

Logical, specifying whether to include extant tips (i.e., neither extant nor sam-
pled) in the final tree.

as_generations Logical, specifying whether edge lengths should correspond to generations. If
FALSE, then edge lengths correspond to time. If TRUE, then the time between two
subsequent events (speciation, extinction, sampling) is counted as "one genera-
tion".

time_grid Numeric vector, specifying time points (in ascending order) on which the rates
lambda, mu and psi are provided. Rates are interpolated polynomially between
time grid points as needed (according to splines_degree). The time grid should

220 generate_tree_hbds

generally cover the maximum possible simulation time, otherwise it will be
polynomially extrapolated as needed.

lambda Numeric vector, of the same size as time_grid (or size 1 if time_grid==NULL),
listing per-lineage speciation (birth) rates (λ, in units 1/time) at the times listed
in time_grid. Speciation rates must be non-negative, and are assumed to vary
as a spline between grid points (see argument splines_degree). Can also be a
single numeric, in which case λ is assumed to be constant over time.

mu Numeric vector, of the same size as time_grid (or size 1 if time_grid==NULL),
listing per-lineage extinction (death) rates (µ, in units 1/time) at the times listed
in time_grid. Extinction rates must be non-negative, and are assumed to vary
as a spline between grid points (see argument splines_degree). Can also be a
single numeric, in which case µ is assumed to be constant over time. If omitted,
the extinction rate is assumed to be zero.

psi Numeric vector, of the same size as time_grid (or size 1 if time_grid==NULL),
listing per-lineage sampling rates (ψ, in units 1/time) at the times listed in time_grid.
Sampling rates must be non-negative, and are assumed to vary as a spline be-
tween grid points (see argument splines_degree). Can also be a single nu-
meric, in which case ψ is assumed to be constant over time. If omitted, the
continuous sampling rate is assumed to be zero.

kappa Numeric vector, of the same size as time_grid (or size 1 if time_grid==NULL),
listing retention probabilities (κ, unitless) of continuously (Poissonian) sampled
lineages at the times listed in time_grid. Retention probabilities must be true
probabilities (i.e., between 0 and 1), and are assumed to vary as a spline between
grid points (see argument splines_degree). Can also be a single numeric, in
which case κ is assumed to be constant over time. If omitted, the retention
probability is assumed to be zero (a common assumption in epidemiology).

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
lambda, mu and psi between grid points in age_grid. For example, if splines_degree==1,
then the provided lambda, mu and psi are interpreted as piecewise-linear curves;
if splines_degree==2 the lambda, mu and psi are interpreted as quadratic
splines; if splines_degree==3 the lambda, mu and psi is interpreted as cubic
splines. If your age_grid is fine enough, then splines_degree=1 is usually
sufficient.

CSA_times Optional numeric vector, listing times of concentrated sampling attempts, in
ascending order. Concentrated sampling is performed in addition to any contin-
uous (Poissonian) sampling specified by psi.

CSA_probs Optional numeric vector of the same size as CSA_times, listing sampling prob-
abilities at each concentrated sampling time. Note that in contrast to the sam-
pling rates psi, the CSA_probs are interpreted as probabilities and must thus
be between 0 and 1. CSA_probs must be provided if and only if CSA_times is
provided.

CSA_kappas Optional numeric vector of the same size as CSA_times, listing sampling re-
tention probabilities at each concentrated sampling time, i.e. the probability at
which a sampled lineage is kept in the pool of extant lineages. Note that the
CSA_kappas are probabilities and must thus be between 0 and 1. CSA_kappas
must be provided if and only if CSA_times is provided.

generate_tree_hbds 221

no_full_extinction

Logical, specifying whether to prevent complete extinction of the tree. Full ex-
tinction is prevented by temporarily disabling extinctions whenever the number
of extant tips is 1. Note that, strictly speaking, the trees generated do not exactly
follow the proper probability distribution when no_full_extinction is TRUE.

max_runtime Numeric, optional maximum computation time (in seconds) to allow for the
simulation. Use this to avoid occasional explosions of runtimes, for example
due to very large generated trees. Aborted simulations will return with the flag
success=FALSE (i.e., no tree is returned at all).

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

edge_basename Character. Prefix to be used for edge labels (e.g. "edge."). Edge labels (if
included) are stored in the character vector edge.label. If NULL, no edge labels
will be included in the tree.

include_birth_times

Logical. If TRUE, then the times of speciation events (in order of occurrence)
will also be returned.

include_death_times

Logical. If TRUE, then the times of extinction events (in order of occurrence)
will also be returned.

Details

The simulation proceeds in forward time, starting with a single root. Speciation/extinction and con-
tinuous (Poissonian) sampling events are drawn at exponentially distributed time steps, according
to the rates specified by lambda, mu and psi. Sampling also occurs at the optional CSA_times. Only
extant lineages are sampled at any time point, and sampled lineages are removed from the pool of
extant lineages at probability 1-kappa.

The simulation halts as soon as one of the halting criteria are met, as specified by the options
max_sampled_tips, max_sampled_nodes, max_extant_tips, max_extinct_tips, max_tips and
max_time, or if no extant tips remain, whichever occurs first. Note that in some scenarios (e.g., if
extinction rates are very high) the simulation may halt too early and the generated tree may only
contain a single tip (i.e., the root lineage); in that case, the simulation will return an error (see return
value success).

The function returns a single generated tree, as well as supporting information such as which tips
are extant, extinct or sampled.

Value

A named list with the following elements:

success Logical, indicating whether the simulation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) providing a de-
scription of the error; all other return variables may be undefined.

tree The generated timetree, of class "phylo". Note that this tree need not be ultra-
metric, for example if sampling occurs at multiple time points.

222 generate_tree_hbds

root_time Numeric, giving the time at which the tree’s root was first split during the sim-
ulation. Note that this may be greater than 0, i.e., if the tips of the final tree do
not coalesce all the way back to the simulation’s start.

final_time Numeric, giving the final time at the end of the simulation.

root_age Numeric, giving the age (time before present) at the tree’s root. This is equal to
final_time-root_time.

Nbirths Integer, the total number of speciation (birth) events that occured during the
simulation.

Ndeaths Integer, the total number of extinction (death) events that occured during the
simulation.

Nsamplings Integer, the total number of sampling events that occured during the simulation.

Nretentions Integer, the total number of sampling events that occured during the simulation
and for which lineages were kept in the pool of extant lineages.

sampled_clades Integer vector, specifying indices (from 1 to Ntips+Nnodes) of sampled tips and
nodes in the final tree (regardless of whether their lineages were subsequently
retained or removed from the pool).

retained_clades

Integer vector, specifying indices (from 1 to Ntips+Nnodes) of sampled tips
and nodes in the final tree that were retained, i.e., not removed from the pool
following sampling.

extant_tips Integer vector, specifying indices (from 1 to Ntips) of extant (non-sampled and
non-extinct) tips in the final tree. Will be empty if include_extant==FALSE.

extinct_tips Integer vector, specifying indices (from 1 to Ntips) of extinct (non-sampled and
non-extant) tips in the final tree. Will be empty if include_extinct==FALSE.

Author(s)

Stilianos Louca

References

T. Stadler (2010). Sampling-through-time in birth–death trees. Journal of Theoretical Biology.
267:396-404.

T. Stadler et al. (2013). Birth–death skyline plot reveals temporal changes of epidemic spread in
HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

See Also

generate_tree_hbd_reverse, generate_gene_tree_msc, generate_random_tree, fit_hbds_model_parametric,
simulate_deterministic_hbds

Examples

define time grid on which lambda, mu and psi will be specified
time_grid = seq(0,100,length.out=1000)

generate_tree_hbd_reverse 223

specify the time-dependent extinction rate mu on the time-grid
mu_grid = 0.5*time_grid/(10+time_grid)

define additional concentrated sampling attempts
CSA_times = c(5,7,9)
CSA_probs = c(0.5, 0.5, 0.5)
CSA_kappas = c(0.2, 0.1, 0.1)

generate tree with a constant speciation & sampling rate,
time-variable extinction rate and additional discrete sampling points
assuming that all continuously sampled lineages are removed from the pool
simul = generate_tree_hbds(max_time = 10,

include_extant = FALSE,
include_extinct = FALSE,
time_grid = time_grid,
lambda = 1,
mu = mu_grid,
psi = 0.1,
kappa = 0,
CSA_times = CSA_times,
CSA_probs = CSA_probs,
CSA_kappas = CSA_kappas);

if(!simul$success){
cat(sprintf("ERROR: Could not simulate tree: %s\n",simul$error))

}else{
simulation succeeded. print some basic info about the generated tree
tree = simul$tree
cat(sprintf("Generated tree has %d tips\n",length(tree$tip.label)))

}

generate_tree_hbd_reverse

Generate a tree from a birth-death model in reverse time.

Description

Generate an ultrametric timetree (comprising only extant lineages) in reverse time (from present
back to the root) based on the homogenous birth-death (HBD; Morlon et al., 2011) model, condi-
tional on a specific number of extant species sampled and (optionally) conditional on the crown age
or stem age.

The probability distribution of such trees only depends on the congruence class of birth-death mod-
els (e.g., as specified by the pulled speciation rate) but not on the precise model within a congruence
class (Louca and Pennell, 2019). Hence, in addition to allowing specification of speciation and ex-
tinction rates, this function can alternatively simulate trees simply based on some pulled speciation
rate (PSR), or based on some pulled diversification rate (PDR) and the product ρλo (present-day
sampling fraction times present-day speciation rate).

This function can be used to generate bootstrap samples after fitting an HBD model or HBD con-
gruence class to a real timetree.

224 generate_tree_hbd_reverse

Usage

generate_tree_hbd_reverse(Ntips,
stem_age = NULL,
crown_age = NULL,
age_grid = NULL,
lambda = NULL,
mu = NULL,
rho = NULL,
PSR = NULL,
PDR = NULL,
rholambda0 = NULL,
force_max_age = Inf,
splines_degree = 1,
relative_dt = 1e-3,
Ntrees = 1,
tip_basename = "",
node_basename = NULL,
edge_basename = NULL)

Arguments

Ntips Number of tips in the tree, i.e. number of extant species sampled at present day.

stem_age Numeric, optional stem age on which to condition the tree. If NULL or <=0, the
tree is not conditioned on the stem age.

crown_age Numeric, optional crown age (aka. root age or MRCA age) on which to condi-
tion the tree. If NULL or <=0, the tree is not conditioned on the crown age. If
both stem_age and crown_age are specified, only the crown age is used; in that
case for consistency crown_age must not be greater than stem_age.

age_grid Numeric vector, listing discrete ages (time before present) on which the PSR
is specified. Listed ages must be strictly increasing, and should cover at least
the present day (age 0) as well as a sufficient duration into the past. If condi-
tioning on the stem or crown age, that age must also be covered by age_grid.
When not conditioning on crown nor stem age, and the generated tree ends up
extending beyond the last time point in age_grid, the PSR will be extrapolated
as a constant (with value equal to the last value in PSR) as necessary. age_grid
also be NULL or a vector of size 1, in which case the PSR is assumed to be
time-independent.

lambda Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing speciation rates (λ, in units 1/time) at the ages listed in age_grid. Spe-
ciation rates must be non-negative, and are assumed to vary as a spline between
grid points (see argument splines_degree). Can also be NULL, in which case
either PSR, or PDR and rholambda0, must be provided.

mu Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing extinction rates (µ, in units 1/time) at the ages listed in age_grid. Ex-
tinction rates must be non-negative, and are assumed to vary as a spline between
grid points (see argument splines_degree). Can also be NULL, in which case
either PSR, or PDR and rholambda0, must be provided.

generate_tree_hbd_reverse 225

rho Numeric, sampling fraction at present day (fraction of extant species included in
the tree). Can also be NULL, in which case either PSR, or PDR and rholambda0,
must be provided.

PSR Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing pulled speciation rates (λp, in units 1/time) at the ages listed in age_grid.
The PSR must be non-negative (and strictly positive almost everywhere), and is
assumed to vary as a spline between grid points (see argument splines_degree).
Can also be NULL, in which case either lambda and mu and rho, or PDR and
rholambda0, must be provided.

PDR Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing pulled diversification rates (rp, in units 1/time) at the ages listed in age_grid.
The PDR is assumed to vary polynomially between grid points (see argument
splines_degree). Can also be NULL, in which case either lambda and mu and
rho, or PSR, must be provided.

rholambda0 Strictly positive numeric, specifying the product ρλo (present-day species sam-
pling fraction times present-day speciation rate). Can also be NULL, in which
case PSR must be provided.

force_max_age Numeric, specifying an optional maximum allowed age for the tree’s root. If
the tree ends up expanding past that age, all remaining lineages are forced to
coalesce at that age. This is not statistically consistent with the provided HBD
model (in fact it corresponds to a modified HBD model with a spike in the PSR
at that time). This argument merely provides a way to prevent excessively large
trees if the PSR is close to zero at older ages and when not conditioning on
the stem nor crown age, while still keeping the original statistical properties at
younger ages. To disable this feature set force_max_age to Inf.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided rates
PSR, PDR, lambda, mu and rho between grid points in age_grid. For example, if
splines_degree==1, then the provided rates are interpreted as piecewise-linear
curves; if splines_degree==2 the rates are interpreted as quadratic splines; if
splines_degree==3 the rates are interpreted as cubic splines. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. If your age_grid is fine enough, then
splines_degree=1 is usually sufficient.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time. Smaller values increase integration accuracy
but increase computation time. Typical values are 0.0001-0.001. The default is
usually sufficient.

Ntrees Integer, number of trees to generate. The computation time per tree is lower if
you generate multiple trees at once.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

edge_basename Character. Prefix to be used for edge labels (e.g. "edge."). Edge labels (if
included) are stored in the character vector edge.label. If NULL, no edge labels
will be included in the tree.

226 generate_tree_hbd_reverse

Details

This function requires that the BD model, or the BD congruence class (Louca and Pennell, 2019),
is specified using one of the following sets of arguments:

• Using the speciation rate λ, the extinctin rate µ, and the present-day sampling fraction ρ.

• Using the pulled diversification rate (PDR) and the product ρλ(0). The PDR is defined as
rp = λ − µ + 1

λ
dλ
dτ , where τ is age (time before present), λ(τ) is the speciation rate at age τ

and µ(τ) is the extinction rate.

• Using the pulled speciation rate (PSR). The PSR (λp) is defined as λp(τ) = λ(τ)·Φ(τ), where
and Φ(τ) is the probability that a lineage extant at age τ will survive until the present and be
represented in the tree.

Concurrently using/combining more than one the above parameterization methods is not supported.

Either the PSR, or the PDR and rholambda0, provide sufficient information to fully describe the
probability distribution of the tree (Louca and Pennell, 2019). For example, the probability dis-
tribution of generated trees only depends on the PSR, and not on the specific speciation rate λ
or extinction rate µ (various combinations of λ and µ can yield the same PSR; Louca and Pen-
nell, 2019). To calculate the PSR and PDR for any arbitrary λ, µ and ρ you can use the function
simulate_deterministic_hbd.

When not conditioning on the crown age, the age of the root of the generated tree will be stochastic
(i.e., non-fixed). This function then assumes a uniform prior distribution (in a sufficiently large time
interval) for the origin of the forward HBD process that would have generated the tree, based on a
generalization of the EBDP algorithm provided by (Stadler, 2011). When conditioning on stem or
crown age, this function is based on the algorithm proposed by Hoehna (2013, Eq. 8).

Note that HBD trees can also be generated using the function generate_random_tree. That func-
tion, however, generates trees in forward time, and hence when conditioning on the final number
of tips the total duration of the simulation is unpredictable; consequently, speciation and extinction
rates cannot be specified as functions of "age" (time before present). The function presented here
provides a means to generate trees with a fixed number of tips, while specifying λ, µ, λp or rp as
functions of age (time before present).

Value

A named list with the following elements:

success Logical, indicating whether the simulation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) providing a de-
scription of the error; all other return variables may be undefined.

trees A list of length Ntrees, listing the generated trees. Each tree will be an ultra-
metric timetree of class "phylo".

Author(s)

Stilianos Louca

generate_tree_hbd_reverse 227

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

T. Stadler (2011). Simulating trees with a fixed number of extant species. Systematic Biology.
60:676-684.

S. Hoehna (2013). Fast simulation of reconstructed phylogenies under global time-dependent birth-
death processes. Bioinformatics. 29:1367-1374.

S. Louca and M. W. Pennell (in review as of 2019). Phylogenies of extant species are consistent
with an infinite array of diversification histories.

See Also

loglikelihood_hbd, simulate_deterministic_hbd, generate_random_tree

Examples

EXAMPLE 1: Generate trees based on some speciation and extinction rate
In this example we assume an exponentially decreasing speciation rate
and a temporary mass extinction event

define parameters
age_grid = seq(0,100,length.out=1000)
lambda = 0.1 + exp(-0.5*age_grid)
mu = 0.05 + exp(-(age_grid-5)^2)
rho = 0.5 # species sampling fraction at present-day

generate a tree with 100 tips and no specific crown or stem age
sim = generate_tree_hbd_reverse(Ntips = 100,

age_grid = age_grid,
lambda = lambda,
mu = mu,
rho = rho)

if(!sim$success){
cat(sprintf("Tree generation failed: %s\n",sim$error))

}else{
cat(sprintf("Tree generation succeeded\n"))
tree = sim$trees[[1]]

}

########################
EXAMPLE 2: Generate trees based on the pulled speciation rate
Here we condition the tree on some fixed crown (MRCA) age

specify the PSR on a sufficiently fine and wide age grid
age_grid = seq(0,1000,length.out=10000)
PSR = 0.1+exp(-0.1*age_grid) # exponentially decreasing PSR

generate a tree with 100 tips and MRCA age 10
sim = generate_tree_hbd_reverse(Ntips = 100,

228 generate_tree_with_evolving_rates

age_grid = age_grid,
PSR = PSR,
crown_age = 10)

if(!sim$success){
cat(sprintf("Tree generation failed: %s\n",sim$error))

}else{
cat(sprintf("Tree generation succeeded\n"))
tree = sim$trees[[1]]

}

generate_tree_with_evolving_rates

Generate a random tree with evolving speciation/extinction rates.

Description

Generate a random phylogenetic tree via simulation of a Poissonian speciation/extinction (birth/death)
process. New species are added (born) by splitting of a randomly chosen extant tip. Per-capita birth
and death rates (aka. speciation and extinction rates) evolve under some stochastic process (e.g.
Brownian motion) along each edge. Thus, the probability rate of a tip splitting or going extinct
depends on the tip, with closely related tips having more similar per-capita birth and death rates.

Usage

generate_tree_with_evolving_rates(parameters = list(),
rate_model = 'BM',
max_tips = NULL,
max_time = NULL,
max_time_eq = NULL,
coalescent = TRUE,
as_generations = FALSE,
tip_basename = "",
node_basename = NULL,
include_event_times = FALSE,
include_rates = FALSE)

Arguments

parameters A named list specifying the model parameters for the evolving birth/death rates.
The precise entries expected depend on the chosen rate_model (see details be-
low).

rate_model Character, specifying the model for the evolving per-capita birth/death rates.
Must be one of the following: ’BM’ (Brownian motion constrained to a finite
interval via reflection), ’Mk’ (discrete-state continuous-time Markov chain with
fixed transition rates).

generate_tree_with_evolving_rates 229

max_tips Maximum number of tips of the tree to be generated. If coalescent=TRUE, this
refers to the number of extant tips. Otherwise, it refers to the number of extinct
+ extant tips. If NULL or <=0, the number of tips is unlimited (so be careful).

max_time Maximum duration of the simulation. If NULL or <=0, this constraint is ignored.

max_time_eq Maximum duration of the simulation, counting from the first point at which
speciation/extinction equilibrium is reached, i.e. when (birth rate - death rate)
changed sign for the first time. If NULL or <0, this constraint is ignored.

coalescent Logical, specifying whether only the coalescent tree (i.e. the tree spanning the
extant tips) should be returned. If coalescent==FALSE and the death rate is
non-zero, then the tree may include non-extant tips (i.e. tips whose distance
from the root is less than the total time of evolution). In that case, the tree will
not be ultrametric.

as_generations Logical, specifying whether edge lengths should correspond to generations. If
FALSE, then edge lengths correspond to time.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

include_event_times

Logical. If TRUE, then the times of speciation and extinction events (each in
order of occurrence) will also be returned.

include_rates Logical. If TRUE, then the bper-capita birth & death rates of all tips and nodes
will also be returned.

Details

If max_time==NULL, then the returned tree will always contain max_tips tips. In particular, if
at any moment during the simulation the tree only includes a single extant tip, the death rate is
temporarily set to zero to prevent the complete extinction of the tree. If max_tips==NULL, then the
simulation is ran as long as specified by max_time. If neither max_time nor max_tips is NULL,
then the simulation halts as soon as the time exceeds max_time or the number of tips (extant tips if
coalescent is TRUE) exceeds max_tips.

If rate_model=='BM', then per-capita birth rates (speciation rates) and per-capita death rates (ex-
tinction rates) evolve according to Brownian Motion, constrained to a finite interval via reflection.
Note that speciation and extinction rates are only updated at branching points, i.e. during speciation
events, while waiting times until speciation/extinction are based on rates at the previous branching
point. The argument parameters should be a named list including one or more of the following
elements:

• birth_rate_diffusivity: Non-negative number. Diffusivity constant for the Brownian mo-
tion model of the evolving per-capita birth rate. In units 1/time^3. See simulate_bm_model
for an explanation of the diffusivity parameter.

• min_birth_rate_pc: Non-negative number. The minimum allowed per-capita birth rate of a
clade. In units 1/time. By default this is 0.

• max_birth_rate_pc: Non-negative number. The maximum allowed per-capita birth rate of a
clade. In units 1/time. By default this is 1.

230 generate_tree_with_evolving_rates

• death_rate_diffusivity: Non-negative number. Diffusivity constant for the Brownian mo-
tion model of the evolving per-capita death rate. In units 1/time^3. See simulate_bm_model
for an explanation of the diffusivity parameter.

• min_death_rate_pc: Non-negative number. The minimum allowed per-capita death rate of
a clade. In units 1/time. By default this is 0.

• max_death_rate_pc: Non-negative number. The maximum allowed per-capita death rate of
a clade. In units 1/time. By default this is 1.

• root_birth_rate_pc: Non-negative number, between min_birth_rate_pc and max_birth_rate_pc,
specifying the initial per-capita birth rate of the root. If left unspecified, this will be chosen
randomly and uniformly within the allowed interval.

• root_death_rate_pc: Non-negative number, between min_death_rate_pc and max_death_rate_pc,
specifying the initial per-capita death rate of the root. If left unspecified, this will be chosen
randomly and uniformly within the allowed interval.

• rarefaction: Numeric between 0 and 1. Rarefaction to be applied at the end of the simula-
tion (fraction of random tips kept in the tree). Note that if coalescent==FALSE, rarefaction
may remove both extant as well as extinct clades. Set rarefaction=1 to not perform any
rarefaction.

If rate_model=='Mk', then speciation/extinction rates are determined by a tip’s current "state",
which evolves according to a continuous-time discrete-state Markov chain (Mk model) with con-
stant transition rates. The argument parameters should be a named list including one or more of
the following elements:

• Nstates: Number of possible discrete states a tip can have. For example, if Nstates then this
corresponds to the common Binary State Speciation and Extinction (BiSSE) model (Maddison
et al., 2007). By default this is 1.

• state_birth_rates: Numeric vector of size Nstates, listing the per-capita birth rate (specia-
tion rate) at each state. Can also be a single number (all states have the same birth rate).

• state_death_rates: Numeric vector of size Nstates, listing the per-capita death rate (extinc-
tion rate) at each state. Can also be a single number (all states have the same death rate).

• transition_matrix: 2D numeric matrix of size Nstates x Nstates. Transition rate matrix for
the Markov chain model of birth/death rate evolution.

• start_state: Integer within 1,..,Nstates, specifying the initial state of the first created lin-
eage. If left unspecified, this is chosen randomly and uniformly among all possible states.

• rarefaction: Same as when rate_model=='BM'.

Note: The option rate_model=='Mk' is deprecated and included for backward compatibility pur-
poses only. To generate a tree with Markov transitions between states (known as Multiple State
Speciation and Extinction model), use the command simulate_dsse instead.

Value

A named list with the following elements:

success Logical, indicating whether the simulation was successful. If FALSE, an addi-
tional element error (of type character) is included containing an explanation
of the error; in that case the value of any of the other elements is undetermined.

generate_tree_with_evolving_rates 231

tree A rooted bifurcating tree of class "phylo", generated according to the specified
birth/death model.
If coalescent==TRUE or if all death rates are zero, and only if as_generations==FALSE,
then the tree will be ultrametric. If as_generations==TRUE and coalescent==FALSE,
all edges will have unit length.

root_time Numeric, giving the time at which the tree’s root was first split during the simu-
lation. Note that if coalescent==TRUE, this may be later than the first speciation
event during the simulation.

final_time Numeric, giving the final time at the end of the simulation. If coalescent==TRUE,
then this may be greater than the total time span of the tree (since the root of the
coalescent tree need not correspond to the first speciation event).

equilibrium_time

Numeric, giving the first time where the sign of (death rate - birth rate) changed
from the beginning of the simulation, i.e. when speciation/extinction equilib-
rium was reached. May be infinite if the simulation stoped before reaching this
point.

Nbirths Total number of birth events (speciations) that occurred during tree growth. This
may be lower than the total number of tips in the tree if death rates were non-zero
and coalescent==TRUE.

Ndeaths Total number of deaths (extinctions) that occurred during tree growth.

birth_times Numeric vector, listing the times of speciation events during tree growth, in or-
der of occurrence. Note that if coalescent==TRUE, then speciation_times
may be greater than the phylogenetic distance to the coalescent root. Only re-
turned if include_event_times==TRUE.

death_times Numeric vector, listing the times of extinction events during tree growth, in order
of occurrence. Note that if coalescent==TRUE, then speciation_times may
be greater than the phylogenetic distance to the coalescent root. Only returned
if include_event_times==TRUE.

birth_rates_pc Numeric vector of length Ntips+Nnodes, listing the per-capita birth rate of each
tip and node in the tree. The length of an edge in the tree was thus drawn from
an exponential distribution with rate equal to the per-capita birth rate of the child
tip or node.

death_rates_pc Numeric vector of length Ntips+Nnodes, listing the per-capita death rate of each
tip and node in the tree.

states Integer vector of size Ntips+Nnodes, listing the discrete state of each tip and
node in the tree. Only included if rate_model=="Mk".

start_state Integer, specifying the initial state of the first created lineage (either provided
during the function call, or generated randomly). Only included if rate_model=="Mk".

root_birth_rate_pc

Numeric, specifying the initial per-capita birth rate of the root (either provided
during the function call, or generated randomly). Only included if rate_model=="BM".

root_death_rate_pc

Numeric, specifying the initial per-capita death rate of the root (either provided
during the function call, or generated randomly). Only included if rate_model=="BM".

232 generate_tree_with_evolving_rates

Author(s)

Stilianos Louca

References

D. J. Aldous (2001). Stochastic models and descriptive statistics for phylogenetic trees, from Yule
to today. Statistical Science. 16:23-34.

W. P. Maddison, P. E. Midford, S. P. Otto (2007). Estimating a binary character’s effect on speciation
and extinction. Systematic Biology. 56:701-710.

See Also

simulate_dsse

Examples

Example 1
Generate tree, with rates evolving under Brownian motion
parameters = list(birth_rate_diffusivity = 1,

min_birth_rate_pc = 1,
max_birth_rate_pc = 2,
death_rate_diffusivity = 0.5,
min_death_rate_pc = 0,
max_death_rate_pc = 1)

simulation = generate_tree_with_evolving_rates(parameters,
rate_model='BM',
max_tips=1000,
include_rates=TRUE)

tree = simulation$tree
Ntips = length(tree$tip.label)

plot per-capita birth & death rates of tips
plot(x=simulation$birth_rates_pc[1:Ntips],

y=simulation$death_rates_pc[1:Ntips],
type='p',
xlab="pc birth rate",
ylab="pc death rate",
main="Per-capita birth & death rates across tips (BM model)",
las=1)

######################
Example 2
Generate tree, with rates evolving under a binary-state model
Q = get_random_mk_transition_matrix(Nstates=2, rate_model="ER", max_rate=0.1)
parameters = list(Nstates = 2,

state_birth_rates = c(1,1.5),
state_death_rates = 0.5,
transition_matrix = Q)

simulation = generate_tree_with_evolving_rates(parameters,
rate_model='Mk',

geographic_acf 233

max_tips=1000,
include_rates=TRUE)

tree = simulation$tree
Ntips = length(tree$tip.label)

plot distribution of per-capita birth rates of tips
rates = simulation$birth_rates_pc[1:Ntips]
barplot(table(rates)/length(rates),

xlab="rate",
main="Distribution of pc birth rates across tips (Mk model)")

geographic_acf Phylogenetic autocorrelation function of geographic locations.

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) of each tip,
calculate the phylogenetic autocorrelation function (ACF) of the geographic locations. The ACF is
a function of phylogenetic distance x, i.e., ACF(x) is the autocorrelation between two tip locations
conditioned on the tips having phylogenetic ("patristic") distance x.

Usage

geographic_acf(trees,
tip_latitudes,
tip_longitudes,
Npairs = 10000,
Nbins = NULL,
min_phylodistance = 0,
max_phylodistance = NULL,
uniform_grid = FALSE,
phylodistance_grid = NULL)

Arguments

trees Either a single rooted tree of class "phylo", or a list of multiple such trees.

tip_latitudes Either a numeric vector of size Ntips (if trees was a single tree), specifying the
latitudes (decimal degrees) of the tree’s tips, or a list of such numeric vectors (if
trees contained multiple trees) specifying the latitudes of each tree’s tips. Note
that tip_latitudes[k][i] must correspond to the i-th tip in the k-th input
tree, i.e. as listed in trees[[k]]$tip.label. By convention, positive latitudes
correspond to the northern hemisphere.

tip_longitudes Similar to tip_latitudes, but listing the latitudes (decimal degrees) of each
tip in each input tree. By convention, positive longitudes correspond to the
hemisphere East of the prime meridian.

234 geographic_acf

Npairs Maximum number of random tip pairs to draw from each tree. A greater number
of tip pairs will improve the accuracy of the estimated ACF within each distance
bin. Tip pairs are drawn randomly with replacement, if Npairs is lower than
the number of tip pairs in a tree. If Npairs=Inf, then every tip pair of every
tree is included exactly once (for small and moderately sized trees this is recom-
mended).

Nbins Number of phylogenetic distance bins to consider. A greater number of bins
will increase the resolution of the ACF as a function of phylogenetic distance,
but will decrease the number of tip pairs falling within each bin (which reduces
the accuracy of the estimated ACF). If NULL, then Nbins is automatically and
somewhat reasonably chosen based on the size of the input trees.

min_phylodistance

Numeric, minimum phylogenetic distance to conssider. Only relevant if phylodistance_grid
is NULL.

max_phylodistance

Numeric, optional maximum phylogenetic distance to consider. If NULL, this is
automatically set to the maximum phylodistance between any two tips.

uniform_grid Logical, specifying whether the phylodistance grid should be uniform, i.e., with
equally sized phylodistance bins. If FALSE, then the grid is chosen non-uniformly
(i.e., each bin has different size) such that each bin roughly contains the same
number of tip pairs. Only relevant if phylodistance_grid is NULL. It is gen-
erally recommended to keep uniform_grid=FALSE, to avoid uneven estimation
errors across bins.

phylodistance_grid

Numeric vector, optional explicitly specified phylodistance bins (left boundaries
thereof) on which to evaluate the ACF. Must contain non-negative numbers in
strictly ascending order. Hence, the first bin will range from phylodistance_grid[1]
to phylodistance_grid[2], while the last bin will range from tail(phylodistance_grid,1)
to max_phylodistance. Can be used as an alternative to Nbins. If non-NULL,
then Nbins, min_phylodistance and uniform_grid are irrelevant.

Details

The autocorrelation between random geographic locations is defined as the expectation of< X,Y >,
where <> is the scalar product and X and Y are the unit vectors pointing towards the two random
locations on the sphere. For comparison, for a spherical Brownian Motion model with constant
diffusivity D and radius r the autocorrelation function is given by ACF (t) = e−2Dt/r2 (see e.g.
simulate_sbm). Note that this function assumes that Earth is a perfect sphere.

The phylogenetic autocorrelation function (ACF) of the geographic distribution of species can give
insight into the dispersal processes shaping species distributions over global scales. An ACF that
decays slowly with increasing phylogenetic distance indicates a strong phylogenetic conservatism
of the location and thus slow dispersal, whereas a rapidly decaying ACF indicates weak phyloge-
netic conservatism and thus fast dispersal. Similarly, if the mean distance between two random tips
increases with phylogenetic distance, this indicates a phylogenetic autocorrelation of species loca-
tions. Here, phylogenetic distance between tips refers to their patristic distance, i.e. the minimum
cumulative edge length required to connect the two tips.

Since the phylogenetic distances between all possible tip pairs do not cover a continuoum (as there
is only a finite number of tips), this function randomly draws tip pairs from the tree, maps them

geographic_acf 235

onto a finite set of phylodistance bins and then estimates the ACF for the centroid of each bin
based on tip pairs in that bin. In practice, as a next step one would usually plot the estimated ACF
(returned vector autocorrelations) over the centroids of the phylodistance bins (returned vector
phylodistances). When multiple trees are provided as input, then the ACF is first calculated sep-
arately for each tree, and then averaged across trees (weighted by the number of tip pairs included
from each tree in each bin).

Phylogenetic distance bins can be specified in two alternative ways: Either a set of bins (phy-
lodistance grid) is automatically calculated based on the provided Nbins, min_phylodistance,
max_phylodistance and uniform_grid, or a phylodistance grid is explicitly provided via phylodistance_grid
and max_phylodistance.

The trees may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). If edge lengths are missing from the trees, then every
edge is assumed to have length 1. The input trees must be rooted at some node for technical reasons
(see function root_at_node), but the choice of the root node does not influence the result.

This function assumes that each tip is assigned exactly one geographic location. This might be
problematic in situations where each tip covers multiple geographic locations, for example if tips
are species and multiple individuals were sampled from each species. In that case, one might
consider representing each individual as a separate tip in the tree, so that each tip has exactly one
geographic location.

Value

A list with the following elements:

success Logical, indicating whether the calculation was successful. If FALSE, an addi-
tional element error (character) is returned that provides a brief description of
the error that occurred; in that case all other return values may be undefined.

phylodistances Numeric vector of size Nbins, storing the center of each phylodistance bin in in-
creasing order. This is equal to 0.5*(left_phylodistances+right_phylodistances).
Typically, you will want to plot autocorrelations over phylodistances.

left_phylodistances

Numeric vector of size Nbins, storing the left boundary of each phylodistance
bin in increasing order.

right_phylodistances

Numeric vector of size Nbins, storing the right boundary of each phylodistance
bin in increasing order.

autocorrelations

Numeric vector of size Nbins, storing the estimated geographic autocorrelation
for each phylodistance bin.

std_autocorrelations

Numeric vector of size Nbins, storing the standard deviation of geographic au-
tocorrelations encountered in each phylodistance bin. Note that this is not the
standard error of the estimated ACF; it is a measure for how different the geo-
graphic locations are between tip pairs within each phylodistance bin.

mean_geodistances

Numeric vector of size Nbins, storing the mean geographic distance between
tip pairs in each distance bin, in units of sphere radii. If you want geographic

236 get_all_distances_to_root

distances in km, you need to multiply these by Earth’s mean radius in km (about
6371). If multiple input trees were provided, this is the average across all trees,
weighted by the number of tip pairs included from each tree in each bin.

std_geodistances

Numeric vector of size Nbins, storing the standard deviation of geographic dis-
tances between tip pairs in each distance bin, in units of sphere radii.

Npairs_per_distance

Integer vector of size Nbins, storing the number of random tip pairs associated
with each distance bin.

Author(s)

Stilianos Louca

See Also

correlate_phylo_geodistances, consentrait_depth, get_trait_acf

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

simulate spherical Brownian Motion on the tree
simul = simulate_sbm(tree, radius=1, diffusivity=0.1)
tip_latitudes = simul$tip_latitudes
tip_longitudes = simul$tip_longitudes

calculate geographical autocorrelation function
ACF = geographic_acf(tree,

tip_latitudes,
tip_longitudes,
Nbins = 10,
uniform_grid = TRUE)

plot ACF (autocorrelation vs phylogenetic distance)
plot(ACF$phylodistances, ACF$autocorrelations, type="l", xlab="distance", ylab="ACF")

get_all_distances_to_root

Get distances of all tips and nodes to the root.

Description

Given a rooted phylogenetic tree, calculate the phylogenetic distance (cumulative branch length) of
the root to each tip and node.

get_all_distances_to_root 237

Usage

get_all_distances_to_root(tree, as_edge_count=FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

as_edge_count Logical, specifying whether distances should be counted in number of edges,
rather than cumulative edge length. This is the same as if all edges had length 1.

Details

If tree$edge.length is missing, then every edge in the tree is assumed to be of length 1. The
tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child). The
asymptotic average time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value

A numeric vector of size Ntips+Nnodes, with the i-th element being the distance (cumulative
branch length) of the i-th tip or node to the root. Tips are indexed 1,..,Ntips and nodes are indexed
(Ntips+1),..,(Ntips+Nnodes).

Author(s)

Stilianos Louca

See Also

get_pairwise_distances

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1,

death_rate_intercept=0.5),
max_tips=Ntips)$tree

calculate distances to root
all_distances = get_all_distances_to_root(tree)

extract distances of nodes to root
node_distances = all_distances[(Ntips+1):(Ntips+tree$Nnode)]

plot histogram of distances (across all nodes)
hist(node_distances, xlab="distance to root", ylab="# nodes", prob=FALSE);

238 get_all_distances_to_tip

get_all_distances_to_tip

Get distances of all tips/nodes to a focal tip.

Description

Given a tree and a focal tip, calculate the phylogenetic ("patristic") distances between the focal tip
and all other tips & nodes in the tree.

Usage

get_all_distances_to_tip(tree, focal_tip)

Arguments

tree A rooted tree of class "phylo".

focal_tip Either a character, specifying the name of the focal tip, or an integer between 1
and Ntips, specifying the focal tip’s index.

Details

The "patristic distance" between two tips and/or nodes is the shortest cumulative branch length that
must be traversed along the tree in order to reach one tip/node from the other. If tree$edge.length
is missing, then each edge is assumed to be of length 1.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
The input tree must be rooted at some node for technical reasons (see function root_at_node), but
the choice of the root node does not influence the result.

Value

A numeric vector of length Ntips+Nnodes, specifying the distances of all tips (entries 1,..,Ntips)
and all nodes (entries Ntips+1,..,Ntips+Nnodes) to the focal tip.

Author(s)

Stilianos Louca

See Also

get_all_pairwise_distances, get_pairwise_distances

get_all_node_depths 239

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips = Ntips,
tip_basename="tip.")$tree

calculate all distances to a focal tip
distances = get_all_distances_to_tip(tree, "tip.39")
print(distances)

get_all_node_depths Get the phylogenetic depth of each node in a tree.

Description

Given a rooted phylogenetic tree, calculate the phylogenetic depth of each node (mean distance to
its descending tips).

Usage

get_all_node_depths(tree, as_edge_count=FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

as_edge_count Logical, specifying whether distances should be counted in number of edges,
rather than cumulative edge length. This is the same as if all edges had length 1.

Details

If tree$edge.length is missing, then every edge in the tree is assumed to be of length 1. The
tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child). The
asymptotic average time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value

A numeric vector of size Nnodes, with the i-th element being the mean distance of the i-th node to
all of its tips.

Author(s)

Stilianos Louca

See Also

get_all_distances_to_root

240 get_all_pairwise_distances

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1,

death_rate_intercept=0.5),
max_tips=Ntips)$tree

calculate node phylogenetic depths
node_depths = get_all_node_depths(tree)

plot histogram of node depths
hist(node_depths, xlab="phylogenetic depth", ylab="# nodes", prob=FALSE);

get_all_pairwise_distances

Get distances between all pairs of tips and/or nodes.

Description

Calculate phylogenetic ("patristic") distances between all pairs of tips or nodes in the tree, or among
a subset of tips/nodes requested.

Usage

get_all_pairwise_distances(tree,
only_clades = NULL,
as_edge_counts = FALSE,
check_input = TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

only_clades Optional integer vector or character vector, listing tips and/or nodes to which to
restrict pairwise distance calculations. If an integer vector, it must list indices
of tips (from 1 to Ntips) and/or nodes (from Ntips+1 to Ntips+Nnodes). If a
character vector, it must list tip and/or node names.
For example, if only_clades=c('apple','lemon','pear'), then only the
distance between ‘apple’ and ‘lemon’, between ‘apple’ and ’pear’, and between
‘lemon’ and ‘pear’ are calculated. If only_clades==NULL, then this is equiva-
lent to only_clades=c(1:(Ntips+Nnodes)).

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

as_edge_counts Logical, specifying whether distances should be calculated in terms of edge
counts, rather than cumulative edge lengths. This is the same as if all edges
had length 1.

get_all_pairwise_distances 241

Details

The "patristic distance" between two tips and/or nodes is the shortest cumulative branch length that
must be traversed along the tree in order to reach one tip/node from the other.This function returns
a square distance matrix, containing the patristic distance between all possible pairs of tips/nodes
in the tree (or among the ones provided in only_clades).

If tree$edge.length is missing, then each edge is assumed to be of length 1; this is the same as
setting as_edge_counts=TRUE. The tree may include multi-furcations as well as mono-furcations
(i.e. nodes with only one child). The input tree must be rooted at some node for technical reasons
(see function root_at_node), but the choice of the root node does not influence the result. If
only_clades is a character vector, then tree$tip.label must exist. If node names are included
in only_clades, then tree$node.label must also exist.

The asymptotic average time complexity of this function for a balanced binary tree is O(NC*NC*Nanc
+ Ntips), where NC is the number of tips/nodes considered (e.g., the length of only_clades) and
Nanc is the average number of ancestors per tip.

Value

A 2D numeric matrix of size NC x NC, where NC is the number of tips/nodes considered, and
with the entry in row r and column c listing the distance between the r-th and the c-th clade con-
sidered (e.g., between clades only_clades[r] and only_clades[c]). Note that if only_clades
was specified, then the rows and columns in the returned distance matrix correspond to the entries
in only_clades (i.e., in the same order). If only_clades was NULL, then the rows and columns in
the returned distance matrix correspond to tips (1,..,Ntips) and nodes (Ntips+1,..,Ntips+Nnodes)

Author(s)

Stilianos Louca

See Also

get_all_distances_to_root, get_pairwise_distances

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

calculate distances between all internal nodes
only_clades = c((Ntips+1):(Ntips+tree$Nnode))
distances = get_all_pairwise_distances(tree, only_clades)

reroot at some other node
tree = root_at_node(tree, new_root_node=20, update_indices=FALSE)
new_distances = get_all_pairwise_distances(tree, only_clades)

verify that distances remained unchanged
plot(distances,new_distances,type='p')

242 get_ancestral_nodes

get_ancestral_nodes Compute ancestral nodes.

Description

Given a rooted phylogenetic tree and a set of tips and/or nodes ("descendants"), determine their
ancestral node indices, traveling a specific number of splits back in time (i.e., towards the root).

Usage

get_ancestral_nodes(tree, descendants, Nsplits)

Arguments

tree A rooted tree of class "phylo".

descendants An integer vector or character vector, specifying the tips/nodes for each of which
to determine the ancestral node. If an integer vector, it must list indices of tips
(from 1 to Ntips) and/or nodes (from Ntips+1 to Ntips+Nnodes), where Ntips
and Nnodes is the number of tips and nodes in the tree, respectively. If a char-
acter vector, it must list tip and/or node names. In this case tree must include
tip.label, as well as node.label if nodes are included in descendants.

Nsplits Either a single integer or an integer vector of the same length as descendants,
with values >=1, specifying how many splits to travel backward. For example,
Nsplits=1 will yield the parent node of each tip/node in descendants.

Details

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child).

Value

An integer vector of the same length as descendants, with values in 1,..,Nnodes, listing the node
indices representing the ancestors of descendants traveling backward Nsplits.

Author(s)

Stilianos Louca

See Also

get_pairwise_mrcas, get_mrca_of_set

get_clade_list 243

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips = 50,
tip_basename = "tip.",
node_basename = "node.")$tree

pick 3 tips
descendants=c("tip.5", "tip.7","tip.10")

determine the immediate parent node of each tip
ancestors = castor::get_ancestral_nodes(tree, descendants, Nsplits=1)
print(tree$node.label[ancestors])

get_clade_list Get a representation of a tree as a table listing tips/nodes.

Description

Given a tree in standard "phylo" format, calculate an alternative representation of the tree structure
as a list of tips/nodes with basic information on parents, children and incoming edge lengths. This
function is analogous to the function read.tree.nodes in the R package phybase.

Usage

get_clade_list(tree, postorder=FALSE, missing_value=NA)

Arguments

tree A tree of class "phylo". If postorder==TRUE, then the tree must be rooted.

postorder Logical, specifying whether nodes should be ordered and indexed in postorder
traversal, i.e. with the root node listed last. Note that regardless of the value
of postorder, tips will always be listed first and indexed in the order in which
they are listed in the input tree.

missing_value Value to be used to denote missing information in the returned arrays, for exam-
ple to denote the (non-existing) parent of the root node.

Details

This function is analogous to the function read.tree.nodes in the R package phybase v1.4, but
becomes multiple orders of magnitude faster than the latter for large trees (i.e. with 1000-1000,000
tips). Specifically, calling get_clade_list with postorder=TRUE and missing_value=-9 on a
bifurcating tree yields a similar behavior as calling read.tree.nodes with the argument “name”
set to the tree’s tip labels.

The input tree can include monofurcations, bifurcations and multifurcations. The asymptotic av-
erage time complexity of this function is O(Nedges), where Nedges is the number of edges in the
tree.

244 get_clade_list

Value

A named list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

Nsplits The maximum number of children of any node in the tree. For strictly bifurcat-
ing trees this will be 2.

clades 2D integer matrix of size Nclades x (Nsplits+1), with every row representing a
specific tip/node in the tree. If postorder==FALSE, then rows are in the same
order as tips/nodes in the original tree, otherwise nodes (but not tips) will be
re-ordered and re-indexed in postorder fashion, with the root being the last row.
The first column lists the parent node index, the remaining columns list the child
tip/node indices. For the root, the parent index will be set to missing_value; for
the tips, the child indices will be set to missing_value. For nodes with fewer
than Nsplits children, superfluous column entries will also be missing_value.

lengths Numeric vector of size Nclades, listing the lengths of the incoming edges at each
tip/node in clades. For the root, the value will be missing_value. If the tree’s
edge_length was NULL, then lengths will be NULL as well.

old2new_clade Integer vector of size Nclades, mapping old tip/node indices to tip/node indices
in the returned clades and lengths arrays. If postorder==FALSE, this will
simply be c(1:Nclades).

Author(s)

Stilianos Louca

Examples

generate a random bifurcating tree
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips=100)$tree

get tree structure as clade list
then convert into a similar format as would be
returned by phybase::read.tree.nodes v1.4
results = get_clade_list(tree,postorder=TRUE,missing_value=-9)
nodematrix = cbind(results$clades,

results$lengths,
matrix(-9,nrow=nrow(results$clades),ncol=3))

phybaseformat = list(nodes = nodematrix,
names = tree$tip.label,
root = TRUE)

get_independent_contrasts 245

get_independent_contrasts

Phylogenetic independent contrasts for continuous traits.

Description

Calculate phylogenetic independent contrasts (PICs) for one or more continuous traits on a phylo-
genetic tree, as described by Felsenstein (1985). The trait states are assumed to be known for all
tips of the tree. PICs are commonly used to calculate correlations between multiple traits, while
accounting for shared evolutionary history at the tips. This function also returns an estimate for the
state of the root or, equivalently, the phylogenetically weighted mean of the tip states (Garland et
al., 1999).

Usage

get_independent_contrasts(tree,
tip_states,
scaled = TRUE,
only_bifurcations = FALSE,
include_zero_phylodistances = FALSE,
check_input = TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, or a 2D numeric matrix of size Ntips x Ntraits,
specifying the numeric state of each trait at each tip in the tree.

scaled Logical, specifying whether to divide (standardize) PICs by the square root of
their expected variance, as recommended by Felsenstein (1985).

only_bifurcations

Logical, specifying whether to only calculate PICs for bifurcating nodes. If
FALSE, then multifurcations are temporarily expanded to bifurcations, and an
additional PIC is calculated for each created bifurcation. If TRUE, then multifur-
cations are not expanded and PICs will not be calculated for them.

include_zero_phylodistances

Logical, specifying whether the returned PICs may include cases where the phy-
lodistance is zero (this can only happen if the tree has edges with length 0). If
FALSE, all returned PICs will have non-zero phylodistances.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

246 get_independent_contrasts

Details

If the tree is bifurcating, then one PIC is returned for each node. If multifurcations are present and
only_bifurcations==FALSE, these are internally expanded to bifurcations and an additional PIC
is returned for each such bifurcation. PICs are never returned for monofurcating nodes. Hence,
in general the number of returned PICs is the number of bifurcations in the tree, potentially after
multifurcations have been expanded to bifurcations (if only_bifurcations==FALSE).

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may
include multifurcations (i.e. nodes with more than 2 children) as well as monofurcations (i.e. nodes
with only one child). Edges with length 0 will be adjusted internally to some tiny length (chosen to
be much smaller than the smallest non-zero length).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

The function has asymptotic time complexity O(Nedges x Ntraits). It is more efficient to calculate
PICs of multiple traits with the same function call, than to calculate PICs for each trait separately.
For a single trait, this function is equivalent to the function ape::pic, with the difference that it can
handle multifurcating trees.

Value

A list with the following elements:

PICs A numeric vector (if tip_states is a vector) or a numeric matrix (if tip_states
is a matrix), listing the phylogenetic independent contrasts for each trait and for
each bifurcating node (potentially after multifurcations have been expanded). If
a matrix, then PICs[:,T] will list the PICs for the T-th trait. Note that the order
of elements in this vector (or rows, if PICs is a matrix) is not necesssarily the
order of nodes in the tree, and that PICs may contain fewer or more elements
(or rows) than there were nodes in the input tree.

distances Numeric vector of the same size as PICs. The “evolutionary distances” (or time)
corresponding to the PICs under a Brownian motion model of trait evolution.
These roughly correspond to the cumulative edge lengths between sister nodes
from which PICs were calculated; hence their units are the same as those of edge
lengths. They do not take into account the actual trait values. See Felsenstein
(1985) for details.

nodes Integer vector of the same size as PICs, listing the node indices for which PICs
are returned. If only_bifurcations==FALSE, then this vector may contain NAs,
corresponding to temporary nodes created during expansion of multifurcations.
If only_bifurcations==TRUE, then this vector will only list nodes that were
bifurcating in the input tree. In that case, PICs[1] will correspond to the node
with name tree$node.label[nodes[1]], whereas PICs[2] will correspond to
the node with name tree$node.label[nodes[2]], and so on.

root_state Numeric vector of size Ntraits, listing the globally estimated state for the root
or, equivalently, the phylogenetically weighted mean of the tip states.

root_standard_error

Numeric vector of size Ntraits, listing the phylogenetically estimated standard
errors of the root state under a Brownian motion model. The standard errors

get_independent_contrasts 247

have the same units as the traits and depend both on the tree topology as well as
the tip states. Calculated according to the procedure described by Garland et al.
(1999, page 377).

root_CI95 Numeric vector of size Ntraits, listing the radius (half width) of the 95% confi-
dence interval of the root state. Calculated according to the procedure described
by Garland et al. (1999, page 377). Note that in contrast to the CI95 returned by
the ace function in the ape package (v. 0.5-64), root_CI95 has the same units
as the traits and depends both on the tree topology as well as the tip states.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

T. Garland Jr., P. E. Midford, A. R. Ives (1999). An introduction to phylogenetically based statistical
methods, with a new method for confidence intervals on ancestral values. American Zoologist.
39:374-388.

See Also

asr_independent_contrasts, get_independent_sister_tips

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

simulate a continuous trait
tip_states = simulate_bm_model(tree, diffusivity=0.1, include_nodes=FALSE)$tip_states;

calculate PICs
results = get_independent_contrasts(tree, tip_states, scaled=TRUE, only_bifurcations=TRUE)

assign PICs to the bifurcating nodes in the input tree
PIC_per_node = rep(NA, tree$Nnode)
valids = which(!is.na(results$nodes))
PIC_per_node[results$nodes[valids]] = results$PICs[valids]

248 get_independent_sister_tips

get_independent_sister_tips

Extract disjoint tip pairs with independent relationships.

Description

Given a rooted tree, extract disjoint pairs of sister tips with disjoint connecting paths. These tip
pairs can be used to compute independent contrasts of numerical traits evolving according to an
arbitrary time-reversible process.

Usage

get_independent_sister_tips(tree)

Arguments

tree A rooted tree of class "phylo".

Details

If the input tree only contains monofurcations and bifurcations (recommended), it is guaranteed that
at most one unpaired tip will be left (i.e., if Ntips was odd).

Value

An integer matrix of size NP x 2, where NP is the number of returned tip pairs. Each row in this
matrix lists the indices (from 1 to Ntips) of a tip pair that can be used to compute a phylogenetic
independent contrast.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

T. Garland Jr., P. E. Midford, A. R. Ives (1999). An introduction to phylogenetically based statistical
methods, with a new method for confidence intervals on ancestral values. American Zoologist.
39:374-388.

See Also

get_independent_contrasts

get_mrca_of_set 249

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

simulate a continuous trait on the tree
tip_states = simulate_bm_model(tree, diffusivity=0.1, include_nodes=FALSE)$tip_states

get independent tip pairs
tip_pairs = get_independent_sister_tips(tree)

calculate non-scaled PICs for the trait using the independent tip pairs
PICs = tip_states[tip_pairs]

get_mrca_of_set Most recent common ancestor of a set of tips/nodes.

Description

Given a rooted phylogenetic tree and a set of tips and/or nodes ("descendants"), calculate the most
recent common ancestor (MRCA) of those descendants.

Usage

get_mrca_of_set(tree, descendants)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

descendants An integer vector or character vector, specifying the tips/nodes for which to find
the MRCA. If an integer vector, it must list indices of tips (from 1 to Ntips)
and/or nodes (from Ntips+1 to Ntips+Nnodes), where Ntips and Nnodes is the
number of tips and nodes in the tree, respectively. If a character vector, it must
list tip and/or node names. In this case tree must include tip.label, as well
as node.label if nodes are included in descendants.

Details

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). Duplicate entries in descendants are ignored.

Value

An integer in 1,..,(Ntips+Nnodes), representing the MRCA using the same index as in tree$edge.
If the MRCA is a tip, then this index will be in 1,..,Ntips. If the MRCA is a node, then this index
will be in (Ntips+1),..,(Ntips+Nnodes).

250 get_pairwise_distances

Author(s)

Stilianos Louca

See Also

get_pairwise_mrcas, get_tips_for_mrcas

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick 3 random tips or nodes
descendants = sample.int(n=(Ntips+tree$Nnode), size=3, replace=FALSE)

calculate MRCA of picked descendants
mrca = get_mrca_of_set(tree, descendants)

get_pairwise_distances

Get distances between pairs of tips or nodes.

Description

Calculate phylogenetic ("patristic") distances between tips or nodes in some list A and tips or nodes
in a second list B of the same size.

Usage

get_pairwise_distances(tree, A, B, as_edge_counts=FALSE, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

A An integer vector or character vector of size Npairs, specifying the first of the
two members of each pair for which to calculate the distance. If an integer
vector, it must list indices of tips (from 1 to Ntips) and/or nodes (from Ntips+1
to Ntips+Nnodes). If a character vector, it must list tip and/or node names.

B An integer vector or character vector of size Npairs, specifying the second of
the two members of each pair for which to calculate the distance. If an integer
vector, it must list indices of tips (from 1 to Ntips) and/or nodes (from Ntips+1
to Ntips+Nnodes). If a character vector, it must list tip and/or node names.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

get_pairwise_distances 251

as_edge_counts Logical, specifying whether distances should be calculated in terms of edge
counts, rather than cumulative edge lengths. This is the same as if all edges
had length 1.

Details

The "patristic distance" between two tips and/or nodes is the shortest cumulative branch length that
must be traversed along the tree in order to reach one tip/node from the other. Given a list of tips
and/or nodes A, and a 2nd list of tips and/or nodes B of the same size, this function will calculate
patristic distance between each pair (A[i], B[i]), where i=1,2,..,Npairs.

If tree$edge.length is missing, then each edge is assumed to be of length 1; this is the same as
setting as_edge_counts=TRUE. The tree may include multi-furcations as well as mono-furcations
(i.e. nodes with only one child). The input tree must be rooted at some node for technical reasons
(see function root_at_node), but the choice of the root node does not influence the result. If A
and/or B is a character vector, then tree$tip.label must exist. If node names are included in A
and/or B, then tree$node.label must also exist.

The asymptotic average time complexity of this function for a balanced binary tree is O(Ntips+Npairs*log2(Ntips)).

Value

A numeric vector of size Npairs, with the i-th element being the patristic distance between the
tips/nodes A[i] and B[i].

Author(s)

Stilianos Louca

See Also

get_all_distances_to_root, get_all_pairwise_distances

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick 3 random pairs of tips or nodes
Npairs = 3
A = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)
B = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)

calculate distances
distances = get_pairwise_distances(tree, A, B)

reroot at some other node
tree = root_at_node(tree, new_root_node=20, update_indices=FALSE)
new_distances = get_pairwise_distances(tree, A, B)

verify that distances remained unchanged

252 get_pairwise_mrcas

print(distances)
print(new_distances)

get_pairwise_mrcas Get most recent common ancestors of tip/node pairs.

Description

Given a rooted phylogenetic tree and one or more pairs of tips and/or nodes, for each pair of
tips/nodes find the most recent common ancestor (MRCA). If one clade is descendant of the other
clade, the latter will be returned as MRCA.

Usage

get_pairwise_mrcas(tree, A, B, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

A An integer vector or character vector of size Npairs, specifying the first of the
two members of each pair of tips/nodes for which to find the MRCA. If an
integer vector, it must list indices of tips (from 1 to Ntips) and/or nodes (from
Ntips+1 to Ntips+Nnodes). If a character vector, it must list tip and/or node
names.

B An integer vector or character vector of size Npairs, specifying the second of
the two members of each pair of tips/nodes for which to find the MRCA. If an
integer vector, it must list indices of tips (from 1 to Ntips) and/or nodes (from
Ntips+1 to Ntips+Nnodes). If a character vector, it must list tip and/or node
names.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

Details

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If tree$edge.length is missing, then each edge is assumed to be of length 1. Note that in some
cases the MRCA of two tips may be a tip, namely when both tips are the same.

If A and/or B is a character vector, then tree$tip.label must exist. If node names are included in
A and/or B, then tree$node.label must also exist.

The asymptotic average time complexity of this function is O(Nedges), where Nedges is the number
of edges in the tree.

get_random_diffusivity_matrix 253

Value

An integer vector of size Npairs with values in 1,..,Ntips (tips) and/or in (Ntips+1),..,(Ntips+Nnodes)
(nodes), with the i-th element being the index of the MRCA of tips/nodes A[i] and B[i].

Author(s)

Stilianos Louca

See Also

get_mrca_of_set, get_tips_for_mrcas

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick 3 random pairs of tips or nodes
Npairs = 3
A = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)
B = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)

calculate MRCAs
MRCAs = get_pairwise_mrcas(tree, A, B)

get_random_diffusivity_matrix

Create a random diffusivity matrix for a Brownian motion model.

Description

Create a random diffusivity matrix for a Brownian motion model of multi-trait evolution. This may
be useful for testing purposes. The diffusivity matrix is drawn from the Wishart distribution of
symmetric, nonnegative-definite matrixes:

D = XT ·X, X[i, j] ∼ N(0, V), i = 1, .., n, j = 1, .., p,

where n is the degrees of freedom, p is the number of traits and V is a scalar scaling.

Usage

get_random_diffusivity_matrix(Ntraits, degrees=NULL, V=1)

254 get_random_mk_transition_matrix

Arguments

Ntraits The number of traits modelled. Equal to the number of rows and the number of
columns of the returned matrix.

degrees Degrees of freedom for the Wishart distribution. Must be equal to or greater than
Ntraits. Can also be NULL, which is the same as setting it equal to Ntraits.

V Positive number. A scalar scaling for the Wishart distribution.

Value

A real-valued quadratic symmetric non-negative definite matrix of size Ntraits x Ntraits. Almost
surely (in the probabilistic sense), this matrix will be positive definite.

Author(s)

Stilianos Louca

See Also

get_random_mk_transition_matrix, simulate_bm_model

Examples

generate a 5x5 diffusivity matrix
D = get_random_diffusivity_matrix(Ntraits=5)

check that it is indeed positive definite
if(all(eigen(D)$values>0)){

cat("Indeed positive definite\n");
}else{

cat("Not positive definite\n");
}

get_random_mk_transition_matrix

Create a random transition matrix for an Mk model.

Description

Create a random transition matrix for a fixed-rates continuous-time Markov model of discrete trait
evolution ("Mk model"). This may be useful for testing purposes.

Usage

get_random_mk_transition_matrix(Nstates, rate_model, min_rate=0, max_rate=1)

get_reds 255

Arguments

Nstates The number of distinct states represented in the transition matrix (number of
rows & columns).

rate_model Rate model that the transition matrix must satisfy. Can be "ER" (all rates equal),
"SYM" (transition rate i–>j is equal to transition rate j–>i), "ARD" (all rates can
be different) or "SUEDE" (only stepwise transitions i–>i+1 and i–>i-1 allowed,
all ’up’ transitions are equal, all ’down’ transitions are equal).

min_rate A non-negative number, specifying the minimum rate in off-diagonal entries of
the transition matrix.

max_rate A non-negative number, specifying the maximum rate in off-diagonal entries of
the transition matrix. Must not be smaller than min_rate.

Value

A real-valued quadratic matrix of size Nstates x Nstates, representing a transition matrix for an Mk
model. Each row will sum to 0. The [r,c]-th entry represents the transition rate r–>c. The number
of unique off-diagonal rates will depend on the rate_model chosen.

Author(s)

Stilianos Louca

See Also

exponentiate_matrix, get_stationary_distribution

Examples

generate a 5x5 Markov transition rate matrix
Q = get_random_mk_transition_matrix(Nstates=5, rate_model="ARD")

get_reds Calculate relative evolutionary divergences in a tree.

Description

Calculate the relative evolutionary divergence (RED) of each node in a rooted phylogenetic tree.
The RED of a node is a measure of its relative placement between the root and the node’s descending
tips (Parks et al. 2018). The root’s RED is always 0, the RED of each tip is 1, and the RED of each
node is between 0 and 1.

Usage

get_reds(tree)

256 get_reds

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

Details

The RED of a node measures its relative placement between the root and the node’s descending tips
(Parks et al. 2018). The root’s RED is set to 0. Traversing from root to tips (preorder traversal), for
each node the RED is set to P + (a/(a+ b)) · (1− P), where P is the RED of the node’s parent, a
is the edge length connecting the node to its parent, and b is the average distance from the node to
its descending tips. The RED of a tip would always be 1.

The RED may be useful for defining taxonomic ranks based on a molecular phylogeny (e.g. see
Parks et al. 2018). This function is similar to the PhyloRank v0.0.27 script published by Parks et
al. (2018).

The time complexity of this function is O(Nedges). The input tree may include multi-furcations
(i.e. nodes with more than 2 children) as well as mono-furcations (i.e. nodes with only one child).
If tree$edge.length is NULL, then all edges in the input tree are assumed to have length 1.

Value

A numeric vector of length Nnodes, listing the RED of each node in the tree. The REDs of tips are
not included, since these would always be equal to 1.

Author(s)

Stilianos Louca

References

D. H. Parks, M. Chuvochina et al. (2018). A standardized bacterial taxonomy based on genome
phylogeny substantially revises the tree of life. Nature Biotechnology. 36:996-1004.

Examples

generate a random tree
params = list(birth_rate_intercept=1, death_rate_intercept=0.8)
tree = generate_random_tree(params, max_time=100, coalescent=FALSE)$tree

calculate and print REDs
REDs = get_reds(tree)
print(REDs)

get_stationary_distribution 257

get_stationary_distribution

Stationary distribution of Markov transition matrix.

Description

Calculate the stationary probability distribution vector p for a transition matrix Q of a continuous-
time Markov chain. That is, calculate p ∈ [0, 1]n such that sum(p)==0 and pTQ = 0.

Usage

get_stationary_distribution(Q)

Arguments

Q A valid transition rate matrix of size Nstates x Nstates, i.e. a quadratic matrix in
which every row sums up to zero.

Details

A stationary distribution of a discrete-state continuous-time Markov chain is a probability distribu-
tion across states that remains constant over time, i.e. pTQ = 0. Note that in some cases (i.e. if
Q is not irreducible), there may be multiple distinct stationary distributions. In that case,which one
is returned by this function is unpredictable. Internally, p is estimated by stepwise minimization of
the norm of pTQ, starting with the vector p in which every entry equals 1/Nstates.

Value

A numeric vector of size Nstates and with non-negative entries, satisfying the conditions p%*%Q==0
and sum(p)==1.0.

Author(s)

Stilianos Louca

See Also

exponentiate_matrix

Examples

generate a random 5x5 Markov transition matrix
Q = get_random_mk_transition_matrix(Nstates=5, rate_model="ARD")

calculate stationary probability distribution
p = get_stationary_distribution(Q)
print(p)

test correctness (p*Q should be 0, apart from rounding errors)

258 get_subtrees_at_nodes

cat(sprintf("max(abs(p*Q)) = %g\n",max(abs(p %*% Q))))

get_subtrees_at_nodes Extract subtrees descending from specific nodes.

Description

Given a tree and a list of focal nodes, extract the subtrees descending from those focal nodes, with
the focal nodes becoming the roots of the extracted subtrees.

Usage

get_subtrees_at_nodes(tree, nodes)

Arguments

tree A tree of class "phylo".
nodes Character vector or integer vector specifying the names or indices, respectively,

of the focal nodes at which to extract the subtrees. If an integer vector, entries
must be between 1 and tree$Nnode. If a character vector, each entry must be a
valid entry in tree$node.label.

Details

The input tree need not be rooted, however "descendance" from a focal node is inferred based on
the direction of edges in tree$edge. The input tree may include multi-furcations (i.e. nodes with
more than 2 children) as well as mono-furcations (i.e. nodes with only one child).

Value

A list with the following elements:

subtrees List of the same length as nodes, with each element being a new tree of class
"phylo", containing the subtrees descending from the focal nodes. Each subtree
will be rooted at the corresponding focal node.

new2old_tip List of the same length as nodes, with the n-th element being an integer vector
with values in 1,..,Ntips, mapping tip indices of the n-th subtree to tip indices in
the original tree. In particular, tree$tip.label[new2old_tip[[n]]] will be
equal to subtrees[[n]]$tip.label.

new2old_node List of the same length as nodes, with the n-th element being an integer vector
with values in 1,..,Nnodes, mapping node indices of the n-th subtree to node
indices in the original tree.
For example, new2old_node[[2]][1] is the index that the 1st node of the 2nd
subtree had within the original tree. In particular, tree$node.label[new2old_node[[n]]]
will be equal to subtrees[[n]]$node.label (if node labels are available).

new2old_edge List of the same length as nodes, with the n-th element being an integer vector
with values in 1,..,Nedges, mapping edge indices of the n-th subtree to edge in-
dices in the original tree. In particular, tree$edge.length[new2old_edge[[n]]]
will be equal to subtrees[[n]]$edge.length (if edge lengths are available).

get_subtree_at_node 259

Author(s)

Stilianos Louca

See Also

get_subtree_at_node,

get_subtree_with_tips

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

extract subtrees descending from random nodes
nodes = sample.int(tree$Nnode,size=10)
subtrees = get_subtrees_at_nodes(tree, nodes)$subtrees

print summaries of extracted subtrees
for(n in length(nodes)){
cat(sprintf("Subtree at %d-th node has %d tips\n",nodes[n],length(subtrees[[n]]$tip.label)))

}

get_subtree_at_node Extract a subtree descending from a specific node.

Description

Given a tree and a focal node, extract the subtree descending from the focal node and place the focal
node as the root of the extracted subtree.

Usage

get_subtree_at_node(tree, node)

Arguments

tree A tree of class "phylo".

node Character or integer specifying the name or index, respectively, of the focal
node at which to extract the subtree. If an integer, it must be between 1 and
tree$Nnode. If a character, it must be a valid entry in tree$node.label.

Details

The input tree need not be rooted, however "descendance" from the focal node is inferred based on
the direction of edges in tree$edge. The input tree may include multi-furcations (i.e. nodes with
more than 2 children) as well as mono-furcations (i.e. nodes with only one child).

260 get_subtree_at_node

Value

A named list with the following elements:

subtree A new tree of class "phylo", containing the subtree descending from the focal
node. This tree will be rooted, with the new root being the focal node.

new2old_tip Integer vector of length Ntips_kept (=number of tips in the extracted subtree)
with values in 1,..,Ntips, mapping tip indices of the subtree to tip indices in the
original tree. In particular, tree$tip.label[new2old_tip] will be equal to
subtree$tip.label.

new2old_node Integer vector of length Nnodes_kept (=number of nodes in the extracted sub-
tree) with values in 1,..,Nnodes, mapping node indices of the subtree to node
indices in the original tree.

For example, new2old_node[1] is the index that the first node of the subtree
had within the original tree. In particular, tree$node.label[new2old_node]
will be equal to subtree$node.label (if node labels are available).

new2old_edge Integer vector of length Nedges_kept (=number of edges in the extracted sub-
tree), with values in 1,..,Nedges, mapping edge indices of the subtree to edge
indices in the original tree. In particular, tree$edge.length[new2old_edge]
will be equal to subtree$edge.length (if edge lengths are available).

Author(s)

Stilianos Louca

See Also

get_subtree_with_tips

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

extract subtree descending from a random node
node = sample.int(tree$Nnode,size=1)
subtree = get_subtree_at_node(tree, node)$subtree

print summary of subtree
cat(sprintf("Subtree at %d-th node has %d tips\n",node,length(subtree$tip.label)))

get_subtree_with_tips 261

get_subtree_with_tips Extract a subtree spanning a specific subset of tips.

Description

Given a rooted tree and a subset of tips, extract the subtree containing only those tips. The root of
the tree is kept.

Usage

get_subtree_with_tips(tree,
only_tips = NULL,
omit_tips = NULL,
collapse_monofurcations = TRUE,
force_keep_root = FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

only_tips Either a character vector listing tip names to keep, or an integer vector listing
tip indices to keep (between 1 and Ntips). Can also be NULL. Tips listed in
only_tips not found in the tree will be silently ignored.

omit_tips Either a character vector listing tip names to omit, or an integer vector listing
tip indices to omit (between 1 and Ntips). Can also be NULL. Tips listed in
omit_tips not found in the tree will be silently ignored.

collapse_monofurcations

A logical specifying whether nodes with a single outgoing edge remaining should
be collapsed (removed). Incoming and outgoing edge of such nodes will be con-
catenated into a single edge, connecting the parent (or earlier) and child (or later)
of the node. In that case, the returned tree will have edge lengths that reflect the
concatenated edges.

force_keep_root

Logical, specifying whether to keep the root even if collapse_monofurcations==TRUE
and the root of the subtree is left with a single child. If FALSE, and collapse_monofurcations==TRUE,
the root may be removed and one of its descendants may become root.

Details

If both only_tips and omit_tips are NULL, then all tips are kept and the tree remains unchanged.
If both only_tips and omit_tips are non-NULL, then only tips listed in only_tips and not listed
in omit_tips will be kept. If only_tips and/or omit_tips is a character vector listing tip names,
then tree$tip.label must exist.

If the input tree does not include edge.length, each edge in the input tree is assumed to have length
1. The root of the tree (which is always kept) is assumed to be the unique node with no incoming

262 get_subtree_with_tips

edge. The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as
mono-furcations (i.e. nodes with only one child).

The asymptotic time complexity of this function is O(Nnodes+Ntips), where Ntips is the number of
tips and Nnodes the number of nodes in the input tree.

When only_tips==NULL, omit_tips!=NULL, collapse_monofurcations==TRUE and force_keep_root==FALSE,
this function is analogous to the function drop.tip in the ape package with option trim_internal=TRUE
(v. 0.5-64).

Value

A list with the following elements:

subtree A new tree of class "phylo", containing only the tips specified by tips_to_keep
and the nodes & edges connecting those tips to the root. The returned tree will
include edge.lengh as a member variable, listing the lengths of the remaining
(possibly concatenated) edges.

root_shift Numeric, indicating the phylogenetic distance between the old and the new root.
Will always be non-negative.

new2old_tip Integer vector of length Ntips_kept (=number of tips in the extracted subtree)
with values in 1,..,Ntips, mapping tip indices of the subtree to tip indices in the
original tree. In particular, tree$tip.label[new2old_tip] will be equal to
subtree$tip.label.

new2old_node Integer vector of length Nnodes_kept (=number of nodes in the extracted sub-
tree) with values in 1,..,Nnodes, mapping node indices of the subtree to node
indices in the original tree.
For example, new2old_node[1] is the index that the first node of the subtree
had within the original tree. In particular, tree$node.label[new2old_node]
will be equal to subtree$node.label (if node labels are available).

old2new_tip Integer vector of length Ntips, with values in 1,..,Ntips_kept, mapping tip indices
of the original tree to tip indices in the subtree (a value of 0 is used whenever
a tip is absent in the subtree). This is essentially the inverse of the mapping
new2old_tip.

old2new_node Integer vector of length Nnodes, with values in 1,..,Nnodes_kept, mapping node
indices of the original tree to node indices in the subtree (a value of 0 is used
whenever a node is absent in the subtree). This is essentially the inverse of the
mapping new2old_node.

Author(s)

Stilianos Louca

See Also

get_subtree_at_node

get_tips_for_mrcas 263

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

choose a random subset of tips
tip_subset = sample.int(Ntips, size=as.integer(Ntips/10), replace=FALSE)

extract subtree spanning the chosen tip subset
subtree = get_subtree_with_tips(tree, only_tips=tip_subset)$subtree

print summary of subtree
cat(sprintf("Subtree has %d tips and %d nodes\n",length(subtree$tip.label),subtree$Nnode))

get_tips_for_mrcas Find tips with specific most recent common ancestors.

Description

Given a rooted phylogenetic tree and a list of nodes ("MRCA nodes"), for each MRCA node find
a set of descending tips ("MRCA-defining tips") such that their most recent common ancestor
(MRCA) is that node. This may be useful for cases where nodes need to be described as MRCAs
of tip pairs for input to certain phylogenetics algorithms (e.g., for tree dating).

Usage

get_tips_for_mrcas(tree, mrca_nodes, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

mrca_nodes Either an integer vector or a character vector, listing the nodes for each of which
an MRCA-defining set of tips is to be found. If an integer vector, it should list
node indices (i.e. from 1 to Nnodes). If a character vector, it should list node
names; in that case tree$node.label must exist.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

Details

At most 2 MRCA-defining tips are assigned to each MRCA node. This function assumes that each
of the mrca_nodes has at least two children or has a child that is a tip (otherwise the problem is not
well-defined). The tree may include multi-furcations as well as mono-furcations (i.e. nodes with
only one child).

The asymptotic time complexity of this function is O(Ntips+Nnodes) + O(Nmrcas), where Ntips is
the number of tips, Nnodes is the number of nodes in the tree and Nmrcas is equal to length(mrca_nodes).

264 get_trait_acf

Value

A list of the same size as mrca_nodes, whose n-th element is an integer vector of tip indices (i.e.
with values in 1,..,Ntips) whose MRCA is the n-th node listed in mrca_nodes.

Author(s)

Stilianos Louca

See Also

get_pairwise_mrcas, get_mrca_of_set

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick random nodes
focal_nodes = sample.int(n=tree$Nnode, size=3, replace=FALSE)

get tips for mrcas
tips_per_focal_node = get_tips_for_mrcas(tree, focal_nodes);

check correctness (i.e. calculate actual MRCAs of tips)
for(n in 1:length(focal_nodes)){

mrca = get_mrca_of_set(tree, tips_per_focal_node[[n]])
cat(sprintf("Focal node = %d, should match mrca of tips = %d\n",focal_nodes[n],mrca-Ntips))

}

get_trait_acf Phylogenetic autocorrelation function of a numeric trait.

Description

Given a rooted phylogenetic tree and a numeric (typically continuous) trait with known value (state)
on each tip, calculate the phylogenetic autocorrelation function (ACF) of the trait. The ACF is
a function of phylogenetic distance x, where ACF(x) is the Pearson autocorrelation of the trait
between two tips, provided that the tips have phylogenetic ("patristic") distance x. The function
get_trait_acf also calculates the mean absolute difference and the mean relative difference of
the trait between any two random tips at phylogenetic distance x (see details below).

Usage

get_trait_acf(tree,
tip_states,
Npairs = 10000,
Nbins = NULL,

get_trait_acf 265

min_phylodistance = 0,
max_phylodistance = NULL,
uniform_grid = FALSE,
phylodistance_grid= NULL)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the value of the trait at each tip in the
tree. Note that tip_states[i] (where i is an integer index) must correspond to the
i-th tip in the tree.

Npairs Total number of random tip pairs to draw. A greater number of tip pairs will
improve the accuracy of the estimated ACF within each distance bin. Tip pairs
are drawn randomly with replacement. If Npairs<=0, then every tip pair is
included exactly once.

Nbins Number of distance bins to consider within the range of phylogenetic distances
encountered between tip pairs in the tree. A greater number of bins will in-
crease the resolution of the ACF as a function of phylogenetic distance, but will
decrease the number of tip pairs falling within each bin (which reduces the accu-
racy of the estimated ACF). If NULL, then Nbins is automatically and somewhat
reasonably chosen based on the size of the input trees.

min_phylodistance

Numeric, minimum phylogenetic distance to conssider. Only relevant if phylodistance_grid
is NULL.

max_phylodistance

Numeric, optional maximum phylogenetic distance to consider. If NULL, this is
automatically set to the maximum phylodistance between any two tips.

uniform_grid Logical, specifying whether the phylodistance grid should be uniform, i.e., with
equally sized phylodistance bins. If FALSE, then the grid is chosen non-uniformly
(i.e., each bin has different size) such that each bin roughly contains the same
number of tip pairs. This helps equalize the estimation error across bins. Only
relevant if phylodistance_grid is NULL.

phylodistance_grid

Numeric vector, optional explicitly specified phylodistance bins (left boundaries
thereof) on which to evaluate the ACF. Must contain non-negative numbers in
strictly ascending order. Hence, the first bin will range from phylodistance_grid[1]
to phylodistance_grid[2], while the last bin will range from tail(phylodistance_grid,1)
to max_phylodistance. Can be used as an alternative to Nbins. If non-NULL,
then Nbins, min_phylodistance and uniform_grid are irrelevant.

Details

The phylogenetic autocorrelation function (ACF) of a trait can give insight into the evolutionary
processes shaping its distribution across clades. An ACF that decays slowly with increasing phy-
logenetic distance indicates a strong phylogenetic conservatism of the trait, whereas a rapidly de-
caying ACF indicates weak phylogenetic conservatism. Similarly, if the mean absolute difference

266 get_trait_acf

in trait value between two random tips increases with phylogenetic distance, this indicates a phylo-
genetic autocorrelation of the trait (Zaneveld et al. 2014). Here, phylogenetic distance between tips
refers to their patristic distance, i.e. the minimum cumulative edge length required to connect the
two tips.

Since the phylogenetic distances between all possible tip pairs do not cover a continuoum (as there is
only a finite number of tips), this function randomly draws tip pairs from the tree, maps them onto a
finite set of equally-sized distance bins and then estimates the ACF for the centroid of each distance
bin based on tip pairs in that bin. In practice, as a next step one would usually plot the estimated
ACF (returned vector autocorrelations) over the centroids of the distance bins (returned vector
distances).

Phylogenetic distance bins can be specified in two alternative ways: Either a set of bins (phy-
lodistance grid) is automatically calculated based on the provided Nbins, min_phylodistance,
max_phylodistance and uniform_grid, or a phylodistance grid is explicitly provided via phylodistance_grid
and max_phylodistance.

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). If tree$edge.length is missing, then every edge is
assumed to have length 1. The input tree must be rooted at some node for technical reasons (see
function root_at_node), but the choice of the root node does not influence the result.

This function assumes that each tip is assigned exactly one trait value. This might be problematic in
situations where each tip covers a range of trait values, for example if tips are species and multiple
individuals were sampled from each species. In that case, one might consider representing each
individual as a separate tip in the tree, so that each tip has exactly one trait value.

Value

A list with the following elements:

phylodistances Numeric vector of size Nbins, storing the center of each phylodistance bin in in-
creasing order. This is equal to 0.5*(left_phylodistances+right_phylodistances).
Typically, you will want to plot autocorrelations over phylodistances.

left_phylodistances

Numeric vector of size Nbins, storing the left boundary of each phylodistance
bin in increasing order.

right_phylodistances

Numeric vector of size Nbins, storing the right boundary of each phylodistance
bin in increasing order.

autocorrelations

Numeric vector of size Nbins, storing the estimated Pearson autocorrelation of
the trait for each distance bin.

mean_abs_differences

Numeric vector of size Nbins, storing the mean absolute difference of the trait
between tip pairs in each distance bin.

mean_rel_differences

Numeric vector of size Nbins, storing the mean relative difference of the trait
between tip pairs in each distance bin. The relative difference between two
values X and Y is 0 if X == Y , and equal to

|X − Y |
0.5 · (|X|+ |Y |)

get_trait_stats_over_time 267

otherwise.
Npairs_per_distance

Integer vector of size Nbins, storing the number of random tip pairs associated
with each phylodistance bin.

Author(s)

Stilianos Louca

References

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

consentrait_depth, geographic_acf

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_factor=0.1),max_tips=1000)$tree

simulate continuous trait evolution on the tree
tip_states = simulate_ou_model(tree,

stationary_mean = 0,
stationary_std = 1,
decay_rate = 0.01)$tip_states

calculate autocorrelation function
ACF = get_trait_acf(tree, tip_states, Nbins=10, uniform_grid=TRUE)

plot ACF (autocorrelation vs phylogenetic distance)
plot(ACF$phylodistances, ACF$autocorrelations, type="l", xlab="distance", ylab="ACF")

get_trait_stats_over_time

Calculate mean & standard deviation of a numeric trait on a dated
tree over time.

Description

Given a rooted and dated phylogenetic tree, and a scalar numeric trait with known value on each
node and tip of the tree, calculate the mean and the variance of the trait’s states across the tree at
discrete time points. For example, if the trait represents "body size", then this function calculates
the mean body size of extant clades over time.

268 get_trait_stats_over_time

Usage

get_trait_stats_over_time(tree,
states,
Ntimes = NULL,
times = NULL,
include_quantiles = TRUE,
check_input = TRUE)

Arguments

tree A rooted tree of class "phylo", where edge lengths represent time intervals (or
similar).

states Numeric vector, specifying the trait’s state at each tip and each node of the tree
(in the order in which tips & nodes are indexed). May include NA or NaN if values
are missing for some tips/nodes.

Ntimes Integer, number of equidistant time points for which to calculade clade counts.
Can also be NULL, in which case times must be provided.

times Integer vector, listing time points (in ascending order) for which to calculate
clade counts. Can also be NULL, in which case Ntimes must be provided.

include_quantiles

Logical, specifying whether to include information on quantiles (e.g., median,
CI95, CI50) of the trait over time, in addition to the means and standard de-
viations. This option increases computation time and memory needs for large
trees, so if you only care about means and standard deviations you can set this
to FALSE.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

If tree$edge.length is missing, then every edge in the tree is assumed to be of length 1. The tree
may include multi-furcations as well as mono-furcations (i.e. nodes with only one child). The tree
need not be ultrametric (e.g. may include extinct tips), although in general this function only makes
sense if edge lengths correspond to time (or similar).

Either Ntimes or times must be non-NULL, but not both. states need not include names; if it does,
then these are checked to be in the same order as in the tree (if check_input==TRUE).

Value

A list with the following elements:

Ntimes Integer, indicating the number of returned time points. Equal to the provided
Ntimes if applicable.

times Numeric vector of size Ntimes, listing the considered time points in increasing
order. If times was provided as an argument to the function, then this will be
the same as provided.

get_trait_stats_over_time 269

clade_counts Integer vector of size Ntimes, listing the number of tips or nodes considered at
each time point.

means Numeric vector of size Ntimes, listing the arithmetic mean of trait states at each
time point.

stds Numeric vector of size Ntimes, listing the standard deviation of trait states at
each time point.

medians Numeric vector of size Ntimes, listing the median trait state at each time point.
Only returned if include_uantiles=TRUE.

CI50lower Numeric vector of size Ntimes, listing the lower end of the equal-tailed 50%
range of trait states (i.e., the 25% percentile) at each time point. Only returned
if include_uantiles=TRUE.

CI50upper Numeric vector of size Ntimes, listing the upper end of the equal-tailed 50%
range of trait states (i.e., the 75% percentile) at each time point. Only returned
if include_uantiles=TRUE.

CI95lower Numeric vector of size Ntimes, listing the lower end of the equal-tailed 95%
range of trait states (i.e., the 2.5% percentile) at each time point. Only returned
if include_uantiles=TRUE.

CI95upper Numeric vector of size Ntimes, listing the upper end of the equal-tailed 95%
range of trait states (i.e., the 97.5% percentile) at each time point. Only returned
if include_uantiles=TRUE.

Author(s)

Stilianos Louca

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1), max_tips=1000)$tree

simulate a numeric trait under Brownian-motion
trait = simulate_bm_model(tree, diffusivity=1)
states = c(trait$tip_states,trait$node_states)

calculate trait stats over time
results = get_trait_stats_over_time(tree, states, Ntimes=100)

plot trait stats over time (mean +/- std)
M = results$means
S = results$stds
matplot(x=results$times,

y=matrix(c(M-S,M+S),ncol=2,byrow=FALSE),
main = "Simulated BM trait over time",
lty = 1, col="black",
type="l", xlab="time", ylab="mean +/- std")

270 get_transition_index_matrix

get_transition_index_matrix

Create an index matrix for a Markov transition model.

Description

Create an index matrix encoding the parametric structure of the transition rates in a discrete-state
continuous-time Markov model (e.g., Mk model of trait evolution). Such an index matrix is required
by certain functions for mapping independent rate parameters to transition rates. For example, an
index matrix may encode the information that each rate i–>j is equal to its reversed counterpart j–>i.

Usage

get_transition_index_matrix(Nstates, rate_model)

Arguments

Nstates Integer, the number of distinct states represented in the transition matrix (number
of rows & columns).

rate_model Rate model that the transition matrix must satisfy. Can be "ER" (all rates equal),
"SYM" (transition rate i–>j is equal to transition rate j–>i), "ARD" (all rates can
be different) or "SUEDE" (only stepwise transitions i–>i+1 and i–>i-1 allowed,
all ’up’ transitions are equal, all ’down’ transitions are equal).

Details

The returned index matrix will include as many different positive integers as there are indepen-
dent rate parameters in the requested rate model, plus potentially the value 0 (which has a special
meaning, see below).

Value

A named list with the following elements:

index_matrix Integer matrix of size Nstates x Nstates, with values between 0 and Nstates,
assigning each entry in the transition matrix to an independent transition rate
parameter. A value of 0 means that the corresponding rate is fixed to zero (if
off-diagonal) or will be adjusted to ensure a valid Markov transition rate matrix
(if on the diagonal).

Nrates Integer, the number of independent rate parameters in the model.

Author(s)

Stilianos Louca

See Also

get_random_mk_transition_matrix

get_tree_span 271

get_tree_span Get min and max distance of any tip to the root.

Description

Given a rooted phylogenetic tree, calculate the minimum and maximum phylogenetic distance (cu-
mulative branch length) of any tip from the root.

Usage

get_tree_span(tree, as_edge_count=FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

as_edge_count Logical, specifying whether distances should be counted in number of edges,
rather than cumulative edge length. This is the same as if all edges had length 1.

Details

If tree$edge.length is missing, then every edge in the tree is assumed to be of length 1. The
tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child). The
asymptotic average time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value

A named list with the following elements:

min_distance Minimum phylogenetic distance that any of the tips has to the root.

max_distance Maximum phylogenetic distance that any of the tips has to the root.

Author(s)

Stilianos Louca

See Also

get_pairwise_distances

272 get_tree_traversal_root_to_tips

Examples

generate a random tree
Ntips = 1000
params = list(birth_rate_intercept=1, death_rate_intercept=0.5)
tree = generate_random_tree(params, max_tips=Ntips, coalescent=FALSE)$tree

calculate min & max tip distances from root
tree_span = get_tree_span(tree)
cat(sprintf("Tip min dist = %g, max dist = %g\n",

tree_span$min_distance,
tree_span$max_distance))

get_tree_traversal_root_to_tips

Traverse tree from root to tips.

Description

Create data structures for traversing a tree from root to tips, and for efficient retrieval of a node’s
outgoing edges and children.

Usage

get_tree_traversal_root_to_tips(tree, include_tips)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

include_tips Include tips in the tarversal queue. If FALSE, then only nodes are included in
the queue.

Details

Many dynamic programming algorithms for phylogenetics involve traversing the tree in a certain
direction (root to tips or tips to root), and efficient (O(1) complexity) access to a node’s direct chil-
dren can significantly speed up those algorithms. This function is meant to provide data structures
that allow traversing the tree’s nodes (and optionally tips) in such an order that each node is tra-
versed prior to its descendants (root–>tips) or such that each node is traversed after its descendants
(tips–>root). This function is mainly meant for use in other algorithms, and is probably of little
relevance to the average user.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).

The asymptotic time and memory complexity of this function is O(Ntips), where Ntips is the number
of tips in the tree.

hsp_binomial 273

Value

A list with the following elements:

queue An integer vector of size Nnodes (if include_tips was FALSE) or of size Nn-
odes+Ntips (if include_tips was TRUE), listing indices of nodes (and option-
ally tips) in the order root–>tips described above. In particular, queue[1] will
be the index of the tree’s root (typically Ntips+1).

edges An integer vector of size Nedges (=nrow(tree$edge)), listing indices of edges
(corresponding to tree$edge) such that outgoing edges of the same node are
listed in consequtive order.

node2first_edge

An integer vector of size Nnodes listing the location of the first outgoing edge of
each node in edges. That is, edges[node2first_edge[n]] points to the first
outgoing edge of node n in tree$edge.

node2last_edge An integer vector of size Nnodes listing the location of the last outgoing edge
of each node in edges. That is, edges[node2last_edge[n]] points to the last
outgoing edge of node n in tree$edge. The total number of outgoing edges of
a node is thus given by 1+node2last_edge[n]-node2first_edge[n].

Author(s)

Stilianos Louca

See Also

reorder_tree_edges

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_factor=1), max_tips=100)$tree

get tree traversal
traversal = get_tree_traversal_root_to_tips(tree, include_tips=TRUE)

End(Not run)

hsp_binomial Hidden state prediction for a binary trait based on the binomial distri-
bution.

274 hsp_binomial

Description

Estimate the state probabilities for a binary trait at ancestral nodes and tips with unknown (hidden)
state, by fitting the probability parameter of a binomial distribution to empirical state frequencies.
For each node, the states of its descending tips are assumed to be drawn randomly and independently
according to some a priori unknown probability distribution. The probability P1 (probability of any
random descending tip being in state 1) is estimated separately for each node based on the observed
states in the descending tips via maximum likelihood.

This function can account for potential state-measurement errors, hidden states and reveal biases
(i.e., tips in one particular state being more likely to be measured than in the other state). Only
nodes with a number of non-hidden tips above a certain threshold are included in the ML-estimation
phase. All other nodes and hidden tips are then assigned the probabilities estimated for the most
closely related ancestral node with estimated probabilities. This function is a generalization of
hsp_empirical_probabilities that can account for potential state-measurement errors and re-
veal biases.

Usage

hsp_binomial(tree,
tip_states,
reveal_probs = NULL,
state1_probs = NULL,
min_revealed = 1,
max_STE = Inf,
check_input = TRUE)

Arguments

tree A rooted tree of class "phylo".

tip_states Integer vector of length Ntips, specifying the state of each tip in the tree (either 1
or 2). tip_states can include NA to indicate a hidden (non-measured) tip state.

reveal_probs 2D numeric matrix of size Ntips x 2, listing tip-specific reveal probabilities at
each tip conditional on the tip’s true state. Hence reveal_probs[n,s] is the
probability that tip n would have a measured (non-hidden) state if its true state
was s. May also be a vector of length 2 (same reveal_probs for all tips) or
NULL (unbiased reveal probs).

state1_probs 2D numeric matrix of size Ntips x 2, listing the probability of measuring state
1 (potentially erroneously) at each tip conditional upon its true state and condi-
tional upon its state having been measured (i.e., being non-hidden). For exam-
ple, for an incompletely sequenced genome with completion level C_n and state
1 indicating presence and state 2 indicating absence of a gene, and assuming
error-free detection of genes within the covered regions, one has state1_probs[n,1]
= C_n and state1_probs[n,2]=0. state1_probs may also be a vector of
length 2 (same probabilities for all tips) or NULL. If NULL, state measurements
are assumed error-free, and hence this is the same as c(1,0).

min_revealed Non-negative integer, specifying the minimum number of tips with non-hidden
state that must descend from a node for estimating its P1 via maximum likeli-
hood. For nodes with too few descending tips with non-hidden state, the proba-

hsp_binomial 275

bility P1 will not be estimated via maximum likelihood, and instead will be set
to the P1 estimated for the nearest possible ancestral node. It is advised to set
this threshold greater than zero (typical values are 2–10).

max_STE Non-negative numeric, specifying the maximum acceptable estimated standard
error (STE) for the estimated probability P1 for a node. If the STE for a node
exceeds this threshold, the P1 for that node is set to the P1 of the nearest ances-
tor with STE below that threshold. Setting this to Inf disables this functional-
ity. The STE is estimated based on the Observed Fisher Information Criterion
(which, strictly speaking, only provides a lower bound for the STE).

check_input Logical, specifying whether to perform some additional time-consuming checks
on the validity of the input data. If you are certain that your input data are valid,
you can set this to FALSE to reduce computation.

Details

This function currently only supports binary traits, and states must be represented by integers 1 or
2. Any NA entries in tip_states are interpreted as hidden (non-revealed) states.

The algorithm proceeds in two phases ("ASR" phase and "HSP" phase). In the ASR phase the state
probability P1 is estimated separately for every node and tip satisfying the thresholds min_revealed
and max_STE, via maximum-likelihood. In the HSP phase, the P1 of nodes and tips not included
in the ASR phase is set to the P1 of the nearest ancestral node with estimated P1, as described by
Zaneveld and Thurber (2014).

This function yields estimates for the state probabilities P1 (note that P2=1-P1). In order to obtain
point estimates for tip states one needs to interpret these probabilities in a meaningful way, for
example by choosing as point estimate for each tip the state with highest probability P1 or P2; the
closest that probability is to 1, the more reliable the point estimate will be.

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). This function has asymptotic time complexity O(Nedges
x Nstates). Tips must be represented in tip_states in the same order as in tree$tip.label. The
vector tip_states need not include names; if it does, however, they are checked for consistency
(if check_input==TRUE).

Value

A list with the following elements:

success Logical, indicating whether HSP was successful. If FALSE, an additional el-
ement error (character) will be returned describing the error, while all other
return values may be NULL.

P1 Numeric vector of length Ntips+Nnodes, listing the estimated probability of be-
ing in state 1 for each tip and node. A value of P1[n]=0 or P1[n]=1 means that
the n-th tip/node is in state 2 or state 1 with absolute certainty, respectively.
Note that even tips with non-hidden state may have have a P1 that is neither 0 or
1, if state measurements are erroneous (i.e., if state1_probs[n,] differs from
(1,0)).

STE Numeric vector of length Ntips+Nnodes, listing the standard error of the esti-
mated P1 at each tip and node, according to the Observed Fisher Information

276 hsp_binomial

Criterion. Note that the latter strictly speaking only provides a lower bound on
the standard error.

states Integer vector of length Ntips+Nnodes, with values in {1,2}, listing the maximum-
likelihood estimate of the state in each tip & node.

reveal_counts Integer vector of length Ntips+Nnodes, listing the number of tips with non-
hidden state descending from each tip and node.

inheritted Logical vector of length Ntips+Nnodes, specifying for each tip or node whether
its returned P1 was directly maximum-likelihood estimated duirng the ASR
phase (inheritted[n]==FALSE) or set to the P1 estimated for an ancestral node
during the HSP phase (inheritted[n]==TRUE).

Author(s)

Stilianos Louca

References

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

hsp_max_parsimony, hsp_mk_model, hsp_empirical_probabilities

Examples

Not run:
generate random tree
Ntips =50
tree = generate_random_tree(list(birth_rate_factor=1),max_tips=Ntips)$tree

simulate a binary trait on the tips
Q = get_random_mk_transition_matrix(Nstates=2, rate_model="ER", min_rate=0.1, max_rate=0.5)
tip_states = simulate_mk_model(tree, Q)$tip_states

print tip states
cat(sprintf("True tip states:\n"))
print(tip_states)

hide some of the tip states
include a reveal bias
reveal_probs = c(0.8, 0.3)
revealed = sapply(1:Ntips, FUN=function(n) rbinom(n=1,size=1,prob=reveal_probs[tip_states[n]]))
input_tip_states = tip_states
input_tip_states[!revealed] = NA

predict state probabilities P1 and P2
hsp = hsp_binomial(tree, input_tip_states, reveal_probs=reveal_probs, max_STE=0.2)
probs = cbind(hsp$P1,1-hsp$P1)

hsp_empirical_probabilities 277

pick most likely state as a point estimate
only accept point estimate if probability is sufficiently high
estimated_tip_states = max.col(probs[1:Ntips,])
estimated_tip_states[probs[cbind(1:Ntips,estimated_tip_states)]<0.8] = NA
cat(sprintf("ML-predicted tip states:\n"))
print(estimated_tip_states)

calculate fraction of correct predictions
predicted = which((!revealed) & (!is.na(estimated_tip_states)))
if(length(predicted)>0){

Ncorrect = sum(tip_states[predicted]==estimated_tip_states[predicted])
cat(sprintf("%.2g%% of predictions are correct\n",(100.0*Ncorrect)/length(predicted)))

}else{
cat(sprintf("None of the tip states could be reliably predicted\n"))

}

End(Not run)

hsp_empirical_probabilities

Hidden state prediction via empirical probabilities.

Description

Reconstruct ancestral discrete states of nodes and predict unknown (hidden) states of tips on a tree
based on empirical state probabilities across tips. This is a very crude HSP method, and other more
sophisticated methods should be preferred (e.g. hsp_mk_model).

Usage

hsp_empirical_probabilities(tree, tip_states,
Nstates=NULL, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree as an
integer from 1 to Nstates, where Nstates is the possible number of states (see
below). tip_states can include NA to indicate an unknown tip state that is to
be predicted.

Nstates Either NULL, or an integer specifying the number of possible states of the trait. If
NULL, then it will be computed based on the maximum non-NA value encountered
in tip_states

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

278 hsp_empirical_probabilities

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. characters
or factors), you should map them to a set of integers 1,..,Nstates. You can easily map any set of
discrete states to integers using the function map_to_state_space.

Any NA entries in tip_states are interpreted as unknown states. Prior to ancestral state recon-
struction, the tree is temporarily prunned, keeping only tips with known state. The function then
calculates the empirical state probabilities for each node in the pruned tree, based on the states
across tips descending from each node. The state probabilities of tips with unknown state are set to
those of the most recent ancestor with reconstructed states, as described by Zaneveld and Thurber
(2014).

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). This function has asymptotic time complexity O(Nedges
x Nstates).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include names; if it does, however, they are checked for consistency (if
check_input==TRUE).

This function is meant for reconstructing ancestral states in all nodes of a tree as well as predicting
the states of tips with an a priory unknown state. If the state of all tips is known and only ancestral
state reconstruction is needed, consider using functions such as asr_empirical_probabilities
for improved efficiency.

Value

A list with the following elements:

success Logical, indicating whether HSP was successful. If FALSE, some return values
may be NULL.

likelihoods A 2D numeric matrix, listing the probability of each tip and node being in each
state. This matrix will have (Ntips+Nnodes) rows and Nstates columns, where
Nstates was either explicitly provided as an argument or inferred based on the
number of unique values in tip_states (if Nstates was passed as NULL). In
the latter case, the column names of this matrix will be the unique values found
in tip_states. The rows in this matrix will be in the order in which tips and
nodes are indexed in the tree, i.e. the rows 1,..,Ntips store the probabilities for
tips, while rows (Ntips+1),..,(Ntips+Nnodes) store the probabilities for nodes.
Each row in this matrix will sum up to 1. Note that the return value is named
this way for compatibility with other HSP functions.

states Integer vector of length Ntips+Nnodes, with values in {1,..,Nstates}, specifying
the maximum-likelihood estimate of the state of each tip & node.

Author(s)

Stilianos Louca

hsp_independent_contrasts 279

References

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

hsp_max_parsimony, hsp_mk_model, map_to_state_space

Examples

Not run:
generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a discrete trait
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.1)
tip_states = simulate_mk_model(tree, Q)$tip_states

print states of first 20 tips
print(tip_states[1:20])

set half of the tips to unknown state
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via MPR
likelihoods = hsp_empirical_probabilities(tree, tip_states, Nstates)$likelihoods
estimated_tip_states = max.col(likelihoods[1:Ntips,])

print estimated states of first 20 tips
print(estimated_tip_states[1:20])

End(Not run)

hsp_independent_contrasts

Hidden state prediction via phylogenetic independent contrasts.

Description

Reconstruct ancestral states of a continuous (numeric) trait for nodes and predict unknown (hidden)
states for tips on a tree using phylogenetic independent contrasts.

Usage

hsp_independent_contrasts(tree, tip_states, weighted=TRUE, check_input=TRUE)

280 hsp_independent_contrasts

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the state of each tip in the tree.
tip_states can include NA to indicate an unknown tip state that is to be pre-
dicted.

weighted Logical, specifying whether to weight transition costs by the inverted edge lengths
during ancestral state reconstruction. This corresponds to the "weighted squared-
change parsimony" reconstruction by Maddison (1991) for a Brownian motion
model of trait evolution.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

Any NA entries in tip_states are interpreted as unknown (hidden) states to be estimated. Prior to
ancestral state reconstruction, the tree is temporarily prunned, keeping only tips with known state.
The function then uses a postorder traversal algorithm to calculate the intermediate "X" variables
(a state estimate for each node) introduced by Felsenstein (1985) in his phylogenetic independent
contrasts method. Note that these are only local estimates, i.e. for each node the estimate is only
based on the tip states in the subtree descending from that node (see discussion in Garland and
Ives, 2000). The states of tips with hidden state are set to those of the most recent ancestor with
reconstructed state, as described by Zaneveld and Thurber (2014).

This function has asymptotic time complexity O(Nedges). If tree$edge.length is missing, each
edge in the tree is assumed to have length 1. This is the same as setting weighted=FALSE. The tree
may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations (i.e.
nodes with only one child).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

This function is meant for reconstructing ancestral states in all nodes of a tree as well as predicting
the states of tips with an a priory unknown state. If the state of all tips is known and only ances-
tral state reconstruction is needed, consider using the function asr_independent_contrasts for
improved efficiency.

Value

A list with the following elements:

success Logical, indicating whether HSP was successful. If FALSE, some return values
may be NULL.

states A numeric vector of size Ntips+Nnodes, listing the reconstructed state of each
tip and node. The entries in this vector will be in the order in which tips and
nodes are indexed in tree$edge.

hsp_independent_contrasts 281

total_sum_of_squared_changes

The total sum of squared changes in tree, minimized by the (optionally weighted)
squared-change parsimony algorithm. This is equation 7 in (Maddison, 1991).
Note that for the root, phylogenetic independent contrasts is equivalent to Mad-
dison’s squared-change parsimony.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the comparative method. The American Naturalist. 125:1-
15.

T. Jr. Garland and A. R. Ives (2000). Using the past to predict the present: Confidence intervals for
regression equations in phylogenetic comparative methods. The American Naturalist. 155:346-364.

W. P. Maddison (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Systematic Zoology. 40:304-314.

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

asr_squared_change_parsimony hsp_max_parsimony, hsp_mk_model,

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree,

stationary_mean=0,
stationary_std=1,
decay_rate=0.001)$tip_states

print tip states
print(as.vector(tip_states))

set half of the tips to unknown state
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via weighted PIC
estimated_states = hsp_independent_contrasts(tree, tip_states, weighted=TRUE)$states

print estimated tip states
print(estimated_states[1:Ntips])

282 hsp_max_parsimony

hsp_max_parsimony Hidden state prediction via maximum parsimony.

Description

Reconstruct ancestral discrete states of nodes and predict unknown (hidden) states of tips on a tree
using maximum parsimony. Transition costs can vary between transitions, and can optionally be
weighted by edge length.

Usage

hsp_max_parsimony(tree, tip_states, Nstates=NULL,
transition_costs="all_equal",
edge_exponent=0.0, weight_by_scenarios=TRUE,
check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree as an
integer from 1 to Nstates, where Nstates is the possible number of states (see
below). tip_states can include NA to indicate an unknown tip state that is to
be predicted.

Nstates Either NULL, or an integer specifying the number of possible states of the trait. If
NULL, then it will be computed based on the maximum non-NA value encountered
in tip_states

transition_costs

Same as for the function asr_max_parsimony.

edge_exponent Same as for the function asr_max_parsimony.
weight_by_scenarios

Logical, indicating whether to weight each optimal state of a node by the number
of optimal maximum-parsimony scenarios in which the node is in that state. If
FALSE, then all possible states of a node are weighted equally (i.e. are assigned
equal probabilities).

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. characters
or factors), you should map them to a set of integers 1,..,Nstates. The order of states (if relevant)
should be reflected in their integer representation. For example, if your original states are "small",

hsp_max_parsimony 283

"medium" and "large" and transition_costs=="sequential", it is advised to represent these
states as integers 1,2,3. You can easily map any set of discrete states to integers using the function
map_to_state_space.

Any NA entries in tip_states are interpreted as unknown states. Prior to ancestral state recon-
struction, the tree is temporarily prunned, keeping only tips with known state. The function then
applies Sankoff’s (1975) dynamic programming algorithm for ancestral state reconstruction, which
determines the smallest number (or least costly if transition costs are uneven) of state changes along
edges needed to reproduce the known tip states. The state probabilities of tips with unknown state
are set to those of the most recent ancestor with reconstructed states, as described by Zaneveld and
Thurber (2014). This function has asymptotic time complexity O(Ntips+Nnodes x Nstates).

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. If edge_exponent
is 0, then edge lengths do not influence the result. If edge_exponent!=0, then all edges must have
non-zero length. The tree may include multi-furcations (i.e. nodes with more than 2 children) as
well as mono-furcations (i.e. nodes with only one child).

Tips must be represented in tip_states in the same order as in tree$tip.label. None of the
input vectors or matrixes need include row or column names; if they do, however, they are checked
for consistency (if check_input==TRUE).

This function is meant for reconstructing ancestral states in all nodes of a tree as well as predicting
the states of tips with an a priory unknown state. If the state of all tips is known and only ances-
tral state reconstruction is needed, consider using the function asr_max_parsimony for improved
efficiency.

Value

A list with the following elements:

success Logical, indicating whether HSP was successful. If FALSE, some return values
may be NULL.

likelihoods A 2D numeric matrix, listing the probability of each tip and node being in each
state. This matrix will have (Ntips+Nnodes) rows and Nstates columns, where
Nstates was either explicitly provided as an argument or inferred based on the
number of unique values in tip_states (if Nstates was passed as NULL). In
the latter case, the column names of this matrix will be the unique values found
in tip_states. The rows in this matrix will be in the order in which tips and
nodes are indexed in the tree, i.e. the rows 1,..,Ntips store the probabilities for
tips, while rows (Ntips+1),..,(Ntips+Nnodes) store the probabilities for nodes.
Each row in this matrix will sum up to 1. Note that the return value is named
this way for compatibility with other HSP functions.

states Integer vector of length Ntips+Nnodes, with values in {1,..,Nstates}, specifying
the maximum-likelihood estimate of the state of each tip & node.

Author(s)

Stilianos Louca

284 hsp_mk_model

References

D. Sankoff (1975). Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics.
28:35-42.

J. Felsenstein (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts.

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

asr_max_parsimony, asr_mk_model, hsp_mk_model, map_to_state_space

Examples

Not run:
generate random tree
Ntips = 10
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a discrete trait
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER")
tip_states = simulate_mk_model(tree, Q)$tip_states

print tip states
print(tip_states)

set half of the tips to unknown state
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via MPR
likelihoods = hsp_max_parsimony(tree, tip_states, Nstates)$likelihoods
estimated_tip_states = max.col(likelihoods[1:Ntips,])

print estimated tip states
print(estimated_tip_states)

End(Not run)

hsp_mk_model Hidden state prediction with Mk models and rerooting

Description

Reconstruct ancestral states of a discrete trait and predict unknown (hidden) states of tips using a
fixed-rates continuous-time Markov model (a.k.a. "Mk model"). This function can fit the model (i.e.
estimate the transition matrix) using maximum likelihood, or use a specified transition matrix. The
function can optionally calculate marginal ancestral state likelihoods for each node in the tree, using

hsp_mk_model 285

the rerooting method by Yang et al. (1995). A subset of the tips may have completely unknown
states; in this case the fitted Markov model is used to predict their state likelihoods based on their
most recent reconstructed ancestor, as described by Zaneveld and Thurber (2014). The function can
account for biases in which tips have known state (“reveal bias”).

Usage

hsp_mk_model(tree,
tip_states,
Nstates = NULL,
reveal_fractions = NULL,
tip_priors = NULL,
rate_model = "ER",
transition_matrix = NULL,
include_likelihoods = TRUE,
root_prior = "empirical",
Ntrials = 1,
optim_algorithm = "nlminb",
optim_max_iterations = 200,
optim_rel_tol = 1e-8,
store_exponentials = TRUE,
check_input = TRUE,
Nthreads = 1)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree in
terms of an integer from 1 to Nstates, where Nstates is the possible number of
states (see below). Can also be NULL, in which case tip_priors must not be
NULL (see below). tip_states can include NA to indicate an unknown (hidden)
tip state that is to be predicted.

Nstates Either NULL, or an integer specifying the number of possible states of the
trait. If Nstates==NULL, then it will be computed based on the maximum non-
NA value encountered in tip_states or based on the number of columns in
tip_priors (whichever is non-NULL).

reveal_fractions

Either NULL, or a numeric vector of size Nstates, specifying the fraction of
tips with revealed (i.e., non-hidden) state, depending on the tip state. That is,
reveal_fractions[s] is the probability that a given tip at state s will have
known (i.e., non-hidden) state, conditional upon being included in the tree. If
the tree only contains a random subset of species (sampled independently of
each species’ state), then reveal_fractions[s] is the probability of knowing
the state of a species (regardless of whether it is included in the tree), if its state
is s. This variable can be used to account for biases in which tips have known
state, depending on their state. Only the relative ratios among reveal fractions
matter, i.e. multiplying reveal_fractions with a constant factor has no effect.

286 hsp_mk_model

tip_priors A 2D numeric matrix of size Ntips x Nstates, where Nstates is the possible
number of states for the character modelled. Can also be NULL. Each row of
this matrix must be a probability vector, i.e. it must only contain non-negative
entries and must sum up to 1. The [i,s]-th entry should be the prior probability
of tip i being in state s. If you know for certain that tip i is in some state s,
you can set the corresponding entry to 1 and all other entries in that row to
0. A row can include NA to indicate that neither the state nor the probability
distribution of a state are known for that tip. If for all tips you either know the
exact state or have no information at all, you can also use tip_states instead.
If tip_priors==NULL, then tip_states must not be NULL (see above).

rate_model Rate model to be used for fitting the transition rate matrix. Similar to the
rate_model option in the function asr_mk_model. See the details of asr_mk_model
on the assumptions of each rate_model.

transition_matrix

Either a numeric quadratic matrix of size Nstates x Nstates containing fixed tran-
sition rates, or NULL. The [r,c]-th entry in this matrix should store the transition
(probability) rate from the state r to state c. Each row in this matrix must have
sum zero. If NULL, then the transition rates will be estimated using maximum
likelihood, based on the rate_model specified.

include_likelihoods

Boolean, specifying whether to include the marginal state likelihoods for all tips
and nodes, as returned variables. Setting this to TRUE can substantially increase
computation time. If FALSE, the Mk model is merely fitted, but ancestral states
and hidden tip states are not reconstructed.

root_prior Prior probability distribution of the root’s states. Similar to the root_prior
option in the function asr_mk_model.

Ntrials Number of trials (starting points) for fitting the transition matrix. Only relevant
if transition_matrix=NULL. A higher number may reduce the risk of land-
ing in a local non-global optimum of the likelihood function, but will increase
computation time during fitting.

optim_algorithm

Either "optim" or "nlminb", specifying which optimization algorithm to use
for maximum-likelihood estimation of the transition matrix. Only relevant if
transition_matrix==NULL.

optim_max_iterations

Maximum number of iterations (per fitting trial) allowed for optimizing the like-
lihood function.

optim_rel_tol Relative tolerance (stop criterion) for optimizing the likelihood function.
store_exponentials

Logical, specifying whether to pre-calculate and store exponentials of the tran-
sition matrix during calculation of ancestral likelihoods. This may reduce com-
putation time because each exponential is only calculated once, but will use up
more memory since all exponentials are stored. Only relevant if include_ancestral_likelihoods
is TRUE, otherwise exponentials are never stored.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

hsp_mk_model 287

Nthreads Number of parallel threads to use for running multiple fitting trials simultane-
ously. This only makes sense if your computer has multiple cores/CPUs and
Ntrials>1, and is only relevant if transition_matrix==NULL.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. Note that Nstates can be chosen to be larger than the number
of states observed in the tips of the present tree, to account for potential states not yet observed.
If the trait’s states are originally in some other format (e.g. characters or factors), you should map
them to a set of integers 1,..,Nstates. The order of states (if applicable) should be reflected in their
integer representation. For example, if your original states are "small", "medium" and "large" and
rate_model=="SUEDE", it is advised to represent these states as integers 1,2,3. You can easily map
any set of discrete states to integers using the function map_to_state_space.

This function allows the specification of the precise tip states (if these are known) using the vector
tip_states. Alternatively, if some tip states are only known in terms of a probability distribution,
you can pass these probability distributions using the matrix tip_priors. Note that exactly one of
the two arguments, tip_states or tip_priors, must be non-NULL. In either case, the presence of
NA in tip_states or in a row of tip_priors is interpreted as an absence of information about the
tip’s state (i.e. the tip has "hidden state").

Tips must be represented in tip_states or tip_priors in the same order as in tree$tip.label.
None of the input vectors or matrixes need include row or column names; if they do, however, they
are checked for consistency (if check_input==TRUE).

This method assumes that the tree is either complete (i.e. includes all species), or that the tree’s
tips represent a random subset of species that have been sampled independent of their state. The
function does not require that tip state knowledge is independent of tip state, provided that the
associated biases are known (provided via reveal_fractions). The rerooting method by Yang et
al (2015) is used to reconstruct the marginal ancestral state likelihoods for each node by treating the
node as a root and calculating its conditional scaled likelihoods. The state likelihoods of tips with
hidden states are calculated from those of the most recent ancestor with previously calculated state
likelihoods, using the exponentiated transition matrix along the connecting edges (essentially using
the rerooting method). Attention: The state likelihoods for tips with known states or with provided
priors are not modified, i.e. they are as provided in the input. In other words, for those tips the
returned state likelihoods should not be considered as posteriors in a Bayesian sense.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may
include multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations (i.e.
nodes with only one child).

Value

A list with the following elements:

success Logical, indicating whether HSP was successful. If FALSE, some return values
may be NULL.

Nstates Integer, specifying the number of modeled trait states.
transition_matrix

A numeric quadratic matrix of size Nstates x Nstates, containing the transition
rates of the Markov model. The [r,c]-th entry is the transition rate from state r to

288 hsp_mk_model

state c. Will be the same as the input transition_matrix, if the latter was not
NULL.

loglikelihood Log-likelihood of the Markov model. If transition_matrix was NULL in the
input, then this will be the log-likelihood maximized during fitting.

likelihoods A 2D numeric matrix, listing the probability of each tip and node being in
each state. Only included if include_likelihoods was TRUE. This matrix will
have (Ntips+Nnodes) rows and Nstates columns, where Nstates was either ex-
plicitly provided as an argument, or inferred from tip_states or tip_priors
(whichever was non-NULL). The rows in this matrix will be in the order in which
tips and nodes are indexed in the tree, i.e. rows 1,..,Ntips store the probabili-
ties for tips, while rows (Ntips+1),..,(Ntips+Nnodes) store the probabilities for
nodes. For example, likelihoods[1,3] will store the probability that tip 1 is
in state 3. Each row in this matrix will sum up to 1. Note that for tips with
known state or fully provided prior, the likelihoods will be unchanged, i.e. these
are not the posteriors in a Bayesian sense.

states Integer vector of length Ntips+Nnodes, with values in {1,..,Nstates}, specifying
the maximum-likelihood estimate of the state of each tip & node. Only included
if include_likelihoods was TRUE.

Author(s)

Stilianos Louca

References

Z. Yang, S. Kumar and M. Nei (1995). A new method for inference of ancestral nucleotide and
amino acid sequences. Genetics. 141:1641-1650.

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

hsp_max_parsimony, hsp_squared_change_parsimony, asr_mk_model, map_to_state_space

Examples

Not run:
generate random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a discrete trait
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
tip_states = simulate_mk_model(tree, Q)$tip_states
cat(sprintf("Simulated ER transition rate=%g\n",Q[1,2]))

print states for first 20 tips

hsp_nearest_neighbor 289

print(tip_states[1:20])

set half of the tips to unknown state
chose tips randomly, regardless of their state (no biases)
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via Mk model max-likelihood
results = hsp_mk_model(tree, tip_states, Nstates, rate_model="ER", Ntrials=2, Nthreads=2)
estimated_tip_states = max.col(results$likelihoods[1:Ntips,])

print Mk model fitting summary
cat(sprintf("Mk model: log-likelihood=%g\n",results$loglikelihood))
cat(sprintf("Universal (ER) transition rate=%g\n",results$transition_matrix[1,2]))

print estimated states for first 20 tips
print(estimated_tip_states[1:20])

End(Not run)

hsp_nearest_neighbor Hidden state prediction based on nearest neighbor.

Description

Predict unknown (hidden) character states of tips on a tree using nearest neighbor matching.

Usage

hsp_nearest_neighbor(tree, tip_states, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo".

tip_states A vector of length Ntips, specifying the state of each tip in the tree. Tip states
can be any valid data type (e.g., characters, integers, continuous numbers, and
so on). NA values denote unknown (hidden) tip states to be predicted.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

For each tip with unknown state, this function seeks the closest tip with known state, in terms of
patristic distance. The state of the closest tip is then used as a prediction of the unknown state. In
the case of multiple equal matches, the precise outcome is unpredictable (this is unlikely to occur
if edge lengths are continuous numbers, but may happen frequently if e.g. edge lengths are all of
unit length). This algorithm is arguably one of the crudest methods for predicting character states,
so use at your own discretion.

290 hsp_nearest_neighbor

Any NA entries in tip_states are interpreted as unknown states. If tree$edge.length is missing,
each edge in the tree is assumed to have length 1. The tree may include multifurcations (i.e. nodes
with more than 2 children) as well as monofurcations (i.e. nodes with only one child). Tips must be
represented in tip_states in the same order as in tree$tip.label. tip_states need not include
names; if names are included, however, they are checked for consistency with the tree’s tip labels
(if check_input==TRUE).

Value

A list with the following elements:

success Logical, indicating whether HSP was successful. If FALSE, some return values
may be NULL.

states Vector of length Ntips, listing the known and predicted state for each tip.
nearest_neighbors

Integer vector of length Ntips, listing for each tip the index of the nearest tip with
known state. Hence, nearest_neighbors[n] specifies the tip from which the
unknown state of tip n was inferred. If tip n had known state, nearest_neighbors[n]
will be n.

nearest_distances

Numeric vector of length Ntips, listing for each tip the patristic distance to the
nearest tip with known state. For tips with known state, distances will be zero.

Author(s)

Stilianos Louca

References

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

hsp_max_parsimony, hsp_mk_model,

Examples

Not run:
generate random tree
Ntips = 20
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a binary trait
Q = get_random_mk_transition_matrix(2, rate_model="ER")
tip_states = simulate_mk_model(tree, Q)$tip_states

print tip states
print(tip_states)

hsp_squared_change_parsimony 291

set half of the tips to unknown state
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via nearest neighbor
predicted_states = hsp_nearest_neighbor(tree, tip_states)$states

print predicted tip states
print(predicted_states)

End(Not run)

hsp_squared_change_parsimony

Hidden state prediction via squared-change parsimony.

Description

Reconstruct ancestral states of a continuous (numeric) trait for nodes and predict unknown (hidden)
states for tips on a tree using squared-change (or weighted squared-change) parsimony (Maddison
1991).

Usage

hsp_squared_change_parsimony(tree, tip_states, weighted=TRUE, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the state of each tip in the tree.
tip_states can include NA to indicate an unknown tip state that is to be pre-
dicted.

weighted Logical, specifying whether to weight transition costs by the inverted edge lengths
during ancestral state reconstruction. This corresponds to the "weighted squared-
change parsimony" reconstruction by Maddison (1991) for a Brownian motion
model of trait evolution.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

Any NA entries in tip_states are interpreted as unknown (hidden) states to be estimated. Prior to
ancestral state reconstruction, the tree is temporarily prunned, keeping only tips with known state.
The function then uses Maddison’s squared-change parsimony algorithm to reconstruct the globally
parsimonious state at each node (Maddison 1991). The states of tips with hidden state are set to

292 hsp_squared_change_parsimony

those of the most recent ancestor with reconstructed state, as described by Zaneveld and Thurber
(2014). This function has asymptotic time complexity O(Nedges). If tree$edge.length is miss-
ing, each edge in the tree is assumed to have length 1. This is the same as setting weighted=FALSE.
The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

This function is meant for reconstructing ancestral states in all nodes of a tree as well as predicting
the states of tips with an a priory unknown state. If the state of all tips is known and only ancestral
state reconstruction is needed, consider using the function asr_squared_change_parsimony for
improved efficiency.

Value

A list with the following elements:

states A numeric vector of size Ntips+Nnodes, listing the reconstructed state of each
tip and node. The entries in this vector will be in the order in which tips and
nodes are indexed in tree$edge.

total_sum_of_squared_changes

The total sum of squared changes, minimized by the (optionally weighted) squared-
change parsimony algorithm. This is equation 7 in (Maddison, 1991).

Author(s)

Stilianos Louca

References

W. P. Maddison (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Systematic Zoology. 40:304-314.

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

asr_squared_change_parsimony hsp_max_parsimony, hsp_mk_model, map_to_state_space

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree,

stationary_mean=0,

hsp_subtree_averaging 293

stationary_std=1,
decay_rate=0.001)$tip_states

print tip states
print(tip_states)

set half of the tips to unknown state
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via weighted SCP
estimated_states = hsp_squared_change_parsimony(tree, tip_states, weighted=TRUE)$states

print estimated tip states
print(estimated_states[1:Ntips])

hsp_subtree_averaging Hidden state prediction via subtree averaging.

Description

Reconstruct ancestral states of a continuous (numeric) trait for nodes and predict unknown (hidden)
states for tips on a tree using subtree averaging.

Usage

hsp_subtree_averaging(tree, tip_states, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states A numeric vector of size Ntips, specifying the state of each tip in the tree.
tip_states can include NA to indicate an unknown tip state that is to be pre-
dicted.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

Any NA entries in tip_states are interpreted as unknown (hidden) states to be estimated. For
each node the reconstructed state is set to the arithmetic average state of all tips with known state
and descending from that node. For each tip with hidden state and each node whose descending
tips all have hidden states, the state is set to the state of the closest ancestral node with known
or reconstructed state, while traversing from root to tips (Zaneveld and Thurber 2014). Note that
reconstructed node states are only local estimates, i.e. for each node the estimate is only based on
the tip states in the subtree descending from that node.

294 hsp_subtree_averaging

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE). This function has asymptotic time complexity O(Nedges).

This function is meant for reconstructing ancestral states in all nodes of a tree as well as predicting
the states of tips with an a priory unknown state. If the state of all tips is known and only ancestral
state reconstruction is needed, consider using the function asr_subtree_averaging for improved
efficiency.

Value

A list with the following elements:

success Logical, indicating whether HSP was successful.

states A numeric vector of size Ntips+Nnodes, listing the reconstructed state of each
tip and node. The entries in this vector will be in the order in which tips and
nodes are indexed in tree$edge.

Author(s)

Stilianos Louca

References

J. R. Zaneveld and R. L. V. Thurber (2014). Hidden state prediction: A modification of classic an-
cestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology.
5:431.

See Also

asr_subtree_averaging, hsp_squared_change_parsimony

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree,

stationary_mean=0,
stationary_std=1,
decay_rate=0.001)$tip_states

print tip states
print(as.vector(tip_states))

set half of the tips to unknown state
tip_states[sample.int(Ntips,size=as.integer(Ntips/2),replace=FALSE)] = NA

reconstruct all tip states via subtree averaging
estimated_states = hsp_subtree_averaging(tree, tip_states)$states

is_bifurcating 295

print estimated tip states
print(estimated_states[1:Ntips])

is_bifurcating Determine if a tree is bifurcating.

Description

This function determines if a tree is strictly bifurcating, i.e. each node has exactly 2 children. If a
tree has monofurcations or multifurcations, this function returns FALSE.

Usage

is_bifurcating(tree)

Arguments

tree A tree of class "phylo".

Details

This functions accepts rooted and unrooted trees, that may include monofurcations, bifurcations
and multifurcations.

Value

A logical, indicating whether the input tree is strictly bifurcating.

Author(s)

Stilianos Louca

Examples

generate random tree
Ntips = 10
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

check if the tree is bifurcating (as expected)
is_bifurcating(tree)

296 is_monophyletic

is_monophyletic Determine if a set of tips is monophyletic.

Description

Given a rooted phylogenetic tree and a set of focal tips, this function determines whether the tips
form a monophyletic group.

Usage

is_monophyletic(tree, focal_tips, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

focal_tips Either an integer vector or a character vector, listing the tips to be checked for
monophyly. If an integer vector, it should list tip indices (i.e. from 1 to Ntips).
If a character vector, it should list tip names; in that case tree$tip.label must
exist.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

Details

This function first finds the most recent common ancestor (MRCA) of the focal tips, and then checks
if all tips descending from that MRCA fall within the focal tip set.

Value

A logical, indicating whether the focal tips form a monophyletic set.

Author(s)

Stilianos Louca

See Also

get_mrca_of_set

join_rooted_trees 297

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

pick a random subset of focal tips
focal_tips = which(sample.int(2,size=Ntips,replace=TRUE)==1)

check if focal tips form a monophyletic group
is_monophyletic(tree, focal_tips)

join_rooted_trees Join two rooted trees.

Description

Given two rooted phylogenetic trees, place one tree (tree2) onto an edge of the other tree (tree1),
so that tree2 becomes a monophyletic group of the final joined tree. As a special case, this function
can join two trees at their roots, i.e. so that both are disjoint monophyletic clades of the final tree,
splitting at the new root.

Usage

join_rooted_trees(tree1,
tree2,
target_edge1,
target_edge_length1,
root_edge_length2)

Arguments

tree1 A rooted tree of class "phylo".

tree2 A rooted tree of class "phylo". This tree will become a monophyletic subclade
of the final joined tree.

target_edge1 Integer, edge index in tree1 onto which tree2 is to be joined. If <=0, then this
refers to the hypothetical edge leading into the root of tree1, in which case both
trees will become disjoint monophyletic subclades of the final joined tree.

target_edge_length1

Numeric, length of the edge segment in tree1 from the joining-point to the next
child node, i.e. how far from the child of target_edge1 should the joining
occur. If target_edge1<=0, then target_edge_length1 is the distance of the
root of tree1 from the final joined tree’s root.

root_edge_length2

Numeric, length of the edge leading into the root of tree2, i.e. the distance from
the joining point to the root of tree2.

298 join_rooted_trees

Details

The input trees may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). If any of the input trees does not have edge lengths (i.e.,
edge.length is NULL), then its edge lengths are assumed to all be 1.

The tips of the two input trees will become the tips of the final joined tree. The nodes of the two
input trees will become nodes of the final joined tree, however one additional node will be added at
the joining point. Tip labels and node labels (if available) of the joined tree are inheritted from the
two input trees.

Value

A list with the following elements:

tree A new rooted tree of class "phylo", representing the joined tree.
clade1_to_clade

Integer vector of length Ntips1+Nnodes1, mapping tip/node indices of the input
tree1 to tip/node indices in the final joined tree.

clade2_to_clade

Integer vector of length Ntips2+Nnodes2, mapping tip/node indices of the input
tree2 to tip/node indices in the final joined tree.

Author(s)

Stilianos Louca

See Also

split_tree_at_height

Examples

generate two random trees, include tip & node names
tree1 = generate_random_tree(list(birth_rate_intercept=1),

max_tips=10,
tip_basename="tip1.",
node_basename="node1.")$tree

tree2 = generate_random_tree(list(birth_rate_intercept=1),
max_tips=5,
tip_basename="tip2.",
node_basename="node2.")$tree

join trees at their roots
each subtree's root should have distance 1 from the new root
joined_tree = join_rooted_trees(tree1,

tree2,
target_edge1=0,
target_edge_length1=1,
root_edge_length2=1)$tree

loglikelihood_hbd 299

loglikelihood_hbd Galculate the log-likelihood of a homogenous birth-death model.

Description

Given a rooted ultrametric timetree, and a homogenous birth-death (HBD) model, i.e., with specia-
tion rate λ, extinction rate µ and sampling fraction ρ, calculate the likelihood of the tree under the
model. The speciation and extinction rates may be time-dependent. “Homogenous” refers to the
assumption that, at any given moment in time, all lineages exhibit the same speciation/extinction
rates (in the literature this is sometimes referred to simply as “birth-death model”). Alternatively to
λ and µ, the likelihood may also be calculated based on the pulled diversification rate (PDR; Louca
et al. 2018) and the product ρ(0) ·λ(0), or based on the pulled speciation rate (PSR). In either case,
the time-profiles of λ, µ, the PDR or the PSR are specified as piecewise polynomially functions
(splines), defined on a discrete grid of ages.

Usage

loglikelihood_hbd(tree,
oldest_age = NULL,
age0 = 0,
rho0 = NULL,
rholambda0 = NULL,
age_grid = NULL,
lambda = NULL,
mu = NULL,
PDR = NULL,
PSR = NULL,
splines_degree = 1,
condition = "auto",
max_model_runtime = -1,
relative_dt = 1e-3)

Arguments

tree A rooted ultrametric tree of class "phylo".

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

age0 Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rho and rholambda0 are defined. If

300 loglikelihood_hbd

age0>0, then rho refers to the sampling fraction at age age0, and rholambda0
to the product between rho and the speciation rate at age age0. See below for
more details.

rho0 Numeric between 0 (exclusive) and 1 (inclusive), specifying the sampling frac-
tion of the tree at age0, i.e. the fraction of lineages extant at age0 that are
included in the tree. Note that if rho0 < 1, lineages extant at age0 are assumed
to have been sampled randomly at equal probabilities. Can also be NULL, in
which case rholambda0 and PDR (see below) must be provided.

rholambda0 Strictly positive numeric, specifying the product of the sampling fraction and the
speciation rateat age0, units 1/time. Can be NULL, in which case rarefaction,
lambda and mu must be provided.

age_grid Numeric vector, listing discrete ages (time before present) on which either λ and
µ, or the PDR, are specified. Listed ages must be strictly increasing, and must
cover at least the full considered age interval (from age0 to oldest_age). Can
also be NULL or a vector of size 1, in which case the speciation rate, extinction
rate and PDR are assumed to be time-independent.

lambda Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing speciation rates (in units 1/time) at the ages listed in age_grid. Speci-
ation rates should be non-negative, and are assumed to vary polynomially be-
tween grid points (see argument splines_degree). If NULL, then either PDR and
rholambda0, or PSR alone, must be provided.

mu Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing extinction rates (in units 1/time)at the ages listed in age_grid. Ex-
tinction rates should be non-negative, and are assumed to vary polynomially
between grid points (see argument splines_degree). If NULL, then PDR and
rholambda0, or PSR alone, must be provided.

PDR Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing pulled diversification rates (in units 1/time) at the ages listed in age_grid.
PDRs can be negative or positive, and are assumed to vary polynomially be-
tween grid points (see argument splines_degree). If NULL, then either lambda
and mu, or PSR alone, must be provided.

PSR Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing pulled speciation rates (in units 1/time) at the ages listed in age_grid.
PSRs should be non-negative, and are assumed to vary polynomially between
grid points (see argument splines_degree). If NULL, then either lambda and
mu, or PDR and rholambda0, must be provided.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
lambda, mu, PDR and PSR (whichever applicable) between grid points in age_grid.
For example, if splines_degree==1, then the provided lambda, mu, PDR and
PSR are interpreted as piecewise-linear curves; if splines_degree==2 they are
interpreted as quadratic splines; if splines_degree==3 they are interpreted as
cubic splines. The splines_degree influences the analytical properties of the
curve, e.g. splines_degree==1 guarantees a continuous curve, splines_degree==2
guarantees a continuous curve and continuous derivative, and so on.

condition Character, either "crown", "stem", "auto" or "none" (the last one is only available
if lambda and mu are given), specifying on what to condition the likelihood.

loglikelihood_hbd 301

If "crown", the likelihood is conditioned on the survival of the two daughter
lineages branching off at the root. If "stem", the likelihood is conditioned on
the survival of the stem lineage. Note that "crown" really only makes sense
when oldest_age is equal to the root age, while "stem" is recommended if
oldest_age differs from the root age. "none" is usually not recommended and
is only available when lambda and mu are provided. If "auto", the condition is
chosen according to the recommendations mentioned earlier.

max_model_runtime

Numeric, maximum allowed runtime (in seconds) for evaluating the likelihood.
If the likelihood calculation takes longer than this (appoximate) threshold, it
halts and returns with an error. If negative (default), this option is ignored.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time. Smaller values increase integration accuracy
but increase computation time. Typical values are 0.0001-0.001. The default is
usually sufficient.

Details

If age0>0, the input tree is essentially trimmed at age0 (omitting anything younger than age0), and
the is likelihood calculated for the trimmed tree while shifting time appropriately. In that case, rho0
is interpreted as the sampling fraction at age0, i.e. the fraction of lineages extant at age0 that are
repreented in the tree. Similarly, rholambda0 is the product of the sampling fraction and λ at age0.

This function supports three alternative parameterizations of HBD models, either using the spe-
ciation and extinction rates and sampling fraction (λ, µ and ρ(τo) (for some arbitrary age τo), or
using the pulled diversification rate (PDR) and the product ρ(τo) · λ(τo (sampling fraction times
speciation rate at τo), or using the pulled speciation rate (PSR). The latter two options should be
interpreted as a parameterization of congruence classes, i.e. sets of models that have the same likeli-
hood, rather than specific models, since multiple combinations of λ, µ and ρ(τo) can have identical
PDRs, ρ(τo) · λ(τo) and PSRs (Louca and Pennell, in review).

For large trees the asymptotic time complexity of this function is O(Nips). The tree may include
monofurcations as well as multifurcations, and the likelihood formula accounts for those (i.e., as if
monofurcations were omitted and multifurcations were expanded into bifurcations).

Value

A named list with the following elements:

success Logical, indicating whether the calculation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) containing a de-
scription of the error; all other return variables may be undefined.

loglikelihood Numeric. If success==TRUE, this will be the natural logarithm of the likelihood
of the tree under the given model.

Author(s)

Stilianos Louca

302 loglikelihood_hbd

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (in review as of 2019)

See Also

simulate_deterministic_hbd

fit_hbd_model_parametric

fit_hbd_model_on_grid

fit_hbd_pdr_on_grid

fit_hbd_pdr_parametric

Examples

generate a random tree with constant rates
Ntips = 100
params = list(birth_rate_factor=1, death_rate_factor=0.2, rarefaction=0.5)
tree = generate_random_tree(params, max_tips=Ntips, coalescent=TRUE)$tree

get the loglikelihood for an HBD model with the same parameters that generated the tree
in particular, assuming time-independent speciation & extinction rates
LL = loglikelihood_hbd(tree,

rho0 = params$rarefaction,
age_grid = NULL, # assume time-independent rates
lambda = params$birth_rate_factor,
mu = params$death_rate_factor)

if(LL$success){
cat(sprintf("Loglikelihood for constant-rates model = %g\n",LL$loglikelihood))

}

get the likelihood for a model with exponentially decreasing (in forward time) lambda & mu
beta = 0.01 # exponential decay rate of lambda over time
age_grid = seq(from=0, to=100, by=0.1) # choose a sufficiently fine age grid
lambda = 1*exp(beta*age_grid) # define lambda on the age grid
mu = 0.2*lambda # assume similarly shaped but smaller mu
LL = loglikelihood_hbd(tree,

rho0 = params$rarefaction,
age_grid = age_grid,
lambda = lambda,
mu = mu)

if(LL$success){
cat(sprintf("Loglikelihood for exponential-rates model = %g\n",LL$loglikelihood))

}

map_to_state_space 303

map_to_state_space Map states of a discrete trait to integers.

Description

Given a list of states (e.g., for each tip in a tree), map the unique states to integers 1,..,Nstates,
where Nstates is the number of possible states. This function can be used to translate states that
are originally represented by characters or factors, into integer states as required by ancestral state
reconstruction and hidden state prediction functions in this package.

Usage

map_to_state_space(raw_states, fill_gaps=FALSE,
sort_order="natural")

Arguments

raw_states A vector of values (states), each of which can be converted to a character. This
vector can include the same value multiple times, for example if values represent
the trait’s states for tips in a tree. The vector may also include NA, for example
if they represent unknown states for some tree tips. NAs are omitted from the
state space.

fill_gaps Logical. If TRUE, then states are converted to integers using as.integer(as.character()),
and then all missing intermediate integer values are included as additional pos-
sible states. For example, if raw_states contained the values 2,4,6, then 3 and
5 are assumed to also be possible states.

sort_order Character, specifying the order in which raw_states should be mapped to ascend-
ing integers. Either "natural" or "alphabetical". If "natural", numerical parts of
characters are sorted numerically, e.g. as in "3"<"a2"<"a12"<"b1".

Details

Several ancestral state reconstruction and hidden state prediction algorithms in the castor pack-
age (e.g., asr_max_parsimony) require that the focal trait’s states are represented by integer in-
dices within 1,..,Nstates. These indices are then associated, afor example, with column and row
indices in the transition cost matrix (in the case of maximum parsimony reconstruction) or with
column indices in the returned matrix containing marginal ancestral state probabilities (e.g., in
asr_mk_model). The function map_to_state_space can be used to conveniently convert a set of
discrete states into integers, for use with the aforementioned algorithms.

Value

A list with the following elements:

Nstates Integer. Number of possible states for the trait, based on the unique values
encountered in raw_states (after conversion to characters). This may be larger
than the number of unique values in raw_states, if fill_gaps was set to TRUE.

304 mean_abs_change_scalar_ou

state_names Character vector of size Nstates, storing the original name (character version) of
each unique state. For example, if raw_states was c("b1","3","a12","a2","b1","a2",
NA) and sort_order=="natural", then Nstates will be 4 and state_names
will be c("3","a2","a12","b1").

state_values A numeric vector of size Nstates, providing the numerical value for each unique
state. For example, the states "3","a2","4.5" will be mapped to the numeric val-
ues 3, NA, 4.5. Note that this may not always be meaningful, depending on the
biological interpretation of the states.

mapped_states Integer vector of size equal to length(raw_states), listing the integer repre-
sentation of each value in raw_states. May also include NA, at those locations
where raw_states was NA.

name2index An integer vector of size Nstates, with names(name2index) set to state_names.
This vector can be used to map any new list of states (in character format) to their
integer representation. In particular, name2index[as.character(raw_states)]
is equal to mapped_states.

Author(s)

Stilianos Louca

Examples

generate a sequence of random states
unique_states = c("b","c","a")
raw_states = unique_states[sample.int(3,size=10,replace=TRUE)]

map to integer state space
mapping = map_to_state_space(raw_states)

cat(sprintf("Checking that original unique states is the same as the one inferred:\n"))
print(unique_states)
print(mapping$state_names)

cat(sprintf("Checking reversibility of mapping:\n"))
print(raw_states)
print(mapping$state_names[mapping$mapped_states])

mean_abs_change_scalar_ou

Compute the expected absolute change of an Ornstein-Uhlenbeck pro-
cess.

Description

Given a scalar Ornstein-Uhlenbeck process at stationarity, compute the expected absolute net change
over a specific time interval. In other words, ifX(t) is the process at time t, compute the conditional
expectation of |X(t) −X(0)| given that X(0) is randomly drawn from the stationary distribution.
This quantity may be used as a measure for the speed at which a continuous trait evolves over time.

mean_abs_change_scalar_ou 305

Usage

mean_abs_change_scalar_ou(stationary_mean,
stationary_std,
decay_rate,
delta,
rel_error = 0.001,
Nsamples = NULL)

Arguments

stationary_mean

Numeric, the stationary mean of the OU process, i.e., its equilibrium (µ).

stationary_std Positive numeric, the stationary standard deviation of the OU process. Note that
this is σ/

√
2λ, where σ is the volatility.

decay_rate Positive numeric, the decay rate or "rubber band" parameter of the OU process
(λ).

delta Positive numeric, the time step for which to compute the expected absolute
change.

rel_error Positive numeric, the relative tolerable standard estimation error (relative to the
true mean absolute displacement).

Nsamples Integer, number of Monte Carlo samples to use for estimation. If NULL, this is
determined automatically based on the desired accuracy (rel_error).

Details

The scalar OU process is a continuous-time stochastic process that satisfies the following stochastic
differential equation:

dX = λ · (µ−X) dt+ σ dW,

where W is a Wiener process (aka. "standard Brownian Motion"), µ is the equilibrium, σ is the
volatility and λ is the decay rate. The OU process is commonly used to model the evolution of
a continuous trait over time. The decay rate λ alone is not a proper measure for how fast a trait
changes over time (despite being erroneously used for this purpose in some sudies), as it only
measures how fast the trait tends to revert to µ when it is far away from µ. Similarly, the volatility σ
alone is not a proper measure of evolutionary rate, because it only describes how fast a trait changes
when it is very close to the equilibrium µ, where the tendency to revert is negligible and the process
behaves approximately as a Brownian Motion.

This function uses Monte Carlo integration to estimate the expected absolute change, by repeat-
edly sampling start values X(0) from the OU’s stationary distribution, computing the conditional
expected absolute change given the sampled start value, and then averaging those conditional ex-
pectations.

Value

A non-negative numeric, specifying the expected absolute change of the OU process.

306 merge_nodes_to_multifurcations

Author(s)

Stilianos Louca

See Also

simulate_ou_model

Examples

compute the expected absolute change of an OU process after 10 time units
expected_abs_change = mean_abs_change_scalar_ou(stationary_mean=5,

stationary_std=1,
decay_rate=0.1,
delta=10)

merge_nodes_to_multifurcations

Merge specific nodes into multifurcations.

Description

Given a rooted tree, merge one or more nodes “upwards” into their parent nodes, thus effectively
generating multifurcations. Multiple generations of nodes (i.e., successive branching points) can be
merged into a single "absorbing ancestor".

Usage

merge_nodes_to_multifurcations(tree,
nodes_to_merge,
merge_with_parents = FALSE,
keep_ancestral_ages = FALSE)

Arguments

tree A rooted tree of class "phylo".

nodes_to_merge Integer vector or character vector, listing nodes in the tree that should be merged
with their parents (if merge_with_parents=TRUE) or with their children (if
merge_with_parents=FALSE). If an integer vector, it must contain values in
1,..,Nnodes. If a character vector, it must list node labels, and the tree itself
must also include node labels.

merge_with_parents

Logical, specifying whether the nodes listed in nodes_to_merge should be
merged with their parents. If FALSE, the specified nodes will be merged with
their children (whenever these are not tips).

merge_nodes_to_multifurcations 307

keep_ancestral_ages

Logical, specifying whether the generated multifurcations should have the same
age as the absorbing ancestor. If FALSE, then the age of a multifurcation will
be the average of the absorbing ancestor’s age and the ages of its merged child
nodes (but constrained from below by the ages of non-merged descendants to
avoid negative edge lengths). If TRUE, then the ages of multifurcations will be
biased towards the root, since their age will be that of the absorbing ancestor.

Details

All tips in the input tree are kept and retain their original indices, however the returned tree will
include fewer nodes and edges. Edge and node indices may change. When a node is merged into
its parent, the incoming edge is lost, and the parent’s age remains unchanged.

Nodes are merged in order from root to tips. Hence, if a node B is merged into ("absorbed by")
its parent node A, and child node C is merged into node B, then effectively C ends up merged into
node A (node A is the "absorbing ancestor").

If tree$edge.length is missing, then all edges in the input tree are assumed to have length 1.

Value

A list with the following elements:

tree A new tree of class "phylo". The number of nodes in this tree, Nnodes_new, will
generally be lower than of the input tree.

new2old_node Integer vector of length Nnodes_new, mapping node indices in the new tree to
node indices in the old tree. Note that nodes merged with their parents are not
represented in this list.

old2new_node Integer vector of length Nnodes, mapping node indices in the old tree to node
indices in the new tree. Nodes merged with their parents (and thus missing from
the new tree) will have value 0.

Nnodes_removed Integer. Number of nodes removed from the tree, due to being merged into their
parents.

Nedges_removed Integer. Number of edges removed from the tree.

Author(s)

Stilianos Louca

See Also

multifurcations_to_bifurcations, collapse_monofurcations

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1), max_tips=Ntips)$tree

merge a few nodes with their parents,

308 merge_short_edges

thus obtaining a multifurcating tree
nodes_to_merge = c(1,3,4)
new_tree = merge_nodes_to_multifurcations(tree, nodes_to_merge)$tree

print summary of old and new tree
cat(sprintf("Old tree has %d nodes\n",tree$Nnode))
cat(sprintf("New tree has %d nodes\n",new_tree$Nnode))

merge_short_edges Eliminate short edges in a tree by merging nodes into multifurcations.

Description

Given a rooted phylogenetic tree and an edge length threshold, merge nodes/tips into multifurcations
when their incoming edges are shorter than the threshold.

Usage

merge_short_edges(tree,
edge_length_epsilon = 0,
force_keep_tips = TRUE,
new_tip_prefix = "ex.node.tip.")

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

edge_length_epsilon

Non-negative numeric, specifying the maximum edge length for an edge to be
considered “short” and thus to be eliminated. Typically 0 or some small positive
number.

force_keep_tips

Logical. If TRUE, then tips are always kept, even if their incoming edges are
shorter than edge_length_epsilon. If FALSE, then tips with short incoming
edges are removed from the tree; in that case some nodes may become tips.

new_tip_prefix Character or NULL, specifying the prefix to use for new tip labels stemming from
nodes. Only relevant if force_keep_tips==FALSE. If NULL, then labels of tips
stemming from nodes will be the node labels from the original tree (in this case
the original tree should include node labels).

Details

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as
mono-furcations (i.e. nodes with only one child). Whenever a short edge is eliminated, the edges
originating from its child are elongated according to the short edge’s length. The corresponding
grand-children become children of the short edge’s parent. Short edges are eliminated in a depth-
first-search manner, i.e. traversing from the root to the tips.

merge_short_edges 309

Note that existing monofurcations are retained. If force_keep_tips==FALSE, then new monofur-
cations may also be introduced due to tips being removed.

This function is conceptually similar to the function ape::di2multi.

Value

A list with the following elements:

tree A new rooted tree of class "phylo", containing the (potentially multifurcating)
tree.

new2old_clade Integer vector of length equal to the number of tips+nodes in the new tree,
with values in 1,..,Ntips+Nnodes, mapping tip/node indices of the new tree to
tip/node indices in the original tree.

new2old_edge Integer vector of length equal to the number of edges in the new tree, with val-
ues in 1,..,Nedges, mapping edge indices of the new tree to edge indices in the
original tree.

Nedges_removed Integer. Number of edges that have been eliminated.

Author(s)

Stilianos Louca

See Also

multifurcations_to_bifurcations

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_factor=1),max_tips=Ntips)$tree

set some edge lengths to zero
tree$edge.length[sample.int(n=Ntips, size=10, replace=FALSE)] = 0

print number of edges
cat(sprintf("Original tree has %d edges\n",nrow(tree$edge)))

eliminate any edges of length zero
merged = merge_short_edges(tree, edge_length_epsilon=0)$tree

print number of edges
cat(sprintf("New tree has %d edges\n",nrow(merged$edge)))

310 model_adequacy_hbd

model_adequacy_hbd Check if a birth-death model adequately explains a timetree.

Description

Given a rooted ultrametric timetree and a homogenous birth-death model, check if the model ad-
equately explains various aspects of the tree, such as the branch length and node age distributions
and other test statistics. The function uses bootstrapping to simulate multiple hypothetical trees
according to the model and then compares the distribution of those trees to the original tree. This
function may be used to quantify the "goodness of fit" of a birth-death model to a timetree.

Usage

model_adequacy_hbd(tree,
models,
splines_degree = 1,
extrapolate = FALSE,
Nbootstraps = 1000,
Nthreads = 1)

Arguments

tree A rooted ultrametric timetree of class "phylo".
models Either a single HBD model or a list of HBD models, specifying the pool

of models from which to randomly draw bootstraps. Every model should
itself be a named list with some or all of the following elements:

ages: Numeric vector, specifying discrete ages (times before present) in
ascending order, on which the pulled speciation rate will be specified. Age
increases from tips to root; the youngest tip in the input tree has age 0. The
age grid must cover the present-day (age 0) and the root

•• PSR: Numeric vector of size NG, listing the pulled speciation rate (PSR)
of the HBD model at the corresponding ages. Between grid points, the
PSR is assumed to either be constant (if splines_degree=0), or linearly (if
splines_degree=1) or quadratically (if splines_degree=2) or cubically
(if splines_degree=3). To calculate the PSR of an HBD model based on
the speciation and extinction rate, see simulate_deterministic_hbd.

splines_degree Integer, one of 0, 1, 2 or 3, specifying the polynomial degree of the PSR between
age-grid points. For example, splines_degree=0 means piecewise constant,
splines_degree=1 means piecewise linear and so on.

extrapolate Logical, specifying whether to extrapolate the model variables λ, µ, ψ and κ (as
constants) beyond the provided age grid all the way to stem_age and end_age
if needed.

Nbootstraps Integer, the number of bootstraps (simulations) to perform for calculating sta-
tistical significances. A larger number will increase the accuracy of estimated
statistical significances.

model_adequacy_hbd 311

Nthreads Integer, number of parallel threads to use for bootstrapping. Note that on Win-
dows machines this option is ignored.

Details

In addition to model selection, the adequacy of any chosen model should also be assessed in abso-
lute terms, i.e. not just relative to other competing models (after all, all considered models might
be bad). This function essentially determines how probable it is for hypothetical trees generated by
a candidate model to resemble the tree at hand, in terms of various test statistics (such as the histor-
ically popular "gamma" statistic, or the Colless tree imbalance). In particular, the function uses a
Kolmogorov-Smirnov test to check whether the probability distributions of edge lengths and node
ages in the tree resemble those expected under the model. All statistical significances are calculated
using bootstrapping, i.e. by simulating trees from the provided model with the same number of tips
and the same root age as the original tree.

Note that even if an HBD model appears to adequately explain a given timetree, this does not mean
that the model even approximately resembles the true diversification history (i.e., the true speciation
and extinction rates) that generated the tree (Louca and Pennell 2020). Hence, it is generally more
appropriate to say that a given model "congruence class" (or PSR) rather than a specific model
(speciation rate, extinction rate, and sampling fraction) explains the tree.

This function requires that the HBD model (or more precisely, its congruence class) be defined in
terms of the PSR. If your model is defined in terms of speciation/extinction rates and a sampling
fraction, or if your model’s congruence class is defined in terms of the pulled diversification rate
(PDR) and the product ρλo, then you can use simulate_deterministic_hbd to first calculate the
corresponding PSR.

Value

A named list with the following elements:

success Logical, indicating whether the model evaluation was successful. If FALSE, then
an additional return variable, error, will contain a description of the error; in
that case all other return variables may be undefined. Note that success does
not say whether the model explains the tree, but rather whether the computation
was performed without errors.

Nbootstraps Integer, the number of bootstraps used.

tree_gamma Numeric, gamma statistic (Pybus and Harvey 2000) of the original tree.
bootstrap_mean_gamma

Numeric, mean gamma statistic across all bootstrap trees.
bootstrap_std_gamma

Numeric, standard deviation of the gamma statistic across all bootstrap trees.

Pgamma Numeric, two-sided statistical significance of the tree’s gamma statistic under
the provided null model, i.e. the probability that abs(bootstrap_mean_gamma-tree_gamma)
would be as large as observed.

RESgamma Numeric, relative effect size of the tree’s gamma statistic compared to the pro-
vided null model, i.e. (tree_gamma-bootstrap_mean_gamma)/abs(bootstrap_mean_gamma).

SESgamma Numeric, standardized effect size of the tree’s gamma statistic compared to the
provided null model, i.e. (tree_gamma-bootstrap_mean_gamma)/bootstrap_std_gamma.

312 model_adequacy_hbd

tree_Colless Numeric, Colless imbalance statistic (Shao and Sokal, 1990) of the original tree.
bootstrap_mean_Colless

Numeric, mean Colless statistic across all bootstrap trees.
bootstrap_std_Colless

Numeric, standard deviation of the Colless statistic across all bootstrap trees.

PColless Numeric, two-sided statistical significance of the tree’s Colless statistic under
the provided null model, i.e. the probability that abs(bootstrap_mean_Colless-tree_Colless)
would be as large as observed.

RESColless Numeric, relative effect size of the tree’s Colless statistic compared to the pro-
vided null model, i.e. (tree_Colless-bootstrap_mean_Colless)/abs(bootstrap_mean_Colless).

SESColless Numeric, standardized effect size of the tree’s Colless statistic compared to the
provided null model, i.e. (tree_Colless-bootstrap_mean_Colless)/bootstrap_std_Colless.

tree_Sackin Numeric, Sackin statistic (Sackin, 1972) of the original tree.
bootstrap_mean_Sackin

Numeric, mean Sackin statistic across all bootstrap trees.
bootstrap_std_Sackin

Numeric, standard deviation of the Sackin statistic across all bootstrap trees.

PSackin Numeric, two-sided statistical significance of the tree’s Sackin statistic under the
provided null model, i.e. the probability that abs(bootstrap_mean_Sackin-tree_Sackin)
would be as large as observed.

RESSackin Numeric, relative effect size of the tree’s Sackin statistic compared to the pro-
vided null model, i.e. (tree_Sackin-bootstrap_mean_Sackin)/abs(bootstrap_mean_Sackin).

SESSackin Numeric, standardized effect size of the tree’s Sackin statistic compared to the
provided null model, i.e. (tree_Sackin-bootstrap_mean_Sackin)/bootstrap_std_Sackin.

tree_Blum Numeric, Blum statistic (Blum and Francois, 2006) of the original tree.
bootstrap_mean_Blum

Numeric, mean Blum statistic across all bootstrap trees.
bootstrap_std_Blum

Numeric, standard deviation of the Blum statistic across all bootstrap trees.

PBlum Numeric, two-sided statistical significance of the tree’s Blum statistic under the
provided null model, i.e. the probability that abs(bootstrap_mean_Blum-tree_Blum)
would be as large as observed.

RESBlum Numeric, relative effect size of the tree’s Blum statistic compared to the provided
null model, i.e. (tree_Blum-bootstrap_mean_Blum)/abs(bootstrap_mean_Blum).

SESBlum Numeric, standardized effect size of the tree’s Blum statistic compared to the
provided null model, i.e. (tree_Blum-bootstrap_mean_Blum)/bootstrap_std_Blum.

tree_edgeKS Numeric, Kolmogorov-Smirnov (KS) statistic of the original tree’s edge lengths,
i.e. the estimated maximum difference between the tree’s and the model’s (esti-
mated) cumulative distribution function of edge lengths.

bootstrap_mean_edgeKS

Numeric, mean KS statistic of the bootstrap trees’ edge lengths.
bootstrap_std_edgeKS

Numeric, standard deviation of the KS statistic of the bootstrap trees’ edge
lengths.

model_adequacy_hbd 313

PedgeKS Numeric, the one-sided statistical significance of the tree’s edge-length KS statis-
tic, i.e. the probability that the KS statistic of any tree generated by the model
would be larger than the original tree’s KS statistic. A low value means that the
probability distribution of edge lengths in the original tree differs strongly from
that expected based on the model.

RESedgeKS Numeric, relative effect size of the tree’s edge-length KS statistic compared to
the provided null model, i.e. (tree_edgeKS-bootstrap_mean_edgeKS)/abs(bootstrap_mean_edgeKS).

SESedgeKS Numeric, standardized effect size of the tree’s edge-length KS statistic compared
to the provided null model, i.e. (tree_edgeKS-bootstrap_mean_edgeKS)/bootstrap_std_edgeKS.

tree_nodeKS Numeric, Kolmogorov-Smirnov (KS) statistic of the original tree’s node ages
(divergence times), i.e. the estimated maximum difference between the tree’s
and the model’s (estimated) cumulative distribution function of node ages.

bootstrap_mean_nodeKS

Numeric, mean KS statistic of the bootstrap trees’ node ages.
bootstrap_std_nodeKS

Numeric, standard deviation of the KS statistic of the bootstrap trees’ node ages.

PnodeKS Numeric, the one-sided statistical significance of the tree’s node-age KS statis-
tic, i.e. the probability that the KS statistic of any tree generated by the model
would be larger than the original tree’s KS statistic. A low value means that the
probability distribution of node ages in the original tree differs strongly from
that expected based on the model.

RESnodeKS Numeric, relative effect size of the tree’s node-age KS statistic compared to the
provided null model, i.e. (tree_nodeKS-bootstrap_mean_nodeKS)/abs(bootstrap_mean_nodeKS).

SESnodeKS Numeric, standardized effect size of the tree’s node-age KS statistic compared to
the provided null model, i.e. (tree_nodeKS-bootstrap_mean_nodeKS)/bootstrap_std_nodeKS.

tree_sizeKS Numeric, Kolmogorov-Smirnov (KS) statistic of the original tree’s node sizes
(number of descending tips per node), i.e. the estimated maximum difference
between the tree’s and the model’s (estimated) cumulative distribution function
of node sizes.

bootstrap_mean_sizeKS

Numeric, mean KS statistic of the bootstrap trees’ node sizes.
bootstrap_std_sizeKS

Numeric, standard deviation of the KS statistic of the bootstrap trees’ node sizes.

PsizeKS Numeric, the one-sided statistical significance of the tree’s node-size KS statis-
tic, i.e. the probability that the KS statistic of any tree generated by the model
would be larger than the original tree’s KS statistic. A low value means that the
probability distribution of node sizes in the original tree differs strongly from
that expected based on the model.

RESsizeKS Numeric, relative effect size of the tree’s node-size KS statistic compared to the
provided null model, i.e. (tree_sizeKS-bootstrap_mean_sizeKS)/abs(bootstrap_mean_sizeKS).

SESsizeKS Numeric, standardized effect size of the tree’s node-size KS statistic compared
to the provided null model, i.e. (tree_sizeKS-bootstrap_mean_sizeKS)/bootstrap_std_sizeKS.

statistical_tests

Data frame, listing the above statistical test results in a more compact format
(one test statistic per row).

314 model_adequacy_hbd

LTT_ages Numeric vector, listing ages (time before present) on which the tree’s LTT will
be defined.

tree_LTT Numeric vector of the same length as LTT_ages, listing the number of lineages
in the tree at every age in LTT_ages.

bootstrap_LTT_CI

Named list containing the elements means, medians, CI50lower, CI50upper,
CI95lower and CI95upper. Each of these elements is a numeric vector of length
equal to LTT_ages, listing the mean or a specific percentile of LTTs of bootstrap
trees at every age in LTT_ages. For example, bootstrap_LTT_CI$CI95lower[10]
and bootstrap_LTT_CI$CI95upper[10] define the lower and upper bound, re-
spectively, of the 95% confidence interval of LTTs generated by the model at
age LTT_ages[10].

fraction_LTT_in_CI95

Numeric, fraction of the tree’s LTT contained within the equal-tailed 95%-
confidence interval of the distribution of LTT values predicted by the model.
For example, a value of 0.5 means that at half of the time points between the
present-day and the root, the tree’s LTT is contained with the 95%-CI of pre-
dicted LTTs.

Author(s)

Stilianos Louca

References

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

O. G. Pybus and P. H. Harvey (2000). Testing macro-evolutionary models using incomplete molec-
ular phylogenies. Proceedings of the Royal Society of London. Series B: Biological Sciences.
267:2267-2272.

M. J. Sackin (1972). "Good" and "Bad" Phenograms. Systematic Biology. 21:225-226.

K.T. Shao, R. R. Sokal (1990). Tree Balance. Systematic Biology. 39:266-276.

M. G. B. Blum and O. Francois (2006). Which random processes describe the Tree of Life? A
large-scale study of phylogenetic tree imbalance. Systematic Biology. 55:685-691.

See Also

simulate_deterministic_hbd, model_adequacy_hbds

Examples

generate a tree
tree = castor::generate_tree_hbd_reverse(Ntips = 50,

lambda = 1,
mu = 0.5,
rho = 1)$trees[[1]]

root_age = castor::get_tree_span(tree)$max_distance

model_adequacy_hbds 315

define & simulate a somewhat different BD model
model = simulate_deterministic_hbd(LTT0 = 50,

oldest_age = root_age,
lambda = 1.5,
mu = 0.5,
rho0 = 1)

compare the tree to the model
adequacy = model_adequacy_hbd(tree,

models = model,
Nbootstraps = 100,
Nthreads = 2)

if(!adequacy$success){
cat(sprintf("Adequacy test failed: %s\n",adequacy$error))

}else{
print(adequacy$statistical_tests)

}

model_adequacy_hbds Check if a birth-death-sampling model adequately explains a timetree.

Description

Given a rooted timetree and a homogenous birth-death-sampling model (e.g., as used in molecular
epidemiology), check if the model adequately explains various aspects of the tree, such as the
branch length and node age distributions and other test statistics. The function uses bootstrapping
to simulate multiple hypothetical trees according to the model and then compares the distribution of
those trees to the original tree. This function may be used to quantify the "goodness of fit" of a birth-
death-sampling model to a timetree. For background on the HBDS model see the documentation
for generate_tree_hbds.

Usage

model_adequacy_hbds(tree,
models,
splines_degree = 1,
extrapolate = FALSE,
Nbootstraps = 1000,
max_sim_attempts = 1000,
Nthreads = 1,
max_extant_tips = NULL,
max_model_runtime = NULL)

Arguments

tree A rooted timetree of class "phylo".

316 model_adequacy_hbds

models Either a single HBDS model or a list of HBDS models, specifying the pool
of models from which to randomly draw bootstraps. Every model should
itself be a named list with some or all of the following elements:

stem_age: Numeric, the age (time before present) at which the HBDS pro-
cess started. If NULL, this is automatically set to the input tree’s root age.

•• end_age : Numeric, the age (time before present) at which the HBDS pro-
cess halted. This will typically be 0 (i.e., at the tree’s youngest tip), however
it may also be negative if the process actually halted after the youngest tip
was sampled.

• ages: Numeric vector, specifying discrete ages (times before present) in
ascending order, on which all model variables (e.g., λ, µ and ψ) will be
specified. Age increases from tips to root; the youngest tip in the input tree
has age 0. The age grid must cover stem_age and end_age.

• lambda: Numeric vector of the same length as ages, listing the specia-
tion rate (λ) of the HBDS model at the corresponding ages. Between grid
points, the speciation rate is assumed to either be constant (if splines_degree=0),
or linearly (if splines_degree=1) or quadratically (if splines_degree=2)
or cubically (if splines_degree=3).

• mu: Numeric vector of the same length as ages, listing the extinction rate
(µ) of the HBDS model at the corresponding ages. Between grid points,
the extinction rate is assumed to either be constant (if splines_degree=0),
or linearly (if splines_degree=1) or quadratically (if splines_degree=2)
or cubically (if splines_degree=3). Note that in epidemiological models
µ usually corresponds to the recovery rate plus the death rate of infected
hosts. If mu is not included, it is assumed to be zero.

• psi: Optional numeric vector of the same length as ages, listing the Pois-
sonian sampling rate (µ) of the HBDS model at the corresponding ages.
Between grid points, the sampling rate is assumed to either be constant (if
splines_degree=0), or linearly (if splines_degree=1) or quadratically
(if splines_degree=2) or cubically (if splines_degree=3). If psi is not
included, it is assumed to be zero.

• kappa: Optional numeric vector of the same length as ages, listing the
retention probability upon sampling (κ) of the HBDS model at the corre-
sponding ages. Between grid points, the retention probability is assumed to
either be constant (if splines_degree=0), or linearly (if splines_degree=1)
or quadratically (if splines_degree=2) or cubically (if splines_degree=3).
Note that since kappa are actual probabilities, they must all be between 0
and 1. If kappa is not included, it is assumed to be zero.

• CSA_ages: Numeric vector listing the ages (time before present) of concen-
trated sampling attempts, in ascending order. If empty or NULL, no concen-
trated sampling attempts are included, i.e. all sampling is assumed to be
done according to the Poissonian rate ψ.

• CSA_probs: Optional numeric vector, of the same length as CSA_ages,
specifying the sampling probabilities for each concentrated sampling at-
tempt listed in CSA_ages. Hence, a lineage extant at age CSA_ages[k] has
probability CSA_probs[k] of being sampled. Note that since CSA_probs

model_adequacy_hbds 317

are actual probabilities, they must all be between 0 and 1. CSA_probs must
be provided if and only if CSA_ages is provided.

• CSA_kappas: Optional numeric vector, of the same length as CSA_ages,
specifying the retention probability upon sampling for each concentrated
sampling attempt listed in CSA_ages. Note that since CSA_kappas are ac-
tual probabilities, they must all be between 0 and 1. CSA_kappas must be
provided if and only if CSA_ages is provided.

If you are assessing the adequacy of a single model with specific parameters,
then models can be a single model. If you want to assess the adequacy of a
distribution of models, such as sampled from the posterior distribution during a
Bayesian analysis, models should list those posterior models.

splines_degree Integer, one of 0, 1, 2 or 3, specifying the polynomial degree of the model param-
eters λ, µ, ψ and κ between age-grid points. For example, splines_degree=0
means piecewise constant, splines_degree=1 means piecewise linear and so
on.

extrapolate Logical, specifying whether to extrapolate the model variables λ, µ, ψ and κ (as
constants) beyond the provided age grid all the way to stem_age and end_age
if needed.

Nbootstraps Integer, the number of bootstraps (simulations) to perform for calculating sta-
tistical significances. A larger number will increase the accuracy of estimated
statistical significances.

max_sim_attempts

Integer, maximum number of simulation attempts per bootstrap, before giving
up. Multiple attempts may be needed if the HBDS model has a high probability
of leading to extinction early on.

Nthreads Integer, number of parallel threads to use for bootstrapping. Note that on Win-
dows machines this option is ignored.

max_extant_tips

Integer, optional maximum number of extant tips per simulation. A simulation
is aborted (and that bootstrap iteration skipped) if the number of extant tips
exceeds this threshold. Use this to avoid occasional explosions of runtimes, for
example due to very large generated trees.

max_model_runtime

Numeric, optional maximum computation time (in seconds) to allow for each
HBDS model simulation (per bootstrap). Use this to avoid occasional explo-
sions of runtimes, for example due to very large generated trees. Aborted simu-
lations will be omitted from the bootstrap statistics. If NULL or <=0, this option
is ignored.

Details

In addition to model selection, the adequacy of any chosen model should also be assessed in absolute
terms, i.e. not just relative to other competing models (after all, all considered models might be
bad). This function essentially determines how probable it is for hypothetical trees generated by a
candidate model (or a distribution of candidate models) to resemble the tree at hand, in terms of
various test statistics. In particular, the function uses a Kolmogorov-Smirnov test to check whether
the probability distributions of edge lengths and node ages in the tree resemble those expected

318 model_adequacy_hbds

under the provided models. All statistical significances are calculated using bootstrapping, i.e. by
simulating trees from the provided models. For every bootstrap, a model is randomly chosen from
the provided models list.

Note that even if an HBDS model appears to adequately explain a given timetree, this does not
mean that the model even approximately resembles the true diversification history (i.e., the true
speciation, extinction and sampling rates) that generated the tree (Louca and Pennell 2020). Hence,
it is generally more appropriate to say that a given model "congruence class" rather than a specific
model explains the tree.

Note that here "age" refers to time before present, i.e. age increases from tips to roots and the
youngest tip in the input tree has age 0. In some situations the process that generated the tree (or
which is being compared to the tree) might have halted after the last tip was sampled, in which case
end_age should be negative. Similarly, the process may have started prior to the tree’s root (e.g.,
sampled tips coalesce at a later time than when the monitoring started), in which case stem_age
should be greater than the root’s age.

For convenience, it is possible to specify a model without providing an explicit age grid (i.e., omit-
ting ages); in such a model λ, µ, ψ and κ are assumed to be time-independent, and hence lambda,
mu, psi and kappa must be provided as single numerics (or not provided at all).

Value

A named list with the following elements:

success Logical, indicating whether the model evaluation was successful. If FALSE, then
an additional return variable, error, will contain a description of the error; in
that case all other return variables may be undefined. Note that success does
not say whether the model explains the tree, but rather whether the computation
was performed without errors.

Nbootstraps Integer, the number of bootstraps used.

tree_Ntips Integer, the number of tips in the original tree.
bootstrap_mean_Ntips

Numeric, mean number of tips in the bootstrap trees.

PNtips Numeric, two-sided statistical significance of the tree’s number of tips under the
provided null model, i.e. the probability that abs(bootstrap_mean_Ntips-tree_Ntips)
would be as large as observed.

tree_Colless Numeric, Colless imbalance statistic (Shao and Sokal, 1990) of the original tree.
bootstrap_mean_Colless

Numeric, mean Colless statistic across all bootstrap trees.

PColless Numeric, two-sided statistical significance of the tree’s Colless statistic under
the provided null model, i.e. the probability that abs(bootstrap_mean_Colless-tree_Colless)
would be as large as observed.

tree_Sackin Numeric, Sackin statistic (Sackin, 1972) of the original tree.
bootstrap_mean_Sackin

Numeric, median Sackin statistic across all bootstrap trees.

PSackin Numeric, two-sided statistical significance of the tree’s Sackin statistic under the
provided null model, i.e. the probability that abs(bootstrap_mean_Sackin-tree_Sackin)
would be as large as observed.

model_adequacy_hbds 319

tree_edgeKS Numeric, Kolmogorov-Smirnov (KS) statistic of the original tree’s edge lengths,
i.e. the estimated maximum difference between the tree’s and the model’s (esti-
mated) cumulative distribution function of edge lengths.

bootstrap_mean_edgeKS

Numeric, mean KS statistic of the bootstrap trees’ edge lengths.

PedgeKS Numeric, the one-sided statistical significance of the tree’s edge-length KS statis-
tic, i.e. the probability that the KS statistic of any tree generated by the model
would be larger than the original tree’s KS statistic. A low value means that the
probability distribution of edge lengths in the original tree differs strongly from
that expected based on the model.

tree_tipKS Numeric, Kolmogorov-Smirnov (KS) statistic of the original tree’s tip ages (sam-
pling times before present), i.e. the estimated maximum difference between the
tree’s and the model’s (estimated) cumulative distribution function of tip ages.

bootstrap_mean_tipKS

Numeric, mean KS statistic of the bootstrap trees’ tip ages.

PtipKS Numeric, the one-sided statistical significance of the tree’s tip-age KS statistic,
i.e. the probability that the KS statistic of any tree generated by the model
would be larger than the original tree’s KS statistic. A low value means that the
probability distribution of tip ages in the original tree differs strongly from that
expected based on the model.

tree_nodeKS Numeric, Kolmogorov-Smirnov (KS) statistic of the original tree’s node ages
(divergence times before present), i.e. the estimated maximum difference be-
tween the tree’s and the model’s (estimated) cumulative distribution function of
node ages.

bootstrap_mean_nodeKS

Numeric, mean KS statistic of the bootstrap trees’ node ages.

PnodeKS Numeric, the one-sided statistical significance of the tree’s node-age KS statis-
tic, i.e. the probability that the KS statistic of any tree generated by the model
would be larger than the original tree’s KS statistic. A low value means that the
probability distribution of node ages in the original tree differs strongly from
that expected based on the model.

statistical_tests

Data frame, listing the above statistical test results in a more compact format
(one test statistic per row).

LTT_ages Numeric vector, listing ages (time before present) on which the tree’s LTT will
be defined.

tree_LTT Numeric vector of the same length as LTT_ages, listing the number of lineages
in the tree at every age in LTT_ages.

bootstrap_LTT_CI

Named list containing the elements means, medians, CI50lower, CI50upper,
CI95lower and CI95upper. Each of these elements is a numeric vector of length
equal to LTT_ages, listing the mean or a specific percentile of LTTs of bootstrap
trees at every age in LTT_ages. For example, bootstrap_LTT_CI$CI95lower[10]
and bootstrap_LTT_CI$CI95upper[10] define the lower and upper bound, re-
spectively, of the 95% confidence interval of LTTs generated by the model at
age LTT_ages[10].

320 model_adequacy_hbds

fraction_LTT_in_CI95

Numeric, fraction of the tree’s LTT contained within the equal-tailed 95%-
confidence interval of the distribution of LTT values predicted by the model.
For example, a value of 0.5 means that at half of the time points between the
present-day and the root, the tree’s LTT is contained with the 95%-CI of pre-
dicted LTTs.

Author(s)

Stilianos Louca

References

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

O. G. Pybus and P. H. Harvey (2000). Testing macro-evolutionary models using incomplete molec-
ular phylogenies. Proceedings of the Royal Society of London. Series B: Biological Sciences.
267:2267-2272.

M. J. Sackin (1972). "Good" and "Bad" Phenograms. Systematic Biology. 21:225-226.

K.T. Shao, R. R. Sokal (1990). Tree Balance. Systematic Biology. 39:266-276.

See Also

simulate_deterministic_hbds, generate_tree_hbds, model_adequacy_hbd

Examples

Not run:
generate a tree based on a simple HBDS process
max_time = 10
gen = castor::generate_tree_hbds(max_time = max_time,

lambda = 1,
mu = 0.1,
psi = 0.1,
no_full_extinction = TRUE)

if(!gen$success) stop(sprintf("Could not generate tree: %s",gen$error))
tree = gen$tree
root_age = castor::get_tree_span(tree)$max_distance

determine age of the stem, i.e. when the HBDS process started
stem_age = gen$root_time + root_age

determine age at which the HBDS simulation was halted.
This might be slightly negative, e.g. if the process
halted after the last sampled tip
end_age = root_age - (gen$final_time-gen$root_time)

compare the tree to a slightly different model
model = list(stem_age = stem_age,

end_age = end_age,
lambda = 1.2,

multifurcations_to_bifurcations 321

mu = 0.1,
psi = 0.2)

adequacy = model_adequacy_hbds(tree,
models = model,
Nbootstraps = 100)

if(!adequacy$success){
cat(sprintf("Adequacy test failed: %s\n",adequacy$error))

}else{
print(adequacy$statistical_tests)

}

End(Not run)

multifurcations_to_bifurcations

Expand multifurcations to bifurcations.

Description

Eliminate multifurcations from a phylogenetic tree, by replacing each multifurcation with multiple
bifurcations.

Usage

multifurcations_to_bifurcations(tree, dummy_edge_length=0,
new_node_basename="node.",
new_node_start_index=NULL)

Arguments

tree A tree of class "phylo".
dummy_edge_length

Non-negative numeric. Length to be used for new (dummy) edges when break-
ing multifurcations into bifurcations. Typically this will be 0, but can also be a
positive number if zero edge lengths are not desired in the returned tree.

new_node_basename

Character. Name prefix to be used for added nodes (e.g. "node." or "new.node.").
Only relevant if the input tree included node labels.

new_node_start_index

Integer. First index for naming added nodes. Can also be NULL, in which case
this is set to Nnodes+1, where Nnodes is the number of nodes in the input tree.

Details

For each multifurcating node (i.e. with more than 2 children), all children but one will be placed on
new bifurcating nodes, connected to the original node through one or more dummy edges.

The input tree need not be rooted, however descendance from each node is inferred based on the
direction of edges in tree$edge. The input tree may include multifurcations (i.e. nodes with more

322 pick_random_tips

than 2 children) as well as monofurcations (i.e. nodes with only one child). Monofurcations are
kept in the returned tree.

All tips and nodes in the input tree retain their original indices, however the returned tree may
include additional nodes and edges. Edge indices may change.

If tree$edge.length is missing, then all edges in the input tree are assumed to have length 1. The
returned tree will include edge.length, with all new edges having length equal to dummy_edge_length.

Value

A list with the following elements:

tree A new tree of class "phylo", containing only bifurcations (and monofurcations,
if these existed in the input tree).

old2new_edge Integer vector of length Nedges, mapping edge indices in the old tree to edge
indices in the new tree.

Nnodes_added Integer. Number of nodes added to the new tree.

Author(s)

Stilianos Louca

See Also

collapse_monofurcations

Examples

generate a random multifurcating tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1), Ntips, Nsplits=5)$tree

expand multifurcations to bifurcations
new_tree = multifurcations_to_bifurcations(tree)$tree

print summary of old and new tree
cat(sprintf("Old tree has %d nodes\n",tree$Nnode))
cat(sprintf("New tree has %d nodes\n",new_tree$Nnode))

pick_random_tips Pick random subsets of tips on a tree.

Description

Given a rooted phylogenetic tree, this function picks random subsets of tips by traversing the tree
from root to tips, choosing a random child at each node until reaching a tip. Multiple random
independent subsets can be generated if needed.

pick_random_tips 323

Usage

pick_random_tips(tree,
size = 1,
Nsubsets = 1,
with_replacement = TRUE,
drop_dims = TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

size Integer. The size of each random subset of tips.

Nsubsets Integer. Number of independent subsets to pick.
with_replacement

Logical. If TRUE, each tip can be picked multiple times within a subset (i.e. are
"replaced" in the urn). If FALSE, tips are picked without replacement in each
subset. In that case, size must not be greater than the number of tips in the tree.

drop_dims Logical, specifying whether to return a vector (instead of a matrix) if Nsubsets==1.

Details

If with_replacement==TRUE, then each child of a node is equally probable to be traversed and each
tip can be included multiple times in a subset. If with_replacement==FALSE, then only children
with at least one descending tip not included in the subset remain available for traversal; each
available child of a node has equal probability to be traversed. In any case, it is always possible for
separate subsets to include the same tips.

This random sampling algorithm differs from a uniform sampling of tips at equal probabilities; in-
stead, this algorithm ensures that sister clades have equal probabilities to be picked (if with_replacement==TRUE
or if size«Ntips).

The time required by this function per random subset decreases with the number of subsets re-
quested.

Value

A 2D integer matrix of size Nsubsets x size, with each row containing indices of randomly picked
tips (i.e. in 1,..,Ntips) within a specific subset. If drop_dims==TRUE and Nsubsets==1, then a
vector is returned instead of a matrix.

Author(s)

Stilianos Louca

Examples

generate random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

324 place_tips_taxonomically

pick random tip subsets
Nsubsets = 100
size = 50
subsets = pick_random_tips(tree, size, Nsubsets, with_replacement=FALSE)

count the number of times each tip was picked in a subset ("popularity")
popularities = table(subsets)

plot histogram of tip popularities
hist(popularities,breaks=20,xlab="popularity",ylab="# tips",main="tip popularities")

place_tips_taxonomically

Place queries on a tree based on taxonomic identities.

Description

Given a rooted tree with associated tip & node taxonomies, as well as a list of query taxonomies,
place the queries on nodes of the tree based on taxonomic identity. Each query is placed at the
deepest possible node (furthest from the root in terms of splits) for which it is certain that the query
is a descendant of.

Usage

place_tips_taxonomically(tree,
query_labels,
query_taxonomies = NULL,
tip_taxonomies = NULL,
node_taxonomies = NULL,
tree_taxon_delimiter = ";",
query_taxon_delimiter = ";",
include_expanded_tree = TRUE)

Arguments

tree Rooted tree of class "phylo".

query_labels Character vector of length Nqueries, listing labels for the newly placed tips.
query_taxonomies

Optional character vector of length Nqueries, listing the taxonomic paths of the
queries. If NULL, it is assumed that query_labels are taxonomies.

tip_taxonomies Optional character vector of length Ntips, listing taxonomic paths for the tree’s
tips. If NULL, then tip labels are assumed to be tip taxonomies.

node_taxonomies

Optional character vector of length Nnodes, listing taxonomic paths for the tree’s
nodes. If NULL, then node labels are assumed to be node taxonomies.

read_fasta 325

tree_taxon_delimiter

Character, the delimiter between taxonomic levels in the tree’s tip & node tax-
onomies (e.g., ";" for SILVA taxonomies).

query_taxon_delimiter

Character, the delimiter between taxonomic levels in query_taxonomies.
include_expanded_tree

If TRUE, the expanded tree (i.e., including the placements) is returned as well, at
some computational cost. If FALSE, only the placement info is returned, but no
tree expansion is done.

Details

This function assumes that the tip & node taxonomies are somewhat consistent with each other and
with the tree’s topology.

Value

A named list with the following elements:

placement_nodes

Integer vector of length Nqueries, with values in 1,..,Nnodes, specifying for each
query the node on which it was placed. For queries that could not be placed on
the tree, the value 0 is used.

If include_expanded_tree was TRUE, the following additional elements are included:

tree Object of class "phylo", the extended tree constructed by adding the placements
on the original tree.

placed_tips Integer vector of length Nqueries, specifying which tips in the returned tree
correspond to placements. For queries that could not be placed on the tree, the
value 0 is used.

Author(s)

Stilianos Louca

See Also

expanded_tree_from_jplace

read_fasta Load a fasta file.

Description

Efficiently load headers & sequences from a fasta file.

326 read_fasta

Usage

read_fasta(file,
include_headers = TRUE,
include_sequences = TRUE,
truncate_headers_at = NULL)

Arguments

file A character, path to the input fasta file. This may be gzipped (with extension
.gz).

include_headers

Logical, whether to load the headers. If you don’t need the headers you can set
this to FALSE for efficiency.

include_sequences

Logical, whether to load the sequences. If you don’t need the sequences you can
set this to FALSE for efficiency.

truncate_headers_at

Optional character, needle at which to truncate headers. Everything at and after
the first instance of the needle will be removed from the headers.

Details

This function is a fast and simple fasta loader. Note that all sequences and headers are loaded into
memory at once.

Value

A named list with the following elements:

headers Character vector, listing the loaded headers in the order encountered. Only in-
cluded if include_headers was TRUE.

sequences Character vector, listing the loaded sequences in the order encountered. Only
included if include_sequences was TRUE.

Nlines Integer, number of lines encountered.

Nsequences Integer, number of sequences encountered.

Author(s)

Stilianos Louca

See Also

read_tree

read_tree 327

Examples

Not run:
load a gzipped fasta file
fasta = read_faste(file="myfasta.fasta.gz")

print the first sequence
cat(fasta$sequences[1])

End(Not run)

read_tree Load a tree from a string or file in Newick (parenthetic) format.

Description

Load a phylogenetic tree from a file or a string, in Newick (parenthetic) format. Any valid Newick
format is acceptable. Extended variants including edge labels and edge numbers are also supported.

Usage

read_tree(string = "",
file = "",
edge_order = "cladewise",
include_edge_lengths = TRUE,
look_for_edge_labels = FALSE,
look_for_edge_numbers = FALSE,
include_node_labels = TRUE,
underscores_as_blanks = FALSE,
check_label_uniqueness = FALSE,
interpret_quotes = FALSE,
trim_white = TRUE)

Arguments

string A character containing a single tree in Newick format. Can be used alternatively
to file.

file Character, a path to an input text file containing a single tree in Newick format.
Can be used alternatively to string.

edge_order Character, one of “cladewise” or “pruningwise”, specifying the order in which
edges should be listed in the returned tree. This does not influence the topology
of the tree or the tip/node labeling, it only affects the way edges are numbered
internally.

include_edge_lengths

Logical, specifying whether edge lengths (if available) should be included in the
returned tree.

328 read_tree

look_for_edge_labels

Logical, specifying whether edge labels may be present in the input tree. If
edge labels are found, they are included in the returned tree as a character vector
edge.label. Edge labels are sought inside square brackets, which are not part
of the standard Newick format but used by some tree creation software (Matsen
2012). If look_for_edge_labels==FALSE, square brackets are read verbatim
just like any other character.

look_for_edge_numbers

Logical, specifying whether edge numbers (non-negative integers) may be present
in the input tree. If edge numbers are found, they are included in the returned
tree as an integer vector edge.number. Edge numbers are sought inside curly
braces, which are not part of the standard Newick format but used by some tree
creation software (Matsen 2012). If look_for_edge_numbers==FALSE, curly
braces are read verbatim just like any other character.

include_node_labels

Logical, specifying whether node labels (if available) should be included in the
returned tree.

underscores_as_blanks

Logical, specifying whether underscores ("_") in tip and node labels should be
replaced by spaces (" "). This is common behavior in other tree parsers. In any
case, tip, node and edge labels (if available) are also allowed to contain explicit
whitespace (except for newline characters).

check_label_uniqueness

Logical, specifying whether to check if all tip labels are unique.
interpret_quotes

Logical, specifying whether to interpret quotes as delimiters of tip/node/edge
labels. If FALSE, then quotes are read verbatim just like any other character.

trim_white Logical, specifying whether to trim flanking whitespace from tip, node and edge
labels.

Details

This function is comparable to (but typically much faster than) the ape function read.tree. The
function supports trees with monofurcations and multifurcations, trees with or without tip/node
labels, and trees with or without edge lengths. The time complexity is linear in the number of edges
in the tree.

Either file or string must be specified, but not both. The tree may be arbitrarily split across
multiple lines, but no other non-whitespace text is permitted in string or in the input file. Flanking
whitespace (space, tab, newlines) is ignored.

Value

A single rooted phylogenetic tree in “phylo” format.

Author(s)

Stilianos Louca

reconstruct_past_diversification 329

References

Frederick A. Matsen et al. (2012). A format for phylogenetic placements. PLOS One. 7:e31009

See Also

write_tree

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=100)$tree

obtain a string representation of the tree in Newick format
Newick_string = write_tree(tree)

re-parse tree from string
parsed_tree = read_tree(Newick_string)

reconstruct_past_diversification

Reconstruct past diversification dynamics from a diversity time series.

Description

Given a time series of past diversities (coalescent or not), this function estimates instantaneous birth
(speciation) and death (extinction) rates that would lead to the observed diversity time series. The
function is based on a deterministic model (or the continuum limit of a stochastic cladogenic model),
in which instantaneous birth and death rates lead to a predictable growth of a tree (one new species
per birth event). The reconstruction is non-parametric, i.e. does not rely on fitting a parameterized
model. The reconstruction is only accurate in the deterministic limit, i.e. for high diversities where
the stochastic nature of the cladogenic process diminishes. Of particular importance is the case
where the time series is coalescent, i.e. represents the diversity (lineages-through-time) that would
be represented in a coalescent tree with extinctions.

Note: This function is included for legacy reasons mainly. In most cases users should instead use the
functions fit_hbd_model_on_grid and fit_hbd_model_parametric to fit birth-death models, or
the functions fit_hbd_pdr_on_grid, fit_hbd_pdr_parametric and fit_hbd_psr_on_grid to
fit BD model congruence classes (aka. “pulled variables”) to a tree.

Usage

reconstruct_past_diversification(times,
diversities,
birth_rates_pc = NULL,
rarefaction = NULL,
discovery_fractions = NULL,
discovery_fraction_slopes = NULL,
max_age = NULL,

330 reconstruct_past_diversification

coalescent = FALSE,
smoothing_span = 0,
smoothing_order = 1)

Arguments

times Numeric vector, listing the times at which diversities are given. Values must be
in ascending order.

diversities Numeric vector of the same size as times, listing diversities (coalescent or not)
at each time point.

birth_rates_pc Numeric vector of the same size as times, listing known or assumed per-capita
birth rates (speciation rates). Can also be of size 1, in which case the same per-
capita birth rate is assumed throughout. Alternatively if coalescent==TRUE,
then this vector can also be empty, in which case a constant per-capita birth rate
is assumed and estimated from the slope of the coalescent diversities at the last
time point. The last alternative is not available when coalescent==FALSE.

rarefaction Numeric between 0 and 1. Optional rarefaction fraction assumed for the diver-
sities at the very end. Set to 1 to assume no rarefaction was performed.

discovery_fractions

Numeric array of size Ntimes, listing the fractions of extant lineages represented
in the tree over time. Hence, discovery_fraction[t] is the probability that a
lineage at time times[t] with extant representatives will be represented in the
tree. Can be used as an alternative to rarefaction, for example if discovery of
extant species is non-random or phylogenetically biased. Experimental, so leave
this NULL if you don’t know what it means.

discovery_fraction_slopes

Numeric array of size Ntimes, listing the 1st derivative of discovery_fractions
(w.r.t. time) over time. If NULL, this will be estimated from discovery_fractions
via basic finite differences if needed. Experimental, so leave this NULL if you
don’t know what it means.

max_age Numeric. Optional maximum distance from the end time to be considered. If
NULL or <=0 or Inf, all provided time points are considered.

coalescent Logical, indicating whether the provided diversities are from a coalescent tree
(only including clades with extant representatives) or total diversities (extant
species at each time point).

smoothing_span Non-negative integer. Optional sliding window size (number of time points)
for smoothening the diversities time series via Savitzky-Golay-filter. If <=2, no
smoothing is done. Smoothening the time series can reduce the effects of noise
on the reconstructed diversity dynamics.

smoothing_order

Integer between 1 and 4. Polynomial order of the Savitzky-Golay smoothing
filter to be applied. Only relevant if smoothing_span>2. A value of 1 or 2 is
typically recommended.

reconstruct_past_diversification 331

Details

This function can be used to fit a birth-death model to a coalescent diversity time series Nc(τ)
at various ages τ , also known as “lineages-through-time” curve. The reconstruction of the total
diversity N(τ) is based on the following formulas:

E(τ) = 1 +
ν(τ)

β(τ)
,

N(τ) =
Nc

1− E(τ)
,

ν(τ) =
1

Nc(τ)

dNc(τ)

dτ

where E(τ) is the probability that a clade of size 1 at age τ went extinct by the end of the time
series and β is the per-capita birth rate. If the per-capita birth rate is not explicitly provided for
each time point (see argument birth_rate_pc), the function assumes that the per-capita birth rate
(speciation rate) is constant at all times. If birth_rates_pc==NULL and coalescent==TRUE, the
constant speciation rate is estimated as

β = −ν(0)
ρ
,

where ρ is the fraction of species kept after rarefaction (see argument rarefaction).

Assuming a constant speciation rate may or may not result in accurate estimates of past total diver-
sities and other quantities. If a time-varying speciation rate is suspected but not known, additional
information on past diversification dynamics may be obtained using modified (“pulled”) quanti-
ties that partly resemble the classical extinction rate, diversification rate and total diversity. Such
quantities are the “pulled diversification rate”:

η(τ) = δ(τ)− β(τ) +
1

β(τ)

dβ

dτ
,

the “pulled extinction rate”:

δp(τ) = δ(τ) + (βo − β(τ))− 1

β(τ)

dβ

dτ
,

and the “pulled total diversity”:

Np(τ) = N(τ) · βo
β(τ)

,

where βo is the provided or estimated (if not provided) speciation rate at the last time point. The
advantage of these quantities is that they can be estimated from the coalescent diversities (lineages-
through-time) without any assumptions on how β and δ varied over time. The disadvantage is that
they differ from their “non-pulled” quantities (β − δ, δ and N), in cases where β varied over time.

Value

A named list with the following elements:

success Logical, specifying whether the reconstruction was successful. If FALSE, the
remaining elements may not be defined.

332 reconstruct_past_diversification

Ntimes Integer. Number of time points for which reconstruction is returned.
total_diversities

Numeric vector of the same size as times, listing the total diversity at each time
point (number of extant lineages at each time point). If coalescent==FALSE,
then these are the same as the diversities passed to the function.

coalescent_diversities

Numeric vector of the same size as times, listing the coalescent diversities at
each time point (number of species with at least one extant descendant at the last
time point). If coalescent==TRUE, then these are the same as the diversities
passed to the function.

birth_rates Numeric vector of the same size as times, listing the estimated birth rates (spe-
ciation events per time unit).

death_rates Numeric vector of the same size as times, listing the estimated death rates (ex-
tinction events per time unit).

Psurvival Numeric vector of the same size as times, listing the estimated fraction of lin-
eages at each time point that eventually survive. Psurvival[i] is the probabil-
ity that a clade of size 1 at time times[i] will be extant by the end of the time
series. May be NULL in some cases.

Pdiscovery Numeric vector of the same size as times, listing the estimated fraction of lin-
eages at each time point that are eventually discovered, provided that they sur-
vive. Pdiscovery[i] is the probability that a clade of size 1 at time times[i]
that is extant by the end of the time series, will be discovered. May be NULL in
some cases.

Prepresentation

Numeric vector of the same size as times, listing the estimated fraction of lin-
eages at each time point that eventually survive and are discovered. Prepresentation[i]
is the probability that a clade of size 1 at time times[i] will be extant by the
end of the time series and visible in the coalescent tree after rarefaction. Note
that Prepresentation = Psurvival * Pdiscovery. May be NULL in some cases.

total_births Numeric, giving the estimated total number of birth events that occurred be-
tween times T-max_age and T, where T is the last time point of the time series.

total_deaths Numeric, giving the estimated total number of death events that occurred be-
tween times T-max_age and T, where T is the last time point of the time series.

last_birth_rate_pc

The provided or estimated (if not provided) speciation rate at the last time point.
This corresponds to the birth rate divided by the estimated true diversity (prior
to rarefaction) at the last time point.

last_death_rate_pc

The estimated extinction rate at the last time point. This corresponds to the death
rate divided by the estimated true diversity (prior to rarefaction) at the last time
point.

pulled_diversification_rates

Numeric vector of the same size as times, listing the estimated pulled diversifi-
cation rates.

pulled_extinction_rates

Numeric vector of the same size as times, listing the estimated pulled extinction
rates.

reconstruct_past_diversification 333

pulled_total_diversities

Numeric vector of the same size as times, listing the estimated pulled total
diversities.

Author(s)

Stilianos Louca

References

Louca et al (2018). Bacterial diversification through geological time. Nature Ecology & Evolution.
2:1458-1467.

See Also

generate_random_tree, fit_tree_model, count_lineages_through_time, fit_hbd_model_parametric,
fit_hbd_model_on_grid

Examples

###
EXAMPLE 1

Generate a coalescent tree
params = list(birth_rate_intercept = 0,

birth_rate_factor = 1,
birth_rate_exponent = 1,
death_rate_intercept = 0,
death_rate_factor = 0.05,
death_rate_exponent = 1.3,
rarefaction = 1)

simulation = generate_random_tree(params,max_time_eq=1,coalescent=TRUE)
tree = simulation$tree
time_span = simulation$final_time - simulation$root_time
cat(sprintf("Generated tree has %d tips, spans %g time units\n",length(tree$tip.label),time_span))

Calculate diversity time series from the tree
counter = count_lineages_through_time(tree, times=seq(0,0.99*time_span,length.out=100))

print coalescent diversities
print(counter$lineages)

reconstruct diversification dynamics based on diversity time series
results = reconstruct_past_diversification(counter$times,

counter$lineages,
coalescent = TRUE,
smoothing_span = 3,
smoothing_order = 1)

print reconstructed total diversities
print(results$total_diversities)

334 reconstruct_past_diversification

plot coalescent and reconstructed true diversities
matplot(x = counter$times,

y = matrix(c(counter$lineages,results$total_diversities), ncol=2, byrow=FALSE),
type = "b",
xlab = "time",
ylab = "# clades",
lty = c(1,2), pch = c(1,0), col = c("red","blue"))

legend("topleft",
legend = c("coalescent (simulated)","true (reconstructed)"),
col = c("red","blue"), lty = c(1,2), pch = c(1,0));

###
EXAMPLE 2

Generate a non-coalescent tree
params = list(birth_rate_intercept = 0,

birth_rate_factor = 1,
birth_rate_exponent = 1,
death_rate_intercept = 0,
death_rate_factor = 0.05,
death_rate_exponent = 1.3,
rarefaction = 1)

simulation = generate_random_tree(params,max_time_eq=1,coalescent=FALSE)
tree = simulation$tree
time_span = simulation$final_time - simulation$root_time
cat(sprintf("Generated tree has %d tips, spans %g time units\n",length(tree$tip.label),time_span))

Calculate diversity time series from the tree
counter = count_lineages_through_time(tree, times=seq(0,0.99*time_span,length.out=100))

print true diversities
print(counter$lineages)

reconstruct diversification dynamics based on diversity time series
results = reconstruct_past_diversification(counter$times,

counter$lineages,
birth_rates_pc = params$birth_rate_factor,
coalescent = FALSE,
smoothing_span = 3,
smoothing_order = 1)

print coalescent diversities
print(results$coalescent_diversities)

plot coalescent and reconstructed true diversities
matplot(x = counter$times,

y = matrix(c(results$coalescent_diversities,counter$lineages), ncol=2, byrow=FALSE),
type = "b",
xlab = "time",
ylab = "# clades",
lty = c(1,2), pch = c(1,0), col = c("red","blue"))

reorder_tree_edges 335

legend("topleft",
legend = c("coalescent (reconstructed)","true (simulated)"),
col = c("red","blue"), lty = c(1,2), pch = c(1,0));

reorder_tree_edges Reorder tree edges in preorder or postorder.

Description

Given a rooted tree, this function reorders the rows in tree$edge so that they are listed in preorder
(root–>tips) or postorder (tips–>root) traversal.

Usage

reorder_tree_edges(tree, root_to_tips=TRUE,
depth_first_search=TRUE,
index_only=FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

root_to_tips Logical, specifying whether to sort edges in preorder traversal (root–>tips),
rather than in postorder traversal (tips–>roots).

depth_first_search

Logical, specifying whether the traversal (or the reversed traversal, if root_to_tips
is FALSE) should be in depth-first-search format rather than breadth-first-search
format.

index_only Whether the function should only return a vector listing the reordered row in-
dices of the edge matrix, rather than a modified tree.

Details

This function does not change the tree structure, nor does it affect tip/node indices and names. It
merely changes the order in which edges are listed in the matrix tree$edge, so that edges are listed
in preorder or postorder traversal. Preorder traversal guarantees that each edge is listed before any
of its descending edges. Likewise, postorder guarantees that each edge is listed after any of its
descending edges.

With options root_to_tips=TRUE and depth_first_search=TRUE, this function is analogous to
the function reorder in the ape package with option order="cladewise".

The tree can include multifurcations (nodes with more than 2 children) as well as monofurcations
(nodes with 1 child). This function has asymptotic time complexity O(Nedges).

336 root_at_midpoint

Value

If index_only==FALSE, a tree object of class "phylo", with the rows in edge reordered such that
they are listed in direction root–>tips (if root_to_tips==TRUE) or tips–>root. The vector tree$edge.length
will also be updated in correspondence. Tip and node indices and names remain unchanged.

If index_only=TRUE, an integer vector (X) of size Nedges, listing the reordered row indices of
tree$edge, i.e. such that tree$edge[X,] would be the reordered edge matrix.

Author(s)

Stilianos Louca

See Also

get_tree_traversal_root_to_tips

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_factor=1), max_tips=100)$tree

get new tree with reordered edges
postorder_tree = reorder_tree_edges(tree, root_to_tips=FALSE)

End(Not run)

root_at_midpoint Root a tree at the midpoint node.

Description

Given a tree (rooted or unrooted), this function changes the direction of edges (tree$edge) such
that the new root satisfies a "midpoint"" criterion. The number of tips and the number of nodes
remain unchanged. The root can either be placed on one of the existing nodes (this node will be the
one whose maximum distance to any tip is minimized) or in the middle of one of the existing edges
(chosen to be in the middle of the longest path between any two tips).

Usage

root_at_midpoint(tree,
split_edge = TRUE,
update_indices = TRUE,
as_edge_counts = FALSE,
is_rooted = FALSE)

root_at_midpoint 337

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted (but see option
is_rooted).

split_edge Logical, specifying whether to place the new root in the middle of an edge (in
the middle of the longest path of any two tips), thereby creating a new node. If
FALSE, then the root will be placed on one of the existing nodes; note that the
resulting tree may no longer be bifurcating at the root.

update_indices Logical, specifying whether to update the node indices such that the new root is
the first node in the list, as is common convention. This will modify tree$node.label
(if it exists) and also the node indices listed in tree$edge. Note that this option
is only relevant if split_edge=FALSE; if split_edge=TRUE then update_indices
will always be assumed TRUE.

as_edge_counts Logical, specifying whether phylogenetic distances should be measured as cu-
mulative edge counts. This is the same if all edges had length 1.

is_rooted Logical, specifying whether the input tree can be assumed to be rooted. If you
are not certain that the tree is rooted, set this to FALSE.

Details

The midpoint rooting method performs best if the two most distant tips have been sampled at the
same time (for example, at the present) and if all lineages in the tree diverged at the same evolution-
ary rate. If the two most distant tips are sampled at very different times, for example if one or both
of them represent extinct species, then the midpoint method is not recommended.

The input tree may include an arbitrary number of incoming and outgoing edges per node (but only
one edge per tip), and the direction of these edges can be arbitrary. Of course, the undirected graph
defined by all edges must still be a valid tree. Only set is_rooted=TRUE if you are sure that the
input tree is rooted.

If update_indices==FALSE and split_edge=FALSE, then node indices remain unchanged. If
update_indices==TRUE (default) or split_edge=TRUE, then node indices are modified such that
the new root is the first node (i.e. with index Ntips+1 in edge and with index 1 in node.label), as
is common convention. Setting update_indices=FALSE (when split_edge=FALSE) reduces the
computation required for rerooting. Tip indices always remain unchanged.

The asymptotic time complexity of this function is O(Nedges).

Value

A tree object of class "phylo", with the edge element modified such that the maximum distance of
the root to any tip is minimized. The elements tip.label, edge.length and root.edge (if they
exist) are the same as for the input tree. If update_indices==FALSE, then the element node.label
will also remain the same.

Author(s)

Stilianos Louca

338 root_at_node

See Also

root_via_outgroup, root_at_node, root_in_edge, root_via_rtt

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

reroot the tree at its midpoint node
tree = root_at_midpoint(tree)

root_at_node Root a tree at a specific node.

Description

Given a tree (rooted or unrooted) and a specific node, this function changes the direction of edges
(tree$edge) such that the designated node becomes the root (i.e. has no incoming edges and
all other tips and nodes descend from it). The number of tips and the number of nodes remain
unchanged.

Usage

root_at_node(tree, new_root_node, update_indices=TRUE)

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted.
new_root_node Character or integer specifying the name or index, respectively, of the node to

be turned into root. If an integer, it must be between 1 and tree$Nnode. If a
character, it must be a valid entry in tree$node.label.

update_indices Logical, specifying whether to update the node indices such that the new root is
the first node in the list (as is common convention). This will modify tree$node.label
(if it exists) and also the node indices listed in tree$edge.

Details

The input tree may include an arbitrary number of incoming and outgoing edges per node (but only
one edge per tip), and the direction of these edges can be arbitrary. Of course, the undirected graph
defined by all edges must still be a valid tree. The asymptotic time complexity of this function is
O(Nedges).

If update_indices==FALSE, then node indices remain unchanged. If update_indices==TRUE (de-
fault), then node indices are modified such that the new root is the first node (i.e. with index Ntips+1
in edge and with index 1 in node.label). This is common convention, but it may be undesirable
if, for example, you are looping through all nodes in the tree and are only temporarily designating
them as root. Setting update_indices=FALSE also reduces the computation required for rerooting.
Tip indices always remain unchanged.

root_in_edge 339

Value

A tree object of class "phylo", with the edge element modified such that the node new_root_node is
root. The elements tip.label, edge.length and root.edge (if they exist) are the same as for the
input tree. If update_indices==FALSE, then the element node.label will also remain the same.

Author(s)

Stilianos Louca

See Also

root_via_outgroup, root_at_midpoint, root_in_edge, root_via_rtt

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

reroot the tree at the 20-th node
new_root_node = 20
tree = root_at_node(tree, new_root_node, update_indices=FALSE)

find new root index and compare with expectation
cat(sprintf("New root is %d, expected at %d\n",find_root(tree),new_root_node+Ntips))

root_in_edge Root a tree in the middle of an edge.

Description

Given a tree (rooted or unrooted), this function places the new root on some specified edge, effec-
tively adding one more node, one more edge and changing the direction of edges as required.

Usage

root_in_edge(tree,
root_edge,
location = 0.5,
new_root_name = "",
collapse_monofurcations = TRUE)

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted.

root_edge Integer, index of the edge into which the new root is to be placed. Must be
between 1 and Nedges.

340 root_in_edge

location Numeric, between 0 and 1, specifying the relative location along the root_edge
at which to place the root (relative to the edge length, measured from the up-
stream node). For example, location=0.5 means the root is placed in the mid-
dle of the edge, while location=0.1 means that it will be place closer to the
upstream node (i.e., closer to tree$edge[root_edge,1]).

new_root_name Character, specifying the node name to use for the new root. Only used if
tree$node.label is not NULL.

collapse_monofurcations

Logical, specifying whether monofurcations in the rerooted tree (e.g. stemming
from the old root) should be collapsed by connecting incoming edges with out-
going edges.

Details

The input tree may include an arbitrary number of incoming and outgoing edges per node (but only
one edge per tip), and the direction of these edges can be arbitrary. Of course, the undirected graph
defined by all edges must still be a valid tree.

The number of tips in the rerooted tree remains unchanged, the number of nodes is increased by 1.
Node indices may be modified. Tip indices always remain unchanged.

The asymptotic time complexity of this function is O(Nedges).

Value

A tree object of class "phylo", representing the (re-)rooted phylogenetic tree. The element tip.label
is the same as for the input tree, but all other elements may have changed.

Author(s)

Stilianos Louca

See Also

root_via_outgroup, root_at_node, root_at_midpoint, root_via_rtt

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

reroot the tree inside some arbitrary edge
focal_edge = 120
tree = root_in_edge(tree, focal_edge)

root_via_outgroup 341

root_via_outgroup Root a tree based on an outgroup tip.

Description

Given a tree (rooted or unrooted) and a specific tip (“outgroup”), this function changes the direction
of edges (tree$edge) such that the outgroup’s parent node becomes the root. The number of tips
and the number of nodes remain unchanged.

Usage

root_via_outgroup(tree, outgroup, update_indices=TRUE)

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted.

outgroup Character or integer specifying the name or index, respectively, of the outgroup
tip. If an integer, it must be between 1 and Ntips. If a character, it must be a
valid entry in tree$tip.label.

update_indices Logical, specifying whether to update the node indices such that the new root is
the first node in the list (as is common convention). This will modify tree$node.label
(if it exists) and also the node indices listed in tree$edge.

Details

The input tree may include an arbitrary number of incoming and outgoing edges per node (but only
one edge per tip), and the direction of these edges can be arbitrary. Of course, the undirected graph
defined by all edges must still be a valid tree. The asymptotic time complexity of this function is
O(Nedges).

If update_indices==FALSE, then node indices remain unchanged. If update_indices==TRUE (de-
fault), then node indices are modified such that the new root is the first node (i.e. with index Ntips+1
in edge and with index 1 in node.label). This is common convention, but it may be undesirable in
some cases. Setting update_indices=FALSE also reduces the computation required for rerooting.
Tip indices always remain unchanged.

Value

A tree object of class "phylo", with the edge element modified such that the outgroup tip’s parent
node is root. The elements tip.label, edge.length and root.edge (if they exist) are the same as
for the input tree. If update_indices==FALSE, then the element node.label will also remain the
same.

Author(s)

Stilianos Louca

342 root_via_rtt

See Also

root_at_node, root_at_midpoint, root_in_edge, root_via_rtt

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

reroot the tree using the 1st tip as outgroup
outgroup = 1
tree = root_via_outgroup(tree, outgroup, update_indices=FALSE)

find new root index
cat(sprintf("New root is %d\n",find_root(tree)))

root_via_rtt Root a tree via root-to-tip regression.

Description

Root a non-dated tree based on tip sampling times, by optimizing the goodness of fit of a linear root-
to-tip (RTT) regression (regression of tip times vs phylogenetic distances from root). The precise
objective optimized can be chosen by the user, typical choices being R2 or SSR (sum of squared
residuals). This method is only suitable for clades that are "measurably evolving". The input tree’s
edge lengths should be measured in substitutions per site.

Usage

root_via_rtt(tree,
tip_times,
objective = "R2",
force_positive_rate = FALSE,
Nthreads = 1,
optim_algorithm = "nlminb",
relative_error = 1e-9)

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted (the root placement
does not matter). Edge lengths should be measured in expected substitutions per
site.

tip_times Numeric vector of length Ntips, listing the sampling times of all tips. Time is
measured in forward direction, i.e., younger tips have a greater time value. Note
that if you originally have tip sampling dates, you will first need to convert these
to numeric values (for example decimal years or number of days since the start
of the experiment).

root_via_rtt 343

objective Character, specifying the goodness-of-fit measure to consider for the root-to-tip
regression. Must be one of correlation, R2 (fraction of explained variance) or
SSR (sum of squared residuals).

force_positive_rate

Logical, whether to force the mutation rate implied by the root placement to be
positive (>=0).

Nthreads Integer, number of parallel threads to use where applicable.

optim_algorithm

Character, the optimization algorithm to use. Must be either nlminb or optimize.

relative_error Positive numeric, specifying the acceptable relative error when optimizing the
goodness of fit. The precise interpretation depends on the optimization algo-
rithm used. Smaller values may increase accuracy but also computing time.

Value

A named list with the following elements (more may be added in the future):

tree The rooted tree. A tree object of class "phylo", with the same tips as the original
tree (not necessarily in the original order).

Author(s)

Stilianos Louca

See Also

root_via_outgroup, root_at_node, root_in_edge root_at_midpoint

Examples

generate a random tree
Ntips = 10
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

construct a vector with hypothetical tip sampling times
tip_times = c(2010.5, 2010.7, 2011.3, 2008.7,

2009.1, 2013.9, 2013.8, 2011.4,
2011.7, 2005.2)

reroot the tree via root-to-tip regression
tree = root_via_rtt(tree, tip_times=tip_times)

344 shift_clade_times

shift_clade_times Shift the time of specific nodes & tips.

Description

Given a rooted tree, shift the times (distance from root) of specific tips & nodes.

Usage

shift_clade_times(tree,
clades_to_shift,
time_shifts,
shift_descendants = FALSE,
negative_edge_lengths = "error")

Arguments

tree A rooted tree of class "phylo".

clades_to_shift

Integer or character vector, listing the tips and/or nodes whose time is to be
shifted. If an integer vector, values must correspond to indices and must be in
the range 1,..,Ntips+Nnodes. If a character vector, values must correspond to
tip and/or node labels in the tree; if node labels are listed, the tree must contain
node labels (attribute node.label).

time_shifts Numeric vector of the same length as clades_to_shift, specifying the time
shifts to apply to every tip/node listed in clades_to_shift. Values can be
negative (shift towards the root) or positive (shift away from the root).

shift_descendants

Logical, specifying whether to shift the entire descending subclade when shift-
ing a node. If FALSE, the descending tips & nodes retain their original time
(unless negative edges are created, see option negative_edge_lengths).

negative_edge_lengths

Character, specifying whether and how to fix negative edge lengths resulting
from excessive shifting. Must be either "error", "allow" (allow and don’t fix
negative edge lengths), "move_all_descendants" (move all descendants for-
ward as needed, to make the edge non-negative), "move_all_ancestors" (move
all ancestors backward as needed, to make the edge non-negative), "move_child"
(only move children to younger ages as needed, traversing the tree root->tips) or
"move_parent" (only move parents to older ages as needed, traversing the tree
tips->root). Note that "move_child" could result in tips moving, if an ances-
tral node is shifted too much towards younger ages. Similarly, "move_parent"
could result in the root moving towards an older age if some descendant was
shifted too far towards the root.

shift_clade_times 345

Details

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). The input tree does not need to be ultrametric, but edge
lengths are interpreted as time. If edge lengths are missing from the tree, it is assumed that each
edge has length 1.

All tips, nodes and edges are kept and indexed as in the input tree; the only thing that changes are
the edgen lengths.

Note that excessive shifting can result in negative edge lengths, which can be corrected in a variety
of alternative ways (see option negative_edge_lengths). However, to avoid changing the overall
span of the tree (root age and tip times) in an effort to fix negative edge lengths, you should generally
not shift a clade beyond the boundaries of the tree (i.e., resulting in a negative time or a time beyond
its descending tips).

Value

A list with the following elements:

success Logical, specifying whether the operation was successful. If FALSE, an addi-
tional variable error is returned, briefly specifying the error, but all other return
variables may be undefined.

tree A new rooted tree of class "phylo", representing the tree with shifted clade times.

Author(s)

Stilianos Louca

See Also

get_all_distances_to_root, trim_tree_at_height, get_tree_span

Examples

generate a random tree, include node names
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips=20,
node_basename="node.")$tree

shift a few nodes backward in time,
changing as few of the remaining node timings as possible
clades_to_shift = c("node.2", "node.5", "node.6")
time_shifts = c(-0.5, -0.2, -0.3)
new_tree = shift_clade_times(tree,

clades_to_shift,
time_shifts,
shift_descendants=FALSE,
negative_edge_lengths="move_parent")$tree

346 simulate_bm_model

simulate_bm_model Simulate a Brownian motion model for multivariate trait co-evolution.

Description

Given a rooted phylogenetic tree and a Brownian motion (BM) model for the co-evolution of one
or more continuous (numeric) unbounded traits, simulate random outcomes of the model on all
nodes and/or tips of the tree. The function traverses nodes from root to tips and randomly assigns a
multivariate state to each node or tip based on its parent’s previously assigned state and the specified
model parameters. The generated states have joint distributions consistent with the multivariate BM
model. Optionally, multiple independent simulations can be performed using the same model.

Usage

simulate_bm_model(tree, diffusivity=NULL, sigma=NULL,
include_tips=TRUE, include_nodes=TRUE,
root_states=NULL, Nsimulations=1, drop_dims=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

diffusivity Either NULL, or a single number, or a 2D quadratic positive definite symmetric
matrix of size Ntraits x Ntraits. Diffusivity matrix ("D") of the multivariate
Brownian motion model (in units trait^2/edge_length). The convention is that if
the root’s state is fixed, then the covariance matrix of a node’s state at distance
L from the root will be 2LD (see mathematical details below).

sigma Either NULL, or a single number, or a 2D matrix of size Ntraits x Ndegrees,
where Ndegrees refers to the degrees of freedom of the model. Noise-amplitude
coefficients of the multivariate Brownian motion model (in units trait/sqrt(edge_length)).
This can be used as an alternative way to specify the Brownian motion model
instead of through the diffusivity D. Note that sigma · σT = 2D (see mathe-
matical details below).

include_tips Include random states for the tips. If FALSE, no states will be returned for tips.

include_nodes Include random states for the nodes. If FALSE, no states will be returned for
nodes.

root_states Numeric matrix of size NR x Ntraits (where NR can be arbitrary), specifying
the state of the root for each simulation. If NR is smaller than Nsimulations,
values in root_states are recycled in rotation. If root_states is NULL or
empty, then the root state is set to 0 for all traits in all simulations.

Nsimulations Number of random independent simulations to perform. For each node and/or
tip, there will be Nsimulations random states generated.

drop_dims Logical, specifying whether singleton dimensions should be dropped from tip_states
and node_states, if Nsimulations==1 and/or Ntraits==1. If drop_dims==FALSE,
then tip_states and tip_nodes will always be 3D matrices.

simulate_bm_model 347

Details

The BM model for Ntraits co-evolving traits is defined by the stochastic differential equation

dX = σ · dW

where W is a multidimensional Wiener process with Ndegrees independent components and σ is a
matrix of size Ntraits x Ndegrees. Alternatively, the same model can be defined as a Fokker-Planck
equation for the probability density ρ:

∂ρ

∂t
=

∑
i,j

Dij
∂2ρ

∂xi∂xj
.

The matrix D is referred to as the diffusivity matrix (or diffusion tensor), and 2D = σ · σT . Either
diffusivity (D) or sigma (σ) may be used to specify the BM model, but not both.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may in-
clude multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations (i.e. nodes
with only one child). The asymptotic time complexity of this function is O(Nedges*Nsimulations*Ntraits).

Value

A list with the following elements:

tip_states Either NULL (if include_tips==FALSE), or a 3D numeric matrix of size Nsim-
ulations x Ntips x Ntraits. The [r,c,i]-th entry of this matrix will be the state
of trait i at tip c generated by the r-th simulation. If drop_dims==TRUE and
Nsimulations==1 and Ntraits==1, then tip_states will be a vector.

node_states Either NULL (if include_nodes==FALSE), or a 3D numeric matrix of size Nsim-
ulations x Nnodes x Ntraits. The [r,c,i]-th entry of this matrix will be the state
of trait i at node c generated by the r-th simulation. If drop_dims==TRUE and
Nsimulations==1 and Ntraits==1, then node_states will be a vector.

Author(s)

Stilianos Louca

See Also

simulate_ou_model, simulate_rou_model, simulate_mk_model, fit_bm_model

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=10000)$tree

Example 1: Scalar case
- - - - - - - - - - - - - - -
simulate scalar continuous trait evolution on the tree
tip_states = simulate_bm_model(tree, diffusivity=1)$tip_states

plot histogram of simulated tip states

348 simulate_deterministic_hbd

hist(tip_states, breaks=20, xlab="state", main="Trait probability distribution", prob=TRUE)

Example 2: Multivariate case
- - - - - - - - - - - - - - -
simulate co-evolution of 2 traits with 3 degrees of freedom
Ntraits = 2
Ndegrees = 3
sigma = matrix(stats::rnorm(n=Ntraits*Ndegrees, mean=0, sd=1), ncol=Ndegrees)
tip_states = simulate_bm_model(tree, sigma=sigma, drop_dims=TRUE)$tip_states

generate scatterplot of traits across tips
plot(tip_states[,1],tip_states[,2],xlab="trait 1",ylab="trait 2",cex=0.5)

simulate_deterministic_hbd

Simulate a deterministic homogenous birth-death model.

Description

Given a homogenous birth-death (HBD) model, i.e., with speciation rate λ, extinction rate µ and
sampling fraction ρ, calculate various deterministic features of the model backwards in time, such
as the total diversity over time. The speciation and extinction rates may be time-dependent. “Ho-
mogenous” refers to the assumption that, at any given moment in time, all lineages exhibit the same
speciation/extinction rates (in the literature this is sometimes referred to simply as “birth-death
model”; Morlon et al. 2011). “Deterministic” refers to the fact that all calculated properties are
completely determined by the model’s parameters (i.e. non-random), as if an infinitely large tree
was generated (aka. “continuum limit”).

Alternatively to λ, one may provide the pulled diversification rate (PDR; Louca et al. 2018) and the
speciation rate at some fixed age, λ(τo). Similarly, alternatively to µ, one may provide the ratio of
extinction over speciation rate, µ/λ. In either case, the time-profiles of λ, µ, µ/λ or the PDR are
specified as piecewise polynomial functions (splines), defined on a discrete grid of ages.

Usage

simulate_deterministic_hbd(LTT0,
oldest_age,
age0 = 0,
rho0 = 1,
age_grid = NULL,
lambda = NULL,
mu = NULL,
mu_over_lambda = NULL,
PDR = NULL,
lambda0 = NULL,
splines_degree = 1,
relative_dt = 1e-3,
allow_unreal = FALSE)

simulate_deterministic_hbd 349

Arguments

LTT0 The assumed number of sampled extant lineages at age0, defining the necessary
initial condition for the simulation. If the HBD model is supposed to describe a
specific timetree, then LTT0 should correspond to the number of lineages in the
tree ("lineages through time") at age age0.

oldest_age Strictly positive numeric, specifying the oldest time before present (“age”) to
include in the simulation.

age0 Non-negative numeric, specifying the age at which LTT0, lambda0 and rho are
given. Typically this will be 0, i.e., corresponding to the present.

rho0 Numeric between 0 (exclusive) and 1 (inclusive), specifying the sampling frac-
tion of the tree at age0, i.e. the fraction of lineages extant at age0 that are
included in the tree (aka. "rarefaction"). Note that if rho0<1, lineages extant at
age0 are assumed to have been sampled randomly at equal probabilities. Can
also be NULL, in which case rho0=1 is assumed.

age_grid Numeric vector, listing discrete ages (time before present) on which either λ and
µ, or the PDR and µ, are specified. Listed ages must be strictly increasing, and
must cover at least the full considered age interval (from age0 to oldest_age).
Can also be NULL or a vector of size 1, in which case the speciation rate, extinc-
tion rate and PDR are assumed to be time-independent.

lambda Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing speciation rates (λ, in units 1/time) at the ages listed in age_grid. Spe-
ciation rates should be non-negative, and are assumed to vary polynomially
between grid points (see argument splines_degree). If NULL, then PDR and
lambda0 must be provided.

mu Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing extinction rates (µ, in units 1/time) at the ages listed in age_grid. Ex-
tinction rates should be non-negative, and are assumed to vary polynomially be-
tween grid points (see argument splines_degree). Either mu or mu_over_lambda
must be provided, but not both.

mu_over_lambda Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing the ratio of extinction rates over speciation rates (µ/λ) at the ages listed
in age_grid. These ratios should be non-negative, and are assumed to vary
polynomially between grid points (see argument splines_degree). Either mu
or mu_over_lambda must be provided, but not both.

PDR Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing pulled diversification rates (in units 1/time) at the ages listed in age_grid.
PDRs can be negative or positive, and are assumed to vary polynomially be-
tween grid points (see argument splines_degree). If NULL, then lambda must
be provided.

lambda0 Non-negative numeric, specifying the speciation rate (in units 1/time) at age0.
Either lambda0 or lambda must be provided, but not both.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
lambda, mu and PDR between grid points in age_grid. For example, if splines_degree==1,
then the provided lambda, mu and PDR are interpreted as piecewise-linear curves;
if splines_degree==2 they are interpreted as quadratic splines; if splines_degree==3

350 simulate_deterministic_hbd

they are interpreted as cubic splines. The splines_degree influences the ana-
lytical properties of the curve, e.g. splines_degree==1 guarantees a continu-
ous curve, splines_degree==2 guarantees a continuous curve and continuous
derivative, and so on.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time. Smaller values increase integration accuracy
but increase computation time. Typical values are 0.0001-0.001. The default is
usually sufficient.

allow_unreal Logical, specifying whether HBD models with unrealistic parameters (e.g., neg-
ative µ) should be supported. This may be desired for example when examining
model congruence classes with negative µ.

Details

This function supports the following alternative parameterizations of HBD models:

• Using the speciation rate λ and extinction rate µ.

• Using the speciation rate λ and the ratio µ/λ.

• Using the pulled diversification rate (PDR), the extinction rate and the speciation rate given at
some fixed age0 (i.e. lambda0).

• Using the PDR, the ratio µ/λ and the speciation rate at some fixed age0.

The PDR is defined as PDR = λ−µ+ λ−1dλ/dτ , where τ is age (time before present). To avoid
ambiguities, only one of the above parameterizations is accepted at a time. The sampling fraction
at age0 (i.e., rho0) should always be provided; setting it to NULL is equivalent to setting it to 1.

Note that in the literature the sampling fraction usually refers to the fraction of lineages extant at
present-day that have been sampled (included in the tree); this present-day sampling fraction is
then used to parameterize birth-death cladogenic models. The sampling fraction can however be
generalized to past times, by defining it as the probability that a lineage extant at any given time is
included in the tree. The simulation function presented here allows for specifying this generalized
sampling fraction at any age of choice, not just present-day.

The simulated LTT refers to a hypothetical tree sampled at age age_grid[1], i.e. LTT(t) will be
the number of lineages extant at age t that survived until age age_grid[1] and have been sampled,
given that the fraction of sampled extant lineages at age0 is rho0. Similarly, the returned Pextinct(t)
(see below) is the probability that a lineage extant at age t would not survive until age_grid[1].
The same convention is used for the returned variables Pmissing, shadow_diversity, PER, PSR,
SER and PND.

Value

A named list with the following elements:

success Logical, indicating whether the calculation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) providing a de-
scription of the error; all other return variables may be undefined.

ages Numerical vector of size NG, listing discrete ages (time before present) on
which all returned time-curves are specified. Listed ages will be in ascending

simulate_deterministic_hbd 351

order, will cover exactly the range age_grid[1] - oldest_age, may be irregu-
larly spaced, and may be finer than the original provided age_grid. Note that
ages[1] corresponds to the latest time point (closer to the tips), while ages[NG]
corresponds to the oldest time point (oldest_age).

total_diversity

Numerical vector of size NG, listing the predicted (deterministic) total diversity
(number of extant species, denoted N) at the ages given in ages[].

shadow_diversity

Numerical vector of size NG, listing the predicted (deterministic) “shadow di-
versity” at the ages given in ages[]. The shadow diversity is defined as Ns =
N · ρ(τo)λ(τo)/λ, where τo is age0.

Pmissing Numeric vector of size NG, listing the probability that a lineage, extant at a given
age, will be absent from the tree either due to extinction or due to incomplete
sampling.

Pextinct Numeric vector of size NG, listing the probability that a lineage, extant at a given
age, will be fully extinct at present. Note that always Pextinct<=Pmissing.

LTT Numeric vector of size NG, listing the number of lineages represented in the tree
at any given age, also known as “lineages-through-time” (LTT) curve. Note that
LTT at age0 will be equal to LTT, and that values in LTT will be non-increasing
with age.

lambda Numeric vector of size NG, listing the speciation rate (in units 1/time) at the
ages given in ages[].

mu Numeric vector of size NG, listing the extinction rate (in units 1/time) at the
ages given in ages[].

diversification_rate

Numeric vector of size NG, listing the net diversification rate (λ−µ) at the ages
given in ages[].

PDR Numeric vector of size NG, listing the pulled diversification rate (PDR, in units
1/time) at the ages given in ages[].

PND Numeric vector of size NG, listing the pulled normalized diversity (PND, in
units 1/time) at the ages given in ages[]. The PND is defined as PND =
(N/N(τo)) · λ(τo)/λ.

SER Numeric vector of size NG, listing the “shadow extinction rate” (SER, in units
1/time) at the ages given in ages[]. The SER is defined as SER = ρ(τo)λ(τo)−
PDR.

PER Numeric vector of size NG, listing the “pulled extinction rate” (PER, in units
1/time) at the ages given in ages[]. The PER is defined as SER = λ(τo) −
PDR (Louca et al. 2018).

PSR Numeric vector of size NG, listing the “pulled speciation rate” (PSR, in units
1/time) at the ages given in ages[]. The PSR is defined as PSR = λ · (1 −
Pmissing).

rholambda0 Non-negative numeric, specifying the product of the sampling fraction and the
speciation rate at age0, ρ · λ(τo).

352 simulate_deterministic_hbds

Author(s)

Stilianos Louca

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

See Also

loglikelihood_hbd

Examples

define an HBD model with exponentially decreasing speciation/extinction rates
Ntips = 1000
beta = 0.01 # exponential decay rate of lambda over time
oldest_age= 10
age_grid = seq(from=0,to=oldest_age,by=0.1) # choose a sufficiently fine age grid
lambda = 1*exp(beta*age_grid) # define lambda on the age grid
mu = 0.2*lambda # assume similarly shaped but smaller mu

simulate deterministic HBD model
simulation = simulate_deterministic_hbd(LTT0 = Ntips,

oldest_age = oldest_age,
rho0 = 0.5,
age_grid = age_grid,
lambda = lambda,
mu = mu)

plot deterministic LTT
plot(x = simulation$ages, y = simulation$LTT, type='l',

main='dLTT', xlab='age', ylab='lineages')

simulate_deterministic_hbds

Simulate a deterministic homogenous birth-death-sampling model.

Description

Given a homogenous birth-death-sampling (HBDS) model, i.e., with speciation rate λ, extinction
rate µ, continuous (Poissonian) sampling rate ψ and retention probability κ, calculate various deter-
ministic features of the model backwards in time, such as the total population size and the LTT over
time. Continuously sampled lineages are kept in the pool of extant lineages at probability κ. The
variables λ, µ, ψ and κ may depend on time. In addition, the model can include concentrated sam-
pling attempts at a finite set of discrete time points t1, .., tm. “Homogenous” refers to the assump-
tion that, at any given moment in time, all lineages exhibit the same speciation/extinction/sampling

simulate_deterministic_hbds 353

rates and retention proabbility. Every HBDS model is thus defined based on the values that λ, µ,
ψ and κ take over time, as well as the sampling probabilities ψ1, .., ψm and retention probabilities
κ1, .., κm during the concentrated sampling attempts. Special cases of this model are sometimes
known as “birth-death-skyline plots” in the literature (Stadler 2013). In epidemiology, these models
are often used to describe the phylogenies of viral strains sampled over the course of the epidemic.
A “concentrated sampling attempt” is a brief but intensified sampling period that lasted much less
than the typical timescales of speciation/extinction. “Deterministic” refers to the fact that all calcu-
lated properties are completely determined by the model’s parameters (i.e. non-random), as if an
infinitely large tree was generated (aka. “continuum limit”). The time-profiles of λ, µ, ψ and κ are
specified as piecewise polynomial curves (splines), defined on a discrete grid of ages.

Usage

simulate_deterministic_hbds(age_grid = NULL,
lambda = NULL,
mu = NULL,
psi = NULL,
kappa = NULL,
splines_degree = 1,
CSA_ages = NULL,
CSA_probs = NULL,
CSA_kappas = NULL,
requested_ages = NULL,
age0 = 0,
N0 = NULL,
LTT0 = NULL,
ODE_relative_dt = 0.001,
ODE_relative_dy = 1e-4)

Arguments

age_grid Numeric vector, listing discrete ages (time before present) on which either λ and
µ, or the PDR and µ, are specified. Listed ages must be strictly increasing, and
must cover at least the full considered age interval (from age0 to oldest_age).
Can also be NULL or a vector of size 1, in which case the speciation rate, extinc-
tion rate and PDR are assumed to be time-independent.

lambda Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing speciation rates (λ, in units 1/time) at the ages listed in age_grid. Spe-
ciation rates should be non-negative, and are assumed to vary polynomially be-
tween grid points (see argument splines_degree).

mu Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing extinction rates (µ, in units 1/time) at the ages listed in age_grid. Ex-
tinction rates should be non-negative, and are assumed to vary polynomially
between grid points (see argument splines_degree).

psi Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing the continuous (Poissonian) sampling rate at the ages listed in age_grid.
Sampling rates should be non-negative, and are assumed to vary polynomially
between grid points (see argument splines_degree).

354 simulate_deterministic_hbds

kappa Numeric vector, of the same size as age_grid (or size 1 if age_grid==NULL),
listing the retention probabilities following Poissonian sampling events, at the
ages listed in age_grid. The listed values must be true probabilities, i.e. be-
tween 0 and 1, and are assumed to vary polynomially between grid points (see
argument splines_degree). The retention probability is the probability that a
continuously sampled lineage remains in the pool of extant lineages. Note that
many epidemiological models assume kappa to be zero.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
lambda, mu, psi and kappa between grid points in age_grid. For example,
if splines_degree==1, then the provided lambda, mu, psi and kappa are inter-
preted as piecewise-linear curves; if splines_degree==2 they are interpreted as
quadratic splines; if splines_degree==3 they are interpreted as cubic splines.
The splines_degree influences the analytical properties of the curve, e.g. splines_degree==1
guarantees a continuous curve, splines_degree==2 guarantees a continuous
curve and continuous derivative, and so on.

CSA_ages Optional numeric vector, listing the ages of concentrated sampling attempts, in
ascending order. Concentrated sampling is performed in addition to any contin-
uous (Poissonian) sampling specified by psi.

CSA_probs Optional numeric vector of the same size as CSA_ages, listing sampling proba-
bilities at each concentrated sampling attempt. Note that in contrast to the sam-
pling rates psi, the CSA_probs are interpreted as probabilities and must thus
be between 0 and 1. CSA_probs must be provided if and only if CSA_ages is
provided.

CSA_kappas Optional numeric vector of the same size as CSA_ages, listing retention proba-
bilities at each concentrated sampling event, i.e. the probability at which a sam-
pled lineage is kept in the pool of extant lineages. Note that the CSA_kappas are
probabilities and must thus be between 0 and 1. CSA_kappas must be provided
if and only if CSA_ages is provided.

requested_ages Optional numeric vector, listing ages (in ascending order) at which the various
model variables are requested. If NULL, it will be set to age_grid.

age0 Non-negative numeric, specifying the age at which LTT0 and pop_size0 are
specified. Typically this will be 0, i.e., corresponding to the present.

N0 Positive numeric, specifying the number of extant species (sampled or not) at
age0. Used to determine the "scaling factor" for the returned population sizes
and LTT. Either pop_size0 or LTT0 must be provided, but not both.

LTT0 Positive numeric, specifying the number of lineages present in the tree at age0.
Used to determine the "scaling factor" for the returned population sizes and LTT.
Either pop_size0 or LTT0 must be provided, but not both.

ODE_relative_dt

Positive unitless number, specifying the default relative time step for internally
used ordinary differential equation solvers. Typical values are 0.01-0.001.

ODE_relative_dy

Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-
ues are 1e-2 to 1e-5. A smaller ODE_relative_dy increases interpolation ac-
curacy, but also increases memory requirements and adds runtime (scaling with
the tree’s age span, not with Ntips).

simulate_deterministic_hbds 355

Details

The simulated LTT refers to a hypothetical tree sampled at age 0, i.e. LTT(t) will be the number
of lineages extant at age t that survived and were sampled until by the present day. Note that if a
concentrated sampling attempt occurs at age τ , then LTT(τ) is the number of lineages in the tree
right before the occurrence of the sampling attempt, i.e., in the limit where τ is approached from
above.

Note that in this function age always refers to time before present, i.e., present day age is 0, and age
increases towards the root.

Value

A named list with the following elements:

success Logical, indicating whether the calculation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) providing a de-
scription of the error; all other return variables may be undefined.

ages Numerical vector of size NG, listing discrete ages (time before present) on which
all returned time-curves are specified. Will be equal to requested_ages, if the
latter was provided.

total_diversity

Numerical vector of size NG, listing the predicted (deterministic) total diversity
(number of extant species, denoted N) at the ages given in ages[].

LTT Numeric vector of size NG, listing the number of lineages represented in the tree
at any given age, also known as “lineages-through-time” (LTT) curve. Note that
LTT at age0 will be equal to LTT0 (if the latter was provided).

nLTT Numeric vector of size NG, listing values of the normalized LTT at ages ages[].
The nLTT is calculated by dividing the LTT by its area-under-the-curve (AUC).
The AUC is calculated by integrating the LTT over the time spanned by ages
and using the trapezoid rule. Hence, the exact value of the AUC and of the
nLTT depends on the span and resolution of ages[]. If you want the AUC to
accurately refer to the entire area under the curve (i.e. across the full real axis),
you should specify a sufficiently wide and sufficiently fine age grid (e.g., via
requested_ages).

Pmissing Numeric vector of size NG, listing the probability that a lineage, extant at a
given age, will not be represented in the tree.

lambda Numeric vector of size NG, listing the speciation rates at the ages given in
ages[].

mu Numeric vector of size NG, listing the extinctions rates at the ages given in
ages[].

psi Numeric vector of size NG, listing the Poissonian sampling rates at the ages
given in ages[].

kappa Numeric vector of size NG, listing the retention probabilities (for continuously
sampled lineages) at the ages given in ages[].

PDR Numeric vector of size NG, listing the pulled diversification rate (PDR, in units
1/time) at the ages given in ages[].

356 simulate_deterministic_hbds

IPRP Numeric vector of size NG, listing the age-integrated pulled diversification rate
at the ages given in ages[], i.e. IPDR(t) =

∫ t

0
PDR(s)ds.

PSR Numeric vector of size NG, listing the “pulled speciation rate” (PSR, in units
1/time) at the ages given in ages[]. The PSR is defined as PSR = λ · (1 −
Pmissing).

PRP Numeric vector of size NG, listing the “pulled retention probability” (PRP) at
the ages given in ages[]. The PRP is defined as PRP = κ · (1− Pmissing).

diversification_rate

Numeric vector of size NG, listing the net diversification rate (in units 1/time)
at the ages given in ages[].

branching_density

Numeric vector of size NG, listing the deterministic branching density (PSR *
nLTT, in units nodes/time) at the ages given in ages[].

sampling_density

Numeric vector of size NG, listing the deterministic sampling density (ψ·N/AUC,
in units tips/time, where AUC is the area-under-the-curve calculated for the
LTT) at the ages given in ages[].

lambda_psi Numeric vector of size NG, listing the product of the speciation rate and Pois-
sonian sampling rate (in units 1/time^2) at the ages given in ages[].

kappa_psi Numeric vector of size NG, listing the product of the continuous sampling rate
and the continuous retention probability (in units 1/time) at the ages given in
ages[].

Reff Numeric vector of size NG, listing the effective reproduction ratio (Re = λ/(µ+
ψ(1− κ))) at the ages given in ages[].

removal_rate Numeric vector of size NG, listing the total removal rate (µ+ψ), also known as
“become uninfectious rate”, at the ages given in ages[].

sampling_proportion

Numeric vector of size NG, listing the instantaneous sampling proportion (ψ/(µ+
ψ)) at the ages given in ages[].

CSA_pulled_probs

Numeric vector of size NG, listing the pulled concentrated sampling probabili-
ties, ρ̃k = ρk/(1− E).

CSA_psis Numeric vector of size NG, listing the continuous (Poissonian) sampling rates
during the concentrated sampling attempts, ψ(t1), .., ψ(tm).

CSA_PSRs Numeric vector of size NG, listing the pulled speciation rates during the con-
centrated sampling attempts.

Author(s)

Stilianos Louca

References

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

simulate_diversification_model 357

See Also

generate_tree_hbds, fit_hbds_model_parametric, simulate_deterministic_hbd

Examples

define an HBDS model with exponentially decreasing speciation/extinction rates
and constant Poissonian sampling rate psi
oldest_age= 10
age_grid = seq(from=0,to=oldest_age,by=0.1) # choose a sufficiently fine age grid
lambda = 1*exp(0.01*age_grid) # define lambda on the age grid
mu = 0.2*lambda # assume similarly shaped but smaller mu

simulate deterministic HBD model
scale LTT such that it is 100 at age 1
simulation = simulate_deterministic_hbds(age_grid = age_grid,

lambda = lambda,
mu = mu,
psi = 0.1,
age0 = 1,
LTT0 = 100)

plot deterministic LTT
plot(x = simulation$ages, y = simulation$LTT, type='l',

main='dLTT', xlab='age', ylab='lineages', xlim=c(oldest_age,0))

simulate_diversification_model

Simulate a deterministic uniform speciation/extinction model.

Description

Simulate a speciation/extinction cladogenic model for diversity over time, in the derministic limit.
Speciation (birth) and extinction (death) rates can each be constant or power-law functions of the
number of extant species. For example,

B = I + F ·NE ,

where B is the birth rate, I is the intercept, F is the power-law factor, N is the current number of
extant species and E is the power-law exponent. Optionally, the model can account for incomplete
taxon sampling (rarefaction of tips) and for the effects of collapsing a tree at a non-zero resolution
(i.e. clustering closely related tips into a single tip).

Usage

simulate_diversification_model(times,
parameters = list(),
added_rates_times = NULL,
added_birth_rates_pc = NULL,
added_death_rates_pc = NULL,

358 simulate_diversification_model

added_periodic = FALSE,
start_time = NULL,
final_time = NULL,
start_diversity = 1,
final_diversity = NULL,
reverse = FALSE,
include_coalescent = FALSE,
include_event_rates = FALSE,
include_Nevents = FALSE,
max_runtime = NULL)

Arguments

times Numeric vector, listing the times for which to calculate diversities, as predicted
by the model. Values must be in ascending order.

parameters A named list specifying the birth-death model parameters, with one or more of
the following entries:

• birth_rate_intercept: Non-negative number. The intercept of the Pois-
sonian rate at which new species (tips) are added. In units 1/time.

• birth_rate_factor: Non-negative number. The power-law factor of the
Poissonian rate at which new species (tips) are added. In units 1/time.

• birth_rate_exponent: Numeric. The power-law exponent of the Poisso-
nian rate at which new species (tips) are added. Unitless.

• death_rate_intercept: Non-negative number. The intercept of the Pois-
sonian rate at which extant species (tips) go extinct. In units 1/time.

• death_rate_factor: Non-negative number. The power-law factor of the
Poissonian rate at which extant species (tips) go extinct. In units 1/time.

• death_rate_exponent: Numeric. The power-law exponent of the Poisso-
nian rate at which extant species (tips) go extinct. Unitless.

• resolution: Non-negative number. Time resolution at which the final tree
is assumed to be collapsed. Units are time units. E.g. if this is 10, then all
nodes of age 10 or less, are assumed to be collapsed into (represented by)
a single tip. This can be used to model OTU trees, obtained after clustering
strains by some similarity (=age) threshold. Set to 0 to disable collapsing.
If left unspecified, this is set to 0.

• rarefaction: Numeric between 0 and 1, specifying the fraction of tips
kept in the final tree after random subsampling. Rarefaction is assumed to
occur after collapsing at the specified resolution (if applicable). This can be
used to model incomplete taxon sampling. If left unspecified, this is set to
1.

added_rates_times

Numeric vector, listing time points (in ascending order) for a custom per-capita
birth and/or death rates time series (see added_birth_rates_pc and added_death_rates_pc
below). Can also be NULL, in which case the custom time series are ignored.

added_birth_rates_pc

Numeric vector of the same size as added_rates_times, listing per-capita birth
rates to be added to the power law part. Added rates are interpolated linearly

simulate_diversification_model 359

between time points in added_rates_times. Can also be NULL, in which case
this option is ignored and birth rates are purely described by the power law.

added_death_rates_pc

Numeric vector of the same size as added_rates_times, listing per-capita death
rates to be added to the power law part. Added rates are interpolated linearly
between time points in added_rates_times. Can also be NULL, in which case
this option is ignored and death rates are purely described by the power law.

added_periodic Logical, indicating whether added_birth_rates_pc and added_death_rates_pc
should be extended periodically if needed (i.e. if not defined for the entire sim-
ulation time). If FALSE, added birth & death rates are extended with zeros.

start_time Numeric. Start time of the tree (<=times[1]). Can also be NULL, in which case
it is set to the first value in times.

final_time Numeric. Final (ending) time of the tree (>=max(times)). Can also be NULL, in
which case it is set to the last value in times.

start_diversity

Numeric. Total diversity at start_time. Only relevant if reverse==FALSE.
final_diversity

Numeric. Total diversity at final_time, i.e. the final diversity of the tree (total
extant species at age 0). Only relevant if reverse==TRUE.

reverse Logical. If TRUE, then the tree model is simulated in backward time direction.
In that case, final_diversity is interpreted as the known diversity at the last
time point, and all diversities at previous time points are calculated based on
the model. If FALSE, then the model is simulated in forward-time, with initial
diversity given by start_diversity.

include_coalescent

Logical, specifying whether the diversity corresponding to a coalescent tree (i.e.
the tree spanning only extant tips) should also be calculated. If coalescent==TRUE
and the death rate is non-zero, then the coalescent diversities will generally be
lower than the total diversities.

include_event_rates

Logical. If TRUE, then the birth (speciation) and death (extinction) rates (for
each time point) are included as returned values. This comes at a moderate
computational overhead.

include_Nevents

Logical. If TRUE, then the cumulative birth (speciation) and death (extinction)
events (for each time point) are included as returned values. This comes at a
moderate computational overhead.

max_runtime Numeric. Maximum runtime (in seconds) allowed for the simulation. If this
time is surpassed, the simulation aborts.

Details

The simulation is deterministic, meaning that diversification is modeled using ordinary differential
equations, not as a stochastic process. The simulation essentially computes the deterministic diver-
sity over time, not an actual tree. For stochastic cladogenic simulations yielding a random tree, see
generate_random_tree and simulate_dsse.

360 simulate_diversification_model

In the special case where per-capita birth and death rates are constant (i.e. I = 0 and E = 1 for
birth and death rates), this function uses an explicit analytical solution to the underlying differential
equations, and is thus much faster than in the general case.

If rarefaction<1 and resolution>0, collapsing of closely related tips (at the resolution specified)
is assumed to take place prior to rarefaction (i.e., subsampling applies to the already collapsed tips).

Value

A named list with the following elements:

success Logical, indicating whether the simulation was successful. If the simulation
aborted due to runtime constraints (option max_runtime), success will be FALSE.

total_diversities

Numeric vector of the same size as times, listing the total diversity (extant at
each the time) for each time point in times.

coalescent_diversities

Numeric vector of the same size as times, listing the coalescent diversity (i.e.
as seen in the coalescent tree spanning only extant species) for each time point
in times. Only included if include_coalescent==TRUE.

birth_rates Numeric vector of the same size as times, listing the speciation (birth) rate at
each time point. Only included if include_event_rates==TRUE.

death_rates Numeric vector of the same size as times, listing the extinction (death) rate at
each time point. Only included if include_event_rates==TRUE.

Nbirths Numeric vector of the same size as times, listing the cumulative number of spe-
ciation (birth) events up to each time point. Only included if include_Nevents==TRUE.

Ndeaths Numeric vector of the same size as times, listing the cumulative number of ex-
tinction (death) events up to each time point. Only included if include_Nevents==TRUE.

Author(s)

Stilianos Louca

See Also

generate_random_tree, count_lineages_through_time

Examples

Generate a tree
max_time = 100
parameters = list(birth_rate_intercept = 10,

birth_rate_factor = 0,
birth_rate_exponent = 0,
death_rate_intercept = 0,
death_rate_factor = 0,
death_rate_exponent = 0,
resolution = 20,
rarefaction = 0.5)

generator = generate_random_tree(parameters,max_time=max_time)

simulate_dsse 361

tree = generator$tree
final_total_diversity = length(tree$tip.label)+generator$Nrarefied+generator$Ncollapsed

Calculate diversity-vs-time curve for the tree
times = seq(from=0,to=0.99*max_time,length.out=50)
tree_diversities = count_lineages_through_time(tree, times=times)$lineages

simulate diversity curve based on deterministic model
simulation = simulate_diversification_model(times,

parameters,
reverse=TRUE,
final_diversity=final_total_diversity,
include_coalescent=TRUE)

model_diversities = simulation$coalescent_diversities

compare diversities in the tree to the simulated ones
plot(tree_diversities,model_diversities,xlab="tree diversities",ylab="simulated diversities")
abline(a=0,b=1,col="#A0A0A0") # show diagonal for reference

simulate_dsse Simulate a Discrete-State Speciation and Extinction (dSSE) model.

Description

Simulate a random phylogenetic tree in forward time based on a Poissonian speciation/extinction
(birth/death) process, with optional Poissonian sampling over time, whereby birth/death/sampling
rates are determined by a co-evolving discrete trait. New species are added (born) by splitting
of a randomly chosen extant tip. The discrete trait, whose values determine birth/death/sampling
rates over time, can evolve in two modes: (A) Anagenetically, i.e. according to a discrete-space
continuous-time Markov process along each edge, with fixed transition rates between states, and/or
(B) cladogenetically, i.e. according to fixed transition probabilities between states at each speciation
event. Poissonian lineage sampling is assumed to lead to a removal of lineages from the pool of
extant tips (as is common in epidemiology).

This model class includes the Multiple State Speciation and Extinction (MuSSE) model described
by FitzJohn et al. (2009), as well as the Cladogenetic SSE (ClaSSE) model described by Goldberg
and Igis (2012). Optionally, the model can be turned into a Hidden State Speciation and Extinction
model (Beaulieu and O’meara, 2016), by replacing the simulated tip/node states with "proxy" states,
thus hiding the original states actually influencing speciation/extinction rates.

Usage

simulate_dsse(Nstates,
NPstates = NULL,
proxy_map = NULL,
parameters = list(),
start_state = NULL,
max_tips = NULL,
max_extant_tips = NULL,

362 simulate_dsse

max_Psampled_tips = NULL,
max_time = NULL,
max_time_eq = NULL,
max_events = NULL,
sampling_fractions = NULL,
reveal_fractions = NULL,
sampling_rates = NULL,
coalescent = TRUE,
as_generations = FALSE,
no_full_extinction = TRUE,
tip_basename = "",
node_basename = NULL,
include_event_times = FALSE,
include_rates = FALSE,
include_labels = TRUE)

simulate_musse(Nstates, NPstates = NULL, proxy_map = NULL,
parameters = list(), start_state = NULL,
max_tips = NULL, max_extant_tips = NULL, max_Psampled_tips = NULL,
max_time = NULL, max_time_eq = NULL, max_events = NULL,

sampling_fractions = NULL, reveal_fractions = NULL, sampling_rates = NULL,
coalescent = TRUE, as_generations = FALSE, no_full_extinction = TRUE,
tip_basename = "", node_basename = NULL,

include_event_times = FALSE, include_rates = FALSE, include_labels = TRUE)

Arguments

Nstates Integer, specifying the number of possible discrete states a tip can have, influ-
encing speciation/extinction rates. For example, if Nstates==2 then this corre-
sponds to the common Binary State Speciation and Extinction (BiSSE) model
(Maddison et al., 2007). In the case of a HiSSE model, Nstates refers to the
total number of diversification rate categories, as described by Beaulieu and
O’meara (2016).

NPstates Integer, optionally specifying a number of "proxy-states" that are observed in-
stead of the underlying speciation/extinction-modulating states. To simulate a
HiSSE model, this should be smaller than Nstates. Each state corresponds to a
different proxy-state, as defined using the variable proxy_map (see below). For
BiSSE/MuSSE with no hidden states, NPstates can be set to either NULL or
equal to Nstates, and proxy-states are equivalent to states.

proxy_map Integer vector of size Nstates and with values in 1,..NPstates, specifying the
correspondence between states (i.e. diversification-rate categories) and (ob-
served) proxy-states, in a HiSSE model. Specifically, proxy_map[s] indicates
which proxy-state the state s is represented by. Each proxy-state can represent
multiple states (i.e. proxies are ambiguous), but each state must be represented
by exactly one proxy-state. For non-HiSSE models, set this to NULL. See below
for more details.

parameters A named list specifying the dSSE model parameters, such as the anagenetic
and/or cladogenetic transition rates between states and the state-dependent birth/death

simulate_dsse 363

rates (see details below).

start_state Integer within 1,..,Nstates, specifying the initial state, i.e. of the first lineage
created. If left unspecified, this is chosen randomly and uniformly among all
possible states.

max_tips Integer, maximum number of tips (extant + Poissonian-sampled if coalescent==TRUE,
or extant+extinct+Poissonian-sampled if coalescent==FALSE) in the generated
tree, shortly before any present-day sampling. If NULL or <=0, the number of tips
is not limited, so you should use another stopping criterion such as max_time
and/or max_time_eq and/or max_events to stop the simulation.

max_extant_tips

Integer, maximum number of extant tips in the generated tree, shortly before to
any present-day sampling. If NULL or <=0, this constraint is ignored.

max_Psampled_tips

Integer, maximum number of Poissonian-sampled tips in the generated tree. If
NULL or <=0, this constraint is ignored.

max_time Numeric, maximum duration of the simulation. If NULL or <=0, this constraint
is ignored.

max_time_eq Numeric, maximum duration of the simulation, counting from the first point at
which speciation/extinction equilibrium is reached, i.e. when (birth rate - death
rate) changed sign for the first time. If NULL or <0, this constraint is ignored.

max_events Integer, maximum number of speciation/extinction/transition events before halt-
ing the simulation. If NULL, this constraint is ignored.

sampling_fractions

A single number, or a numeric vector of size NPstates, listing the sampling
fractions for extant tips at the end of the simulation (i.e., at "present-day")",
depending on proxy-state. sampling_fractions[p] is the probability of in-
cluding an extant tip in the final tree, if its proxy-state is p. If a single number,
all extant tips are sampled with the same probability, i.e. regardless of their
proxy-state. If NULL, this is the same as setting sampling_fractions to 1, i.e.,
all extant tips are sampled at the end of the simulation.

reveal_fractions

Numeric vector of size NPstates, listing reveal fractions of tip proxy-states,
depending on proxy state. reveal_fractions[p] is the probability of knowing
a tip’s proxy-state, if its proxy state is p. Can also be NULL, in which case all
tip proxy states will be known.

sampling_rates Numeric vector of size NPstates, listing Poissonian sampling rates of lineages
over time, depending on proxy state. Hence, sampling_rates[p] is the sam-
pling rate of a lineage if its proxy state is p. Can also be a single numeric, thus
applying the same sampling rate to all lineages regardless of proxy state. Can
also be NULL, in which case Poissonian sampling is not included.

coalescent Logical, specifying whether only the coalescent tree (i.e. the tree spanning the
sampled tips) should be returned. If coalescent==FALSE and the death rate is
non-zero, then the tree may include extinct tips.

as_generations Logical, specifying whether edge lengths should correspond to generations. If
FALSE, then edge lengths correspond to time.

364 simulate_dsse

no_full_extinction

Logical, specifying whether to prevent complete extinction of the tree. Full ex-
tinction is prevented by temporarily disabling extinctions and Poissonian sam-
plings whenever the number of extant tips is 1. if no_full_extinction==FALSE
and death rates and/or Poissonian sampling rates are non-zero, the tree may go
extinct during the simulation; if coalescent==TRUE, then the returned could
end up empty, hence the function will return unsuccessfully (i.e. success will
be FALSE). By default no_full_extinction is TRUE, however in some special
cases it may be desirable to allow full extinctions to ensure that the generated
trees are statistically distributed exactly according to the underlying cladoge-
netic model.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

include_event_times

Logical. If TRUE, then the times of speciation and extinction events (each in
order of occurrence) will also be returned.

include_rates Logical. If TRUE, then the per-capita birth & death rates of all tips and nodes
will also be returned.

include_labels Logical, specifying whether to include tip-labels and node-labels (if available) as
names in the returned state vectors (e.g. tip_states and node_states). In any
case, returned states are always listed in the same order as tips and nodes in the
tree. Setting this to FALSE may increase computational efficiency for situations
where labels are not required.

Details

The function simulate_dsse can be used to simulate a diversification + discrete-trait evolutionary
process, in which birth/death (speciation/extinction) and Poissonian sampling rates at each tip are
determined by a tip’s current "state". Lineages can transition between states anagenetically along
each edge (according to fixed Markov transition rates) and/or cladogenetically at each speciation
event (according to fixed transition probabilities). In addition to Poissonian sampling through time
(commonly included in epidemiological models), extant tips can also be sampled at the end of the
simulation (i.e. at "present-day") according to some state-specific sampling_fractions (common
in macroevolution).

The function simulate_musse is a simplified variant meant to simulate MuSSE/HiSSE models in
the absence of cladogenetic state transitions, and is included mainly for backward-compatibility
reasons. The input arguments for simulate_musse are identical to simulate_dsse, with the ex-
ception that the parameters argument must include slightly different elements (explained below).
Note that the standard MuSSE/HiSSE models published by FitzJohn et al. (2009) and Beaulieu and
O’meara (2016) did not include Poissonian sampling through time, i.e. sampling of extant lineages
was only done once at present-day.

For simulate_dsse, the argument parameters should be a named list including one or more of
the following elements:

• birth_rates: Numeric vector of size Nstates, listing the per-capita birth rate (speciation rate)
at each state. Can also be a single number (all states have the same birth rate).

simulate_dsse 365

• death_rates: Numeric vector of size Nstates, listing the per-capita death rate (extinction
rate) at each state. Can also be a single number (all states have the same death rate).

• transition_matrix_A: 2D numeric matrix of size Nstates x Nstates, listing anagenetic tran-
sition rates between states along an edge. Hence, transition_matrix_A[r,c] is the proba-
bility rate for transitioning from state r to state c. Non-diagonal entries must be non-negative,
diagonal entries must be non-positive, and the sum of each row must be zero.

• transition_matrix_C: 2D numeric matrix of size Nstates x Nstates, listing cladogenetic
transition probabilities between states during a speciation event, seperately for each child.
Hence, transition_matrix_C[r,c] is the probability that a child will have state c, condi-
tional upon the occurrence of a speciation event, given that the parent had state r, and inde-
pendently of all other children. Entries must be non-negative, and the sum of each row must
be one.

For simulate_musse, the argument parameters should be a named list including one or more of
the following elements:

• birth_rates: Same as for simulate_dsse.
• death_rates: Same as for simulate_dsse.
• transition_matrix: 2D numeric matrix of size Nstates x Nstates, listing anagenetic transi-

tion rates between states. This is equivalent to transition_matrix_A in simulate_dsse.

Note that this code generates trees in forward time, and halts as soon as one of the enabled halting
conditions is met; the halting conditions chosen affects the precise probability distribution from
which the generated trees are drawn (Stadler 2011). If at any moment during the simulation the tree
only includes a single extant tip, and if no_full_extinction=TRUE, the death and sampling rate
are temporarily set to zero to prevent the complete extinction of the tree. The tree will be ultrametric
if coalescent==TRUE (or death rates were zero) and Poissonian sampling was not included.

HiSSE models (Beaulieu and O’meara, 2016) are closely related to BiSSE/MuSSE models, the
main difference being the fact that the actual diversification-modulating states are not directly ob-
served. Hence, this function is also able to simulate HiSSE models, with appropriate choice of the
input variables Nstates, NPstates and proxy_map. For example, Nstates=4, NPstates=2 and
proxy_map=c(1,2,1,2) specifies that states 1 and 3 are represented by proxy-state 1, and states 2
and 4 are represented by proxy-state 2. This is the original case described by Beaulieu and O’meara
(2016); in their terminology, there would be 2 "hidden"" states ("0" and "1") and 2 "observed"
(proxy) states ("A" and "B"), and the 4 diversification rate categories (Nstates=4) would be called
"0A", "1A", "0B" and "1B", respectively. The somewhat different terminology used here allows
for easier generalization to an arbitrary number of diversification-modulating states and an arbitrary
number of proxy states. For example, if there are 6 diversification modulating states, represented by
3 proxy-states as 1->A, 2->A, 3->B, 4->C, 5->C, 6->C, then one would set Nstates=6, NPstates=3
and proxy_map=c(1,1,2,3,3,3).

The parameter transition_matrix_C can be used to define ClaSSE models (Goldberg and Igic,
2012) or BiSSE-ness models (Magnuson-Ford and Otto, 2012), although care must be taken to
properly define the transition probabilities. Here, cladogenetic transitions occur at probabilities that
are defined conditionally upon a speciation event, whereas in other software they may be defined as
probability rates.

Value

A named list with the following elements:

366 simulate_dsse

success Logical, indicating whether the simulation was successful. If FALSE, an addi-
tional element error (of type character) is included containing an explanation
of the error; in that case the value of any of the other elements is undetermined.

tree A rooted bifurcating tree of class "phylo", generated according to the specified
birth/death model.
If coalescent==TRUE or if all death rates are zero, and only if as_generations==FALSE
and in the absence of Poissonian sampling, then the tree will be ultrametric.
If as_generations==TRUE and coalescent==FALSE, all edges will have unit
length.

root_time Numeric, giving the time at which the tree’s root was first split during the simu-
lation. Note that if coalescent==TRUE, this may be later than the first speciation
event during the simulation.

final_time Numeric, giving the final time at the end of the simulation. If coalescent==TRUE,
then this may be greater than the total time span of the tree (since the root of the
coalescent tree need not correspond to the first speciation event).

equilibrium_time

Numeric, giving the first time where the sign of (death rate - birth rate) changed
from the beginning of the simulation, i.e. when speciation/extinction equilib-
rium was reached. May be infinite if the simulation stopped before reaching this
point.

Nbirths Integer vector of size Nstates, listing the total number of birth events (specia-
tions) that occurred at each state. The sum of all entries in Nbirths may be
lower than the total number of tips in the tree if death rates were non-zero and
coalescent==TRUE.

Ndeaths Integer vector of size Nstates, listing the total number of death events (extinc-
tions) that occurred at each state.

NPsamplings Integer vector of size Nstates, listing the total number of Poissonian sampling
events that occurred at each state.

Ntransitions_A 2D numeric matrix of size Nstates x Nstates, listing the total number of anage-
netic transition events that occurred between each pair of states. For example,
Ntransitions_A[1,2] is the number of anagenetic transitions (i.e., within a
species) that occured from state 1 to state 2.

Ntransitions_C 2D numeric matrix of size Nstates x Nstates, listing the total number of clado-
genetic transition events that occurred between each pair of states. For ex-
ample, Ntransitions_C[1,2] is the number of cladogenetic transitions (i.e.,
from a parent to a child) that occured from state 1 to state 2 during some spe-
ciation event. Note that each speciation event will have caused 2 transitions
(one per child), and that the emergence of a child with the same state as the
parent is counted as a transition between the same state (diagonal entries in
Ntransitions_C).

NnonsampledExtant

Integer, specifying the number of extant tips not sampled at the end, i.e., omitted
from the tree.

tip_states Integer vector of size Ntips and with values in 1,..,Nstates, listing the state of
each tip in the tree.

simulate_dsse 367

node_states Integer vector of size Nnodes and with values in 1,..,Nstates, listing the state of
each node in the tree.

tip_proxy_states

Integer vector of size Ntips and with values in 1,..,NPstates, listing the proxy
state of each tip in the tree. Only included in the case of HiSSE models.

node_proxy_states

Integer vector of size Nnodes and with values in 1,..,NPstates, listing the proxy
state of each node in the tree. Only included in the case of HiSSE models.

start_state Integer, specifying the state of the first lineage (either provided during the func-
tion call, or generated randomly).

extant_tips Integer vector, listing the indices of any extant tips in the tree.

extinct_tips Integer vector, listing the indices of any extinct tips in the tree. Note that if
coalescent==TRUE, this vector will be empty.

Psampled_tips Integer vector, listing the indices of any Poissonian-sampled tips in the tree.

birth_times Numeric vector, listing the times of speciation events during tree growth, in or-
der of occurrence. Note that if coalescent==TRUE, then speciation_times
may be greater than the phylogenetic distance to the coalescent root. Only re-
turned if include_event_times==TRUE.

death_times Numeric vector, listing the times of extinction events during tree growth, in order
of occurrence. Note that if coalescent==TRUE, then speciation_times may
be greater than the phylogenetic distance to the coalescent root. Only returned
if include_event_times==TRUE.

Psampling_times

Numeric vector, listing the times of Poissonian sampling events during tree
growth, in order of occurrence. Only returned if include_event_times==TRUE.

clade_birth_rates

Numeric vector of size Ntips+Nnodes, listing the per-capita birth rate of each
tip and node in the tree. Only included if include_rates==TRUE.

clade_death_rates

Numeric vector of size Ntips+Nnodes, listing the per-capita death rate of each
tip and node in the tree. Only included if include_rates==TRUE.

Author(s)

Stilianos Louca

References

W. P. Maddison, P. E. Midford, S. P. Otto (2007). Estimating a binary character’s effect on speciation
and extinction. Systematic Biology. 56:701-710.

R. G. FitzJohn, W. P. Maddison, S. P. Otto (2009). Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Systematic Biology. 58:595-611

R. G. FitzJohn (2012). Diversitree: comparative phylogenetic analyses of diversification in R.
Methods in Ecology and Evolution. 3:1084-1092

E. E. Goldberg, B. Igic (2012). Tempo and mode in plant breeding system evolution. Evolution.
66:3701-3709.

368 simulate_mk_model

K. Magnuson-Ford, S. P. Otto (2012). Linking the investigations of character evolution and species
diversification. The American Naturalist. 180:225-245.

J. M. Beaulieu and B. C. O’Meara (2016). Detecting hidden diversification shifts in models of
trait-dependent speciation and extinction. Systematic Biology. 65:583-601.

T. Stadler (2011). Simulating trees with a fixed number of extant species. Systematic Biology.
60:676-684.

S. Louca and M. W. Pennell (2020). A general and efficient algorithm for the likelihood of diversi-
fication and discrete-trait evolutionary models. Systematic Biology. 69:545-556.

See Also

simulate_tdsse, fit_musse

Examples

Simulate a tree under a classical BiSSE model
I.e., anagenetic transitions between two states, no Poissonian sampling through time.
A = get_random_mk_transition_matrix(Nstates=2, rate_model="ER", max_rate=0.1)
parameters = list(birth_rates = c(1,1.5),

death_rates = 0.5,
transition_matrix_A = A)

simulation = simulate_dsse(Nstates = 2,
parameters = parameters,
max_extant_tips = 1000,
include_rates = TRUE)

tree = simulation$tree
Ntips = length(tree$tip.label)

plot distribution of per-capita birth rates of tips
rates = simulation$clade_birth_rates[1:Ntips]
barplot(table(rates)/length(rates),

xlab="rate",
main="Distribution of pc birth rates across tips (BiSSE model)")

simulate_mk_model Simulate an Mk model for discrete trait evolution.

Description

Given a rooted phylogenetic tree, a fixed-rates continuous-time Markov model for the evolution
of a discrete trait ("Mk model", described by a transition matrix) and a probability vector for the
root, simulate random outcomes of the model on all nodes and/or tips of the tree. The function
traverses nodes from root to tips and randomly assigns a state to each node or tip based on its
parent’s previously assigned state and the specified transition rates between states. The generated
states have joint distributions consistent with the Markov model. Optionally, multiple independent
simulations can be performed using the same model.

simulate_mk_model 369

Usage

simulate_mk_model(tree, Q, root_probabilities="stationary",
include_tips=TRUE, include_nodes=TRUE,
Nsimulations=1, drop_dims=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

Q A numeric matrix of size Nstates x Nstates, storing the transition rates between
states. In particular, every row must sum up to zero.

root_probabilities

Probabilities of the different states at the root. Either a character vector with
value "stationary" or "flat", or a numeric vector of length Nstates, where Nstates
is the number of possible states of the trait. In the later case, root_probabilities
must be a valid probability vector, i.e. with non-negative values summing up to
1. "stationary" sets the probabilities at the root to the stationary distribution of
Q (see get_stationary_distribution), while "flat" means that each state is
equally probable at the root.

include_tips Include random states for the tips. If FALSE, no states will be returned for tips.

include_nodes Include random states for the nodes. If FALSE, no states will be returned for
nodes.

Nsimulations Number of random independent simulations to perform. For each node and/or
tip, there will be Nsimulations random states generated.

drop_dims Logical, specifying whether the returned tip_states and node_states (see
below) should be vectors, if Nsimulations==1. If drop_dims==FALSE, then
tip_states and tip_nodes will always be 2D matrices.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. characters
or factors), you should map them to a set of integers 1,..,Nstates. These integers should correspond
to row & column indices in the transition matrix Q. You can easily map any set of discrete states to
integers using the function map_to_state_space.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may
include multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations (i.e.
nodes with only one child). The time required per simulation decreases with the total number of
requested simulations.

Value

A list with the following elements:

tip_states Either NULL (if include_tips==FALSE), or a 2D integer matrix of size Nsim-
ulations x Ntips with values in 1,..,Nstates, where Ntips is the number of tips
in the tree and Nstates is the number of possible states of the trait. The [r,c]-th

370 simulate_ou_model

entry of this matrix will be the state of tip c generated by the r-th simulation. If
drop_dims==TRUE and Nsimulations==1, then tip_states will be a vector.

node_states Either NULL (if include_nodes==FALSE), or a 2D integer matrix of size Nsim-
ulations x Nnodes with values in 1,..,Nstates, where Nnodes is the number of
nodes in the tree. The [r,c]-th entry of this matrix will be the state of node c
generated by the r-th simulation. If drop_dims==TRUE and Nsimulations==1,
then node_states will be a vector.

Author(s)

Stilianos Louca

See Also

exponentiate_matrix, get_stationary_distribution, simulate_bm_model, simulate_ou_model,
simulate_rou_model

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

simulate discrete trait evolution on the tree (5 states)
Nstates = 5
Q = get_random_mk_transition_matrix(Nstates, rate_model="ARD", max_rate=0.1)
tip_states = simulate_mk_model(tree, Q)$tip_states

plot histogram of simulated tip states
barplot(table(tip_states)/length(tip_states), xlab="state")

End(Not run)

simulate_ou_model Simulate an Ornstein-Uhlenbeck model for continuous trait evolution.

Description

Given a rooted phylogenetic tree and an Ornstein-Uhlenbeck (OU) model for the evolution of a
continuous (numeric) trait, simulate random outcomes of the model on all nodes and/or tips of the
tree. The function traverses nodes from root to tips and randomly assigns a state to each node or tip
based on its parent’s previously assigned state and the specified model parameters. The generated
states have joint distributions consistent with the OU model. Optionally, multiple independent
simulations can be performed using the same model.

Usage

simulate_ou_model(tree, stationary_mean, stationary_std, decay_rate,
include_tips=TRUE, include_nodes=TRUE,
Nsimulations=1, drop_dims=TRUE)

simulate_ou_model 371

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

stationary_mean

Numeric. The mean (center) of the stationary distribution of the OU model.

stationary_std Positive numeric. The standard deviation of the stationary distribution of the
OU model.

decay_rate Positive numeric. Exponential decay rate (stabilization rate) of the OU model
(in units 1/edge_length_units).

include_tips Include random states for the tips. If FALSE, no states will be returned for tips.

include_nodes Include random states for the nodes. If FALSE, no states will be returned for
nodes.

Nsimulations Number of random independent simulations to perform. For each node and/or
tip, there will be Nsimulations random states generated.

drop_dims Logical, specifying whether the returned tip_states and node_states (see
below) should be vectors, if Nsimulations==1. If drop_dims==FALSE, then
tip_states and tip_nodes will always be 2D matrices.

Details

For each simulation, the state of the root is picked randomly from the stationary distribution of the
OU model, i.e. from a normal distribution with mean = stationary_mean and standard deviation
= stationary_std.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may in-
clude multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations (i.e. nodes
with only one child). The asymptotic time complexity of this function is O(Nedges*Nsimulations),
where Nedges is the number of edges in the tree.

Value

A list with the following elements:

tip_states Either NULL (if include_tips==FALSE), or a 2D numeric matrix of size Nsim-
ulations x Ntips, where Ntips is the number of tips in the tree. The [r,c]-th
entry of this matrix will be the state of tip c generated by the r-th simulation. If
drop_dims==TRUE and Nsimulations==1, then tip_states will be a vector.

node_states Either NULL (if include_nodes==FALSE), or a 2D numeric matrix of size Nsim-
ulations x Nnodes, where Nnodes is the number of nodes in the tree. The [r,c]-th
entry of this matrix will be the state of node c generated by the r-th simulation. If
drop_dims==TRUE and Nsimulations==1, then node_states will be a vector.

Author(s)

Stilianos Louca

372 simulate_rou_model

See Also

simulate_bm_model, simulate_mk_model, simulate_rou_model

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=10000)$tree

simulate evolution of a continuous trait
tip_states = simulate_ou_model(tree,

stationary_mean = 10,
stationary_std = 1,
decay_rate = 0.1)$tip_states

plot histogram of simulated tip states
hist(tip_states, breaks=20, xlab="state", main="Trait probability distribution", prob=TRUE)

simulate_rou_model Simulate a reflected Ornstein-Uhlenbeck model for continuous trait
evolution.

Description

Given a rooted phylogenetic tree and a reflected Ornstein-Uhlenbeck (ROU) model for the evolution
of a continuous (numeric) trait, simulate random outcomes of the model on all nodes and/or tips of
the tree. The ROU process is similar to the Ornstein-Uhlenbeck process (see simulate_ou_model),
with the difference that the ROU process cannot fall below a certain value (its "reflection point"),
which (in this implementation) is also its deterministic equilibrium point (Hu et al. 2015). The
function traverses nodes from root to tips and randomly assigns a state to each node or tip based on
its parent’s previously assigned state and the specified model parameters. The generated states have
joint distributions consistent with the ROU model. Optionally, multiple independent simulations
can be performed using the same model.

Usage

simulate_rou_model(tree, reflection_point, stationary_std, decay_rate,
include_tips=TRUE, include_nodes=TRUE,
Nsimulations=1, drop_dims=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

reflection_point

Numeric. The reflection point of the ROU model. In castor, this also happens to
be the deterministic equilibrium of the ROU process (i.e. if the decay rate were
infinite). For example, if a trait can only be positive (but arbitrarily small), then
reflection_point may be set to 0.

simulate_rou_model 373

stationary_std Positive numeric. The stationary standard deviation of the corresponding unre-
flected OU process.

decay_rate Positive numeric. Exponential decay rate (stabilization rate) of the ROU process
(in units 1/edge_length_units).

include_tips Include random states for the tips. If FALSE, no states will be returned for tips.

include_nodes Include random states for the nodes. If FALSE, no states will be returned for
nodes.

Nsimulations Number of random independent simulations to perform. For each node and/or
tip, there will be Nsimulations random states generated.

drop_dims Logical, specifying whether the returned tip_states and node_states (see
below) should be vectors, if Nsimulations==1. If drop_dims==FALSE, then
tip_states and tip_nodes will always be 2D matrices.

Details

For each simulation, the state of the root is picked randomly from the stationary distribution of
the ROU model, i.e. from a one-sided normal distribution with mode = reflection_point and
standard deviation = stationary_std.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may in-
clude multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations (i.e. nodes
with only one child). The asymptotic time complexity of this function is O(Nedges*Nsimulations),
where Nedges is the number of edges in the tree.

Value

A list with the following elements:

tip_states Either NULL (if include_tips==FALSE), or a 2D numeric matrix of size Nsim-
ulations x Ntips, where Ntips is the number of tips in the tree. The [r,c]-th
entry of this matrix will be the state of tip c generated by the r-th simulation. If
drop_dims==TRUE and Nsimulations==1, then tip_states will be a vector.

node_states Either NULL (if include_nodes==FALSE), or a 2D numeric matrix of size Nsim-
ulations x Nnodes, where Nnodes is the number of nodes in the tree. The [r,c]-th
entry of this matrix will be the state of node c generated by the r-th simulation. If
drop_dims==TRUE and Nsimulations==1, then node_states will be a vector.

Author(s)

Stilianos Louca

References

Y. Hu, C. Lee, M. H. Lee, J. Song (2015). Parameter estimation for reflected Ornstein-Uhlenbeck
processes with discrete observations. Statistical Inference for Stochastic Processes. 18:279-291.

See Also

simulate_ou_model, simulate_bm_model, simulate_mk_model

374 simulate_sbm

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=10000)$tree

simulate evolution of a continuous trait whose value is always >=1
tip_states = simulate_rou_model(tree,

reflection_point=1,
stationary_std=2,
decay_rate=0.1)$tip_states

plot histogram of simulated tip states
hist(tip_states, breaks=20, xlab="state", main="Trait probability distribution", prob=TRUE)

simulate_sbm Simulate Spherical Brownian Motion on a tree.

Description

Given a rooted phylogenetic tree and a Spherical Brownian Motion (SBM) model for the evolution
of the geographical location of a lineage on a sphere, simulate random outcomes of the model on all
nodes and/or tips of the tree. The function traverses nodes from root to tips and randomly assigns a
geographical location to each node or tip based on its parent’s previously assigned location and the
specified model parameters. The generated states have joint distributions consistent with the SBM
model (Perrin 1928; Brillinger 2012). This function generalizes the simple SBM model to support
time-dependent diffusivities.

Usage

simulate_sbm(tree,
radius,
diffusivity,
time_grid = NULL,
splines_degree = 1,
root_latitude = NULL,
root_longitude = NULL)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge. Edge lengths are assumed to represent time intervals or a
similarly interpretable phylogenetic distance.

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

diffusivity Either a single numeric, or a numeric vector of length equal to that of time_grid.
Diffusivity ("D") of the SBM model (in units distance^2/time). If time_grid

simulate_sbm 375

is NULL, then diffusivity should be a single number specifying the time-
independent diffusivity. Otherwise diffusivity specifies the diffusivity at each
time point listed in time_grid.
Under a planar approximation the squared geographical distance of a node from
the root will have expectation 4LD, where L is the node’s phylogenetic distance
from the root. Note that distance is measured in the same units as the radius
(e.g., km if the radius is given in km), and time is measured in the same units as
the tree’s edge lengths (e.g., Myr if edge lengths are given in Myr).

time_grid Numeric vector of the same length as diffusivity and listing times since the
root in ascending order, or NULL. This can be used to specify a time-variable
diffusivity (see details below). If NULL, the diffusivity is assumed to be constant
over time and equal to diffusivity (which should be a single numeric). Time
is measured in the same units as edge lengths, with root having time 0.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
diffusivity between grid points in time_grid. For example, if splines_degree==1,
then the provided diffusivity is interpreted as a piecewise-linear curve; if
splines_degree==2 it is interpreted as a quadratic spline; if splines_degree==3
it is interpreted as a cubic spline. The splines_degree influences the analyt-
ical properties of the curve, e.g. splines_degree==1 guarantees a continu-
ous curve, splines_degree==2 guarantees a continuous curve and continuous
derivative, and so on.

root_latitude The latitude of the tree’s root, in decimal degrees, between -90 and 90. If NULL,
the root latitude is chosen randomly according to the stationary probability dis-
tribution of the SBM.

root_longitude The longitude of the tree’s root, in decimal degrees, between -180 and 180. If
NULL, the root longitude is chosen randomly according to the stationary prob-
ability distribution of the SBM.

Details

For short expected transition distances this function uses the approximation formula by Ghosh et al.
(2012). For longer expected transition distances the function uses a truncated approximation of the
series representation of SBM transition densities (Perrin 1928).

The pair time_grid and diffusivity can be used to define a time-dependent diffusivity, with
time counted from the root to the tips (i.e. root has time 0) in the same units as edge lengths.
For example, to define a diffusivity that varies linearly with time, you only need to specify the
diffusivity at two time points (one at 0, and one at the time of the youngest tip), i.e. time_grid and
diffusivity would each have length 2. Note that time_grid should cover the full time range of
the tree; otherwise, diffusivity will be extrapolated as a constant when needed.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree may
include multifurcations as well as monofurcations.

Value

A list with the following elements:

376 simulate_sbm

success Logical, specifying whether the simulation was successful. If FALSE, then an
additional return variable error will contain a brief description of the error that
occurred, and all other return variables may be undefined.

tip_latitudes Numeric vector of length Ntips, listing simulated decimal latitudes for each tip
in the tree.

tip_longitudes Numeric vector of length Ntips, listing simulated decimal longitudes for each
tip in the tree.

node_latitudes Numeric vector of length Nnodes, listing simulated decimal latitudes for each
internal node in the tree.

node_longitudes

Numeric vector of length Nnodes, listing simulated decimal longitudes for each
internal node in the tree.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_ou_model, simulate_rou_model, simulate_bm_model, fit_sbm_const

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=100)$tree

simulate SBM on the tree
simulation = simulate_sbm(tree, radius=6371, diffusivity=1e4,

root_latitude=0, root_longitude=0)

plot latitudes and longitudes of the tips
plot(simulation$tip_latitudes,simulation$tip_longitudes)

End(Not run)

simulate_tdsse 377

simulate_tdsse Simulate a time-dependent Discrete-State Speciation and Extinction
(tdSSE) model.

Description

Simulate a random phylogenetic tree in forward time based on a Poissonian speciation/extinction
(birth/death) process, whereby birth and death rates are determined by a co-evolving discrete trait.
New species are added (born) by splitting of a randomly chosen extant tip. The discrete trait, whose
values determine birth/death rates, can evolve in two modes: (A) Anagenetically, i.e. according to a
discrete-space continuous-time Markov process along each edge, with fixed or time-dependent tran-
sition rates between states, and/or (B) cladogenetically, i.e. according to fixed or time-dependent
transition probabilities between states at each speciation event. This model class includes the Mul-
tiple State Speciation and Extinction (MuSSE) model described by FitzJohn et al. (2009), as well
as the Cladogenetic SSE (ClaSSE) model described by Goldberg and Igis (2012). Optionally, the
model can be turned into a Hidden State Speciation and Extinction model (Beaulieu and O’meara,
2016), by replacing the simulated tip/node states with "proxy" states, thus hiding the original states
actually influencing speciation/extinction rates. This function is similar to simulate_dsse, the
main difference being that state-specific speciation/extinction rates as well as state transition rates
can be time-dependent.

Usage

simulate_tdsse(Nstates,
NPstates = NULL,
proxy_map = NULL,
time_grid = NULL,
parameters = list(),
splines_degree = 1,
start_state = NULL,
max_tips = NULL,
max_time = NULL,
max_events = NULL,
sampling_fractions = NULL,
reveal_fractions = NULL,
coalescent = TRUE,
as_generations = FALSE,
no_full_extinction = TRUE,
Nsplits = 2,
tip_basename = "",
node_basename = NULL,
include_birth_times = FALSE,
include_death_times = FALSE,
include_labels = TRUE)

378 simulate_tdsse

Arguments

Nstates Integer, specifying the number of possible discrete states a tip can have, influ-
encing speciation/extinction rates. For example, if Nstates==2 then this corre-
sponds to the common Binary State Speciation and Extinction (BiSSE) model
(Maddison et al., 2007). In the case of a HiSSE model, Nstates refers to the
total number of diversification rate categories, as described by Beaulieu and
O’meara (2016).

NPstates Integer, optionally specifying a number of "proxy-states" that are observed in-
stead of the underlying speciation/extinction-modulating states. To simulate a
HiSSE model, this should be smaller than Nstates. Each state corresponds to a
different proxy-state, as defined using the variable proxy_map (see below). For
BiSSE/MuSSE with no hidden states, NPstates can be set to either NULL or
equal to Nstates, and proxy-states are equivalent to states.

proxy_map Integer vector of size Nstates and with values in 1,..,NPstates, specifying
the correspondence between states (i.e. diversification-rate categories) and (ob-
served) proxy-states, in a HiSSE model. Specifically, proxy_map[s] indicates
which proxy-state the state s is represented by. Each proxy-state can represent
multiple states (i.e. proxies are ambiguous), but each state must be represented
by exactly one proxy-state. For non-HiSSE models, set this to NULL. See below
for more details.

time_grid Numeric vector listing discrete times in ascending order, used to define the time-
dependent rates of the model. The time grid should generally cover the maxi-
mum possible simulation time, otherwise it will be polynomially extrapolated
(according to splines_degree).

parameters A named list specifying the time-dependent model parameters, including op-
tional anagenetic and/or cladogenetic transition rates between states, as well as
the mandatory state-dependent birth/death rates (see details below).

splines_degree Integer, either 0, 1, 2 or 3, specifying the polynomial degree of time-dependent
model parameters (birth_rates, death_rates, transition_rates) between time-grid
points. For example, splines_degree=1 means that rates are to be considered
linear between adjacent grid points.

start_state Integer within 1,..,Nstates, specifying the initial state, i.e. of the first lineage
created. If left unspecified, this is chosen randomly and uniformly among all
possible states.

max_tips Maximum number of tips in the generated tree, prior to any subsampling. If
coalescent=TRUE, this refers to the number of extant tips, prior to subsampling.
Otherwise, it refers to the number of extinct + extant tips, prior to subsampling.
If NULL or <=0, the number of tips is not limited, so you should use max_time
and/or max_time_eq and/or max_events to stop the simulation.

max_time Numeric, maximum duration of the simulation. If NULL or <=0, this constraint
is ignored.

max_events Integer, maximum number of speciation/extinction/transition events before halt-
ing the simulation. If NULL, this constraint is ignored.

sampling_fractions

A single number, or a numeric vector of size NPstates, listing tip sub-sampling
fractions, depending on proxy-state. sampling_fractions[p] is the probabil-

simulate_tdsse 379

ity of including a tip in the final tree, if its proxy-state is p. If NULL, all tips
(or all extant tips, if coalescent==TRUE) are included in the tree. If a single
number, all tips are included with the same probability, i.e. regardless of their
proxy-state.

reveal_fractions

Numeric vector of size NPstates, listing reveal fractions of tip proxy-states,
depending on proxy state. reveal_fractions[p] is the probability of knowing
a tip’s proxy-state, if its proxy state is p. Can also be NULL, in which case all
tip proxy states will be known.

coalescent Logical, specifying whether only the coalescent tree (i.e. the tree spanning the
extant tips) should be returned. If coalescent==FALSE and the death rate is
non-zero, then the tree may include non-extant tips (i.e. tips whose distance
from the root is less than the total time of evolution). In that case, the tree will
not be ultrametric.

as_generations Logical, specifying whether edge lengths should correspond to generations. If
FALSE, then edge lengths correspond to time.

no_full_extinction

Logical, specifying whether to prevent complete extinction of the tree. Full ex-
tinction is prevented by temporarily disabling extinctions whenever the number
of extant tips is 1. if no_full_extinction==FALSE and death rates are non-
zero, the tree may go extinct during the simulation; if coalescent==TRUE, then
the returned tree would be empty, hence the function will return unsuccessfully
(i.e. success will be FALSE). By default no_full_extinction is TRUE, how-
ever in some special cases it may be desirable to allow full extinctions to ensure
that the generated trees are statistically distributed exactly according to the un-
derlying cladogenetic model.

Nsplits Integer greater than 1. Number of child-tips to generate at each diversification
event. If set to 2, the generated tree will be bifurcating. If >2, the tree will be
multifurcating.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

include_birth_times

Logical. If TRUE, then the times of speciation events (in order of occurrence)
will also be returned.

include_death_times

Logical. If TRUE, then the times of extinction events (in order of occurrence)
will also be returned.

include_labels Logical, specifying whether to include tip-labels and node-labels (if available) as
names in the returned state vectors (e.g. tip_states and node_states). In any
case, returned states are always listed in the same order as tips and nodes in the
tree. Setting this to FALSE may increase computational efficiency for situations
where labels are not required.

380 simulate_tdsse

Details

The function simulate_tdsse can be used to simulate a diversification + discrete-trait evolution-
ary process, in which birth/death (speciation/extinction) rates at each tip are determined by a tip’s
current "state". Lineages can transition between states anagenetically along each edge (according to
some Markov transition rates) and/or cladogenetically at each speciation event (according to some
transition probabilities). The speciation and extinction rates, as well as the transition rates, may be
specified as time-dependent variables, defined as piecewise polynomial functions (natural splines)
on a temporal grid.

In the following, Ngrid refers to the length of the vector time_grid. The argument parameters
should be a named list including one or more of the following elements:

• birth_rates: Numeric 2D matrix of size Nstates x Ngrid, listing the per-capita birth rate
(speciation rate) at each state and at each time-grid point. Can also be a single number (same
birth rate for all states and at all times).

• death_rates: Numeric 2D matrix of size Nstates x Ngrid, listing the per-capita death rate
(extinction rate) at each state and at each time-grid point. Can also be a single number (same
death rate for all states and at all times) or NULL (no deaths).

• transition_matrix_A: Either a 3D numeric array of size Nstates x Nstates x Ngrid, or
a 2D numeric matrix of size Nstates x Nstates, listing anagenetic transition rates between
states along an edge. If a 3D array, then transition_matrix_A[r,c,t] is the infinites-
imal rate for transitioning from state r to state c at time time_grid[t]. If a 2D matrix,
transition_matrix_A[r,c] is the time-independent infintesimal rate for transitioning from
state r to state c. At each time point (i.e., a fixed t), non-diagonal entries in transition_matrix_A[,,t]
must be non-negative, diagonal entries must be non-positive, and the sum of each row must be
zero.

• transition_matrix_C: Either a 3D numeric array of size Nstates x Nstates x Ngrid, or a 2D
numeric matrix of size Nstates x Nstates, listing cladogenetic transition probabilities between
states during a speciation event, seperately for each child. If a 3D array, then transition_matrix_C[r,c,t]
is the probability that a child emerging at time time_grid[t] will have state c, conditional
upon the occurrence of a speciation event, given that the parent had state r, and indepen-
dently of all other children. If a 2D matrix, then transition_matrix_C[r,c] is the (time-
independent) probability that a child will have state c, conditional upon the occurrence of a
speciation event, given that the parent had state r, and independently of all other children. En-
tries must be non-negative, and for any fixed t the sum of each row in transition_matrix[,,t]
must be one.

If max_time==NULL and max_events==NULL, then the returned tree will always contain max_tips
tips. If at any moment during the simulation the tree only includes a single extant tip, and if
no_full_extinction=TRUE the death rate is temporarily set to zero to prevent the complete ex-
tinction of the tree. If max_tips==NULL, then the simulation is ran as long as specified by max_time
and/or max_events. If neither max_time, max_tips nor max_events is NULL, then the simulation
halts as soon as the time reaches max_time, or the number of tips (extant tips if coalescent is TRUE)
reaches max_tips, or the number of speciation/extinction/transition events reaches max_events
whichever occurs first. If max_tips!=NULL and Nsplits>2, then the last diversification even may
generate fewer than Nsplits children, in order to keep the total number of tips within the specified
limit. Note that this code generates trees in forward time, and halts as soon as one of the halt-
ing conditions is met; the halting condition chosen affects the precise distribution from which the
generated trees are drawn (Stadler 2011).

simulate_tdsse 381

For additional information on simulating HiSSE models see the related function simulate_dsse.

The parameter transition_matrix_C can be used to define ClaSSE models (Goldberg and Igic,
2012) or BiSSE-ness models (Magnuson-Ford and Otto, 2012), although care must be taken to
properly define the transition probabilities. Here, cladogenetic transitions occur at probabilities that
are defined conditionally upon a speciation event, whereas in other software they may be defined as
probability rates.

Value

A named list with the following elements:

success Logical, indicating whether the simulation was successful. If FALSE, an addi-
tional element error (of type character) is included containing an explanation
of the error; in that case the value of any of the other elements is undetermined.

tree A rooted bifurcating (if Nsplits==2) or multifurcating (if Nsplits>2) tree of
class "phylo", generated according to the specified birth/death model.
If coalescent==TRUE or if all death rates are zero, and only if as_generations==FALSE,
then the tree will be ultrametric. If as_generations==TRUE and coalescent==FALSE,
all edges will have unit length.

root_time Numeric, giving the time at which the tree’s root was first split during the simu-
lation. Note that if coalescent==TRUE, this may be later than the first speciation
event during the simulation.

final_time Numeric, giving the final time at the end of the simulation. If coalescent==TRUE,
then this may be greater than the total time span of the tree (since the root of the
coalescent tree need not correspond to the first speciation event).

Nbirths Numeric vector of size Nstates, listing the total number of birth events (speci-
ations) that occurred at each state. The sum of all entries in Nbirths may be
lower than the total number of tips in the tree if death rates were non-zero and
coalescent==TRUE, or if Nsplits>2.

Ndeaths Numeric vector of size Nstates, listing the total number of death events (extinc-
tions) that occurred at each state.

Ntransitions_A 2D numeric matrix of size Nstates x Nstates, listing the total number of anage-
netic transition events that occurred between each pair of states. For example,
Ntransitions_A[1,2] is the number of anagenetic transitions (i.e., within a
species) that occured from state 1 to state 2.

Ntransitions_C 2D numeric matrix of size Nstates x Nstates, listing the total number of clado-
genetic transition events that occurred between each pair of states. For example,
Ntransitions_C[1,2] is the number of cladogenetic transitions (i.e., from a
parent to a child) that occured from state 1 to state 2 during some speciation
event. Note that each speciation event will have caused Nsplits transitions,
and that the emergence of a child with the same state as the parent is counted as
a transition between the same state (diagonal entries in Ntransitions_C).

tip_states Integer vector of size Ntips and with values in 1,..,Nstates, listing the state of
each tip in the tree.

node_states Integer vector of size Nnodes and with values in 1,..,Nstates, listing the state of
each node in the tree.

382 simulate_tdsse

tip_proxy_states

Integer vector of size Ntips and with values in 1,..,NPstates, listing the proxy
state of each tip in the tree. Only included in the case of HiSSE models.

node_proxy_states

Integer vector of size Nnodes and with values in 1,..,NPstates, listing the proxy
state of each node in the tree. Only included in the case of HiSSE models.

start_state Integer, specifying the state of the first lineage (either provided during the func-
tion call, or generated randomly).

birth_times Numeric vector, listing the times of speciation events during tree growth, in
order of occurrence. Note that if coalescent==TRUE, then speciation_times
may be greater than the phylogenetic distance to the coalescent root.

death_times Numeric vector, listing the times of extinction events during tree growth, in order
of occurrence. Note that if coalescent==TRUE, then speciation_times may
be greater than the phylogenetic distance to the coalescent root.

Author(s)

Stilianos Louca

References

W. P. Maddison, P. E. Midford, S. P. Otto (2007). Estimating a binary character’s effect on speciation
and extinction. Systematic Biology. 56:701-710.

R. G. FitzJohn, W. P. Maddison, S. P. Otto (2009). Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Systematic Biology. 58:595-611

R. G. FitzJohn (2012). Diversitree: comparative phylogenetic analyses of diversification in R.
Methods in Ecology and Evolution. 3:1084-1092

E. E. Goldberg, B. Igic (2012). Tempo and mode in plant breeding system evolution. Evolution.
66:3701-3709.

K. Magnuson-Ford, S. P. Otto (2012). Linking the investigations of character evolution and species
diversification. The American Naturalist. 180:225-245.

J. M. Beaulieu and B. C. O’Meara (2016). Detecting hidden diversification shifts in models of
trait-dependent speciation and extinction. Systematic Biology. 65:583-601.

T. Stadler (2011). Simulating trees with a fixed number of extant species. Systematic Biology.
60:676-684.

See Also

simulate_dsse, simulate_musse, fit_musse

Examples

Not run:
prepare params for time-dependent BiSSE model
include time-dependent speciation & extinction rates
as well as time-dependent anagenetic transition rates
Nstates = 2

spline_coefficients 383

reveal_fractions = c(1,0.5)
rarefaction = 0.5 # species sampling fraction

time2lambda1 = function(times) rep(1,times=length(times))
time2lambda2 = function(times) rep(2,times=length(times))
time2mu1 = function(times) 0.5 + 2.5*exp(-((times-8)**2)/2)
time2mu2 = function(times) 1 + 2*exp(-((times-12)**2)/2)
time_grid = seq(from=0, to=100, length.out=1000)

time2Q12 = function(times) 1*exp(0.1*times)
time2Q21 = function(times) 2*exp(-0.1*times)
QA = array(0, dim=c(Nstates,Nstates,length(time_grid)))
QA[1,2,] = time2Q12(time_grid)
QA[2,1,] = time2Q21(time_grid)
QA[1,1,] = -QA[1,2,]
QA[2,2,] = -QA[2,1,]

parameters = list()
parameters$birth_rates = rbind(time2lambda1(time_grid), time2lambda2(time_grid))
parameters$death_rates = rbind(time2mu1(time_grid), time2mu2(time_grid))
parameters$transition_matrix_A = QA

simulate time-dependent BiSSE model
cat(sprintf("Simulating tMuSSE model..\n"))
sim = castor::simulate_tdsse(Nstates = Nstates,

time_grid = time_grid,
parameters = parameters,
splines_degree = 1,
max_tips = 10000/rarefaction,
sampling_fractions = rarefaction,
reveal_fractions = reveal_fractions,
coalescent = TRUE,
no_full_extinction = TRUE)

if(!sim$success){
cat(sprintf("ERROR: %s\n",sim$error))

}else{
print some summary info about the generated tree
tree = sim$tree
Ntips = length(tree$tip.label)
root_age = get_tree_span(tree)$max_distance
root_time = sim$final_time - root_age
tip_states = sim$tip_states
Nknown_tips = sum(!is.na(tip_states))
cat(sprintf("Note: Simulated tree has root_age = %g\n",root_age))
cat(sprintf("Note: %d tips have known state\n", Nknown_tips));

}

End(Not run)

spline_coefficients Get the polynomial coefficients of a spline.

384 spline_coefficients

Description

Given a natural spline function Y : R → R, defined as a series of Y values on a discrete X grid,
obtain its corresponding piecewise polynomial coefficients. Supported splines degrees are 0 (Y is
piecewise constant), 1 (piecewise linear), 2 (piecewise quadratic) and 3 (piecewise cubic).

Usage

spline_coefficients(Xgrid,
Ygrid,
splines_degree)

Arguments

Xgrid Numeric vector, listing x-values in ascending order.

Ygrid Numeric vector of the same length as Xgrid, listing the values of Y on Xgrid.

splines_degree Integer, either 0, 1, 2 or 3, specifying the polynomial degree of the spline curve
Y between grid points. For example, 0 means Y is piecewise constant, 1 means
Y is piecewise linear and so on.

Details

Spline functions are returned by some of castor’s fitting routines, so spline_coefficients is
meant to aid with the further analysis of such functions. A spline function of degree D ≥ 1 has
continuous derivatives up to degree D − 1.

Value

A numeric matrix of size NR x NC, where NR (number of rows) is equal to the length of Xgrid
and NC (number of columns) is equal to splines_degree+1. The r-th row lists the polynomial
coefficients (order 0, 1 etc) of the spline within the interval [Xgrid[r],Xgrid[r+1]]. For exampe, for a
spline of order 2, the value at X=0.5*(Xgrid[1]+Xgrid[2]) will be equal to C[1,1]+C[1,2]*X+C[1,3]*X*X,
where C is the matrix of coefficients.

Author(s)

Stilianos Louca

See Also

evaluate_spline

Examples

The following code defines a quadratic spline on 20 grid points
The curve's polynomial coefficients are then determined
and used to evaluate the spline on a fine grid for plotting.
Xgrid = seq(0,10,length.out=20)
Ygrid = sin(Xgrid)
splines_degree = 2

split_tree_at_height 385

Ycoeff = castor::spline_coefficients(Xgrid, Ygrid, splines_degree)

plot(Xgrid, Ygrid, type='p')

for(g in seq_len(length(Xgrid)-1)){
Xtarget = seq(Xgrid[g], Xgrid[g+1], length.out=100)
Ytarget = rep(Ycoeff[g,1], length(Xtarget))
for(p in seq_len(splines_degree)){

Ytarget = Ytarget + (Xtarget^p) * Ycoeff[g,p+1];
}
lines(Xtarget, Ytarget, type='l', col='red')

}

split_tree_at_height Split a tree into subtrees at a specific height.

Description

Given a rooted phylogenetic tree and a specific distance from the root (“height”), split the tree
into subtrees at the specific height. This corresponds to drawing the tree in rectangular layout and
trimming everything below the specified phylogenetic distance from the root: What is obtained is a
set of separated subtrees. The tips of the original tree are spread across those subtrees.

Usage

split_tree_at_height(tree, height = 0, by_edge_count = FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

height Numeric, specifying the phylogenetic distance from the root at which to split
the tree. If <=0, the original tree is returned as the sole subtree.

by_edge_count Logical. Instead of considering edge lengths, consider edge counts as phyloge-
netic distance. This is the same as if all edges had length equal to 1.

Details

This function can be used to generate multiple smaller trees from one large tree, with each subtree
having a time span equal to or lower than a certain threshold. The input tree may include multifur-
cations (i.e. nodes with more than 2 children) as well as monofurcations (i.e. nodes with only one
child).

Note that while edges are cut exactly at the specified distance from the root, the cut point does not
become the root node of the obtained subtree; rather, the first node encountered after the cut will
become the subtree’s root. The length of the remaining edge segment leading into this node will be
used as root.edge in the returned subtree.

386 tree_distance

Value

A list with the following elements:

Nsubtrees Integer, the number of subtrees obtained.

subtrees A list of length Nsubtrees, each element of which is a named list containing the
following elements:

• tree: A rooted tree of class "phylo", representing a subtree obtained from
the original tree.

• new2old_clade: An integer vector of length NStips+NSnodes (where NStips
is the number of tips and NSnodes the number of nodes of the subtree),
mapping subtree tip and node indices (i.e., 1,..,NStips+NSnodes) to tip and
node indices in the original tree.

• new2old_edge: Integer vector of length NSedges (=number of edges in the
subtree), mapping subtree edge indices (i.e., 1,..,NSedges) to edge indices
in the original tree.

clade2subtree Integer vector of length Ntips+Nnodes and containing values from 1 to Nsub-
trees, mapping tip and node indices of the original tree to their assigned subtree.

Author(s)

Stilianos Louca

See Also

trim_tree_at_height

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),

max_tips=100)$tree

split tree halfway towards the root
root_age = get_tree_span(tree)$max_distance
splitting = split_tree_at_height(tree, height=0.5*root_age)

print number of subtrees obtained
cat(sprintf("Obtained %d subtrees\n",splitting$Nsubtrees))

tree_distance Calculate the distance between two trees.

Description

Given two rooted phylogenetic trees with identical tips, calculate their difference using a distance
metric or pseudometric.

tree_distance 387

Usage

tree_distance(treeA,
treeB,
tipsA2B = NULL,
metric = "RFrooted",
normalized = FALSE,
NLeigenvalues = 10)

Arguments

treeA A rooted tree of class "phylo".

treeB A rooted tree of class "phylo". Depending on the metric used, this tree may need
to have the same number of tips as treeA (see details below).

tipsA2B Optional integer vector of size Ntips, mapping treeA tip indices to treeB tip
indices (i.e. tipsA2B[a] is the tip index in treeB corresponding to tip index a
in treeA). The mapping must be one-to-one. If left unspecified, it is determined
by matching tip labels between the two trees (this assumes that the same tip
labels are used in both trees). Only relevant if the metric requires tip matching
(i.e., considers labeled trees).

metric Character, specifying the distance measure to be used. Currently the Robinson-
Foulds metric for rooted trees ("RFrooted"), the mean-path-difference ("Mean-
PathLengthDifference"), "WassersteinNodeAges" and "WassersteinLaplacianSpec-
trum" are implemented. Note that these distances are not necessarily metrics in
the strict mathematical sense; in particular, non-identical trees can sometimes
have a zero distance.
"RFrooted" counts the number of clusters (sets of tips descending from a node)
in either of the trees but not shared by both trees (Robinson and Foulds, 1981;
Day, 1985); this metric does not take into account branch lengths and depends
on the position of the root.
"MeanPathLengthDifference" is the square root of the mean squared difference
of patristic distances (shortest path lengths) between tip pairs, as described by
Steel and Penny (1993); this metric takes into account path lengths and does not
depend on the position of the root.
"WassersteinNodeAges" calculates the first Wasserstein distance (Ramdas et al.
2017) between the distributions of node ages in the two trees. It depends on the
branch lengths and the rooting, but does not depend on tip labeling nor topology
(as long as node ages are the same). Hence, this is only a ’pseudometric’ in
the space of unlabeled trees - any two trees with identical node ages will have
distance 0.
"WassersteinLaplacianSpectrum" calculates the first Wasserstein distance be-
tween the spectra (sets of eigenvalues) of the modified graph Laplacians (Le-
witus and Morlon, 2016). This distance depends on tree topology and branch
lengths, but not on tip labeling nor on the rooting. Note that Lewitus and Mor-
lon measured the distance between the Laplacian spectra in a different way than
here. Also note that if NLeigenvalues>0, only a subset of the eigenvalues may
be considered.

388 tree_distance

normalized Logical, specifying whether the calculated distance should be normalized to
be between 0 and 1. For the Robinson-Foulds distance, the distance will be
normalized by dividing it by the total number of nodes in the two trees. For
MeanPathLengthDifference, normalization is done by dividing each path-length
difference by the maximum of the two path-lengths considered. For WassersteinNodeAges,
normalization is achieved by scaling all node ages relative to the oldest node age
in any of the two trees (hence times are converted to relative times). Note that
normalized distances may no longer satisfy the triangle inequality required for
metrics, i.e. the resulting distance function may not be a metric in the mathe-
matical sense.

NLeigenvalues Integer, number of top eigenvalues (i.e., with largest magnitude) to consider
from the Graph-Laplacian’s spectrum (e.g., for the metric "WassersteinLapla-
cianSpectrum"). This option is mostly provided for computational efficiency
reasons, because it is cheaper to compute a small subset of eigenvalues rather
than the entire spectrum. If <=0, all eigenvalues are considered, which can sub-
stantially increase computation time and memory for large trees.

Details

For some metrics ("RFrooted", "MeanPathLengthDifference"), the trees must have the same number
of tips and their tips must be matched one-to-one. If the trees differ in theis tips, they must be pruned
down to their common set of tips. If tips have different labels in the two trees, but are nevertheless
equivalent, the mapping between the two trees must be provided using tipsA2B.

The trees may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).

Note that under some Robinson-Foulds variants the trees can be unrooted; in this present imple-
mentation trees must be rooted and the placement of the root influences the distance, following the
definition by Day (1985).

Value

A single non-negative number, representing the distance between the two trees.

Author(s)

Stilianos Louca

References

Robinson, D. R., Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Bio-
sciences. 53: 131-147.

Day, W. H. E. (1985). Optimal algorithms for comparing trees with labeled leaves. Journal of
Classification. 2:7-28.

Steel, M. A., Penny D. (1993). Distributions of tree comparison metrics - Some new results. Sys-
tematic Biology. 42:126-141.

Ramdas, A. et al. (2017). On Wasserstein two-sample testing and related families of nonparametric
tests. Entropy. 19(2):47.

Lewitus, E. and Morlon, H. (2016). Characterizing and comparing phylogenies from their laplacian
spectrum. Systematic Biology. 65:495-507.

tree_from_branching_ages 389

See Also

congruent_divergence_times

Examples

generate a random tree
Ntips = 1000
treeA = generate_random_tree(list(birth_rate_intercept=1),

max_tips=Ntips)$tree

create a second tree with slightly different topology
treeB = treeA
shuffled_tips = sample.int(Ntips, size=Ntips/10, replace=FALSE)
treeB$tip.label[shuffled_tips] = treeB$tip.label[sample(shuffled_tips)]

calculate Robinson-Foulds distance between trees
distance = tree_distance(treeA, treeB, metric="RFrooted")

tree_from_branching_ages

Generate a random timetree with specific branching ages.

Description

Generate a random timetree based on specific branching ages (time before present), by randomly
connecting tips and nodes. The tree’s root will have the greatest age provided. The tree thus
corresponds to a homogenous birth-death model, i.e. where at any given time point all lineages
were equally likely to split or go extinct.

Usage

tree_from_branching_ages(branching_ages,
tip_basename = "",
node_basename = NULL,
edge_basename = NULL)

Arguments

branching_ages Numeric vector of size Nnodes, listing branching ages (time before present) in
ascending order. The last entry will be the root age.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

edge_basename Character. Prefix to be used for edge labels (e.g. "edge."). Edge labels (if
included) are stored in the character vector edge.label. If NULL, no edge labels
will be included in the tree.

390 tree_from_sampling_branching_ages

Details

Tips in the generated tree are guaranteed to be connected in random order, i.e. this function can also
be used to connect a random set of labeled tips into a tree. Nodes will be indexed in chronological
order (i.e. in order of decreasing age). In particular, node 0 will be the root.

Value

A named list with the following elements:

success Logical, indicating whether the tree was successfully generated. If FALSE, the
only other value returned is error.

tree A rooted, ultrametric bifurcating tree of class "phylo", with the requested branch-
ing ages.

error Character, containing an explanation of the error that occurred. Only included
if success==FALSE.

Author(s)

Stilianos Louca

See Also

tree_from_sampling_branching_ages

Examples

Nnodes = 100
branching_intervals = rexp(n=Nnodes, rate=1)
branching_ages = cumsum(branching_intervals)
tree = castor::tree_from_branching_ages(branching_ages)$tree

tree_from_sampling_branching_ages

Generate a random timetree with specific tip/sampling and
node/branching ages.

Description

Generate a random bifurcating timetree based on specific sampling (tip) ages and branching (node)
ages, by randomly connecting tips and nodes. Age refers to time before present, i.e., measured in
reverse chronological direction. The tree’s root will have the greatest age provided. The tree thus
corresponds to a homogenous birth-death-sampling model, i.e. where at any given time point all
lineages were equally likely to split, be sampled or go extinct.

tree_from_sampling_branching_ages 391

Usage

tree_from_sampling_branching_ages(sampling_ages,
branching_ages,
tip_basename = "",
node_basename = NULL,
edge_basename = NULL)

Arguments

sampling_ages Numeric vector of size Ntips, listing sampling ages (time before present) in
ascending order.

branching_ages Numeric vector of size Nnodes, listing branching ages (time before present) in
ascending order. The last entry will be the root age. Note that Nnodes must be
equal to Ntips-1.

tip_basename Character. Prefix to be used for tip labels (e.g. "tip."). If empty (""), then tip
labels will be integers "1", "2" and so on.

node_basename Character. Prefix to be used for node labels (e.g. "node."). If NULL, no node
labels will be included in the tree.

edge_basename Character. Prefix to be used for edge labels (e.g. "edge."). Edge labels (if
included) are stored in the character vector edge.label. If NULL, no edge labels
will be included in the tree.

Details

Tips and nodes will be indexed in chronological order (i.e. in order of decreasing age). In particular,
node 0 will be the root. Note that not all choices of sampling_ages and branching_ages are
permissible. Specifically, at any given age T, the number of sampling events with age equal or
smaller than T must be greater than the number of branching events with age equal or smaller than
T. If this requirement is not satisfied, the function will return with an error.

Value

A named list with the following elements:

success Logical, indicating whether the tree was successfully generated. If FALSE, the
only other value returned is error.

tree A rooted, ultrametric bifurcating tree of class "phylo", with the requested tip and
node ages.

error Character, containing an explanation of the error that occurred. Only included
if success==FALSE.

Author(s)

Stilianos Louca

392 tree_from_taxa

See Also

tree_from_branching_ages

Examples

sampling_ages = c(0, 0.1, 0.15, 0.25, 0.9, 1.9, 3)
branching_ages = c(0.3, 0.35, 0.4, 1.1, 2.5, 3.5)
tree = tree_from_sampling_branching_ages(sampling_ages, branching_ages)$tree

tree_from_taxa Construct a rooted tree from lists of taxa.

Description

Given a collection of taxon lists, construct a rooted taxonomic tree. Each taxon list is defined by a
parent name and the names of its children (i.e., immediate descendants).

Usage

tree_from_taxa(taxa)

Arguments

taxa Named list, whose elements are character vectors, each representing a parent and
its children. The element names of taxa are parents. Each element taxa[n] is a
character vector listing an arbitrary number of taxon names (the children), which
immediately descend from taxon names(taxa)[n].

Details

The following rules apply:

• Each taxon must appear at most once as a parent and at most once as a child.

• Any taxa found as parents but not as children, will be assumed to descend directly from the
root. If only one such taxon was found, it will become the root itself.

• Any taxa found as a child but not as a parent, will become tips.

• Any parents without children will be considered tips.

• Empty parent names (i.e., "") are not allowed.

• Taxa can be specified in any arbitrary order, including breadth-first, depth-first etc.

Since the returned tree is a taxonomy, it will contain no edge lengths.

Value

A rooted tree of class "phylo".

tree_imbalance 393

Author(s)

Stilianos Louca

See Also

consensus_taxonomies, place_tips_taxonomically

Examples

define a list of taxa, with taxon "A" being the root
Taxa G, H, I, J, K, L, M, N and O will be tips
taxa = list(A = c("B","C","D"),

B = c("E","I"),
C = c("J","F"),
D = c("M", "N", "O"),
E = c("G", "H"),
F = c("K", "L"))

tree = castor::tree_from_taxa(taxa)

tree_imbalance Calculate various imbalance statistics for a tree.

Description

Given a rooted phylogenetic tree, calculate various "imbalance" statistics of the tree, such as Col-
less’ Index or Sackin’s Index.

Usage

tree_imbalance(tree, type)

Arguments

tree A rooted tree of class "phylo".

type Character, specifying the statistic to be calculated. Must be one of "Colless"
(Shao 1990), "Colless_normalized" (Colless normalized by the maximum pos-
sible value in the case of a bifurcating tree), "Sackin" (Sackin 1972) or "Blum"
(Blum and Francois 2006, Eq. 5).

Details

The tree may include multifurcations and monofurcations. Note that the Colless Index is tradition-
ally only defined for bifurcating trees. For non-bifurcating trees this function calculates a general-
ization of the index, by summing over all children pairs at each node.

The Blum statistic is the sum of natural logarithms of the sizes (number of descending tips) of
non-monofurcating nodes.

394 trim_tree_at_height

Value

Numeric, the requested imbalance statistic of the tree.

Author(s)

Stilianos Louca

References

M. J. Sackin (1972). "Good" and "Bad" Phenograms. Systematic Biology. 21:225-226.

K.T. Shao, R. R. Sokal (1990). Tree Balance. Systematic Biology. 39:266-276.

M. G. B. Blum and O. Francois (2006). Which random processes describe the Tree of Life? A
large-scale study of phylogenetic tree imbalance. Systematic Biology. 55:685-691.

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

calculate Colless statistic
colless_index = tree_imbalance(tree, type="Colless")

trim_tree_at_height Trim a rooted tree down to a specific height.

Description

Given a rooted phylogenetic tree and a maximum allowed distance from the root (“height”), remove
tips and nodes and shorten the remaining terminal edges so that the tree’s height does not exceed
the specified threshold. This corresponds to drawing the tree in rectangular layout and trimming
everything beyond a specific phylogenetic distance from the root. Tips or nodes at the end of
trimmed edges are kept, and the affected edges are shortened.

Usage

trim_tree_at_height(tree, height = Inf, by_edge_count = FALSE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

height Numeric, specifying the phylogenetic distance from the root at which to trim.

by_edge_count Logical. Instead of considering edge lengths, consider edge counts as phyloge-
netic distance. This is the same as if all edges had length equal to 1.

trim_tree_at_height 395

Details

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child).

Tip labels and uncollapsed node labels of the collapsed tree are inheritted from the original tree.
Labels of tips that used to be nodes (i.e. of which all descendants have been removed) will be the
node labels from the original tree. If the input tree has no node names, it is advised to first add node
names to avoid NA in the resulting tip names.

Value

A list with the following elements:

tree A new rooted tree of class "phylo", representing the trimmed tree.

Nedges_trimmed Integer. Number of edges trimmed (shortened).

Nedges_removed Integer. Number of edges removed.

new2old_clade Integer vector of length equal to the number of tips+nodes in the trimmed tree,
with values in 1,..,Ntips+Nnodes, mapping tip/node indices of the trimmed tree
to tip/node indices in the original tree. In particular,
c(tree$tip.label,tree$node.label)[new2old_clade]

will be equal to:
c(trimmed_tree$tip.label,trimmed_tree$node.label).

new2old_edge Integer vector of length equal to the number of edges in the trimmed tree, with
values in 1,..,Nedges, mapping edge indices of the trimmed tree to edge indices
in the original tree. In particular, tree$edge.length[new2old_edge] will be
equal to trimmed_tree$edge.length (if edge lengths are available).

new_edges_trimmed

Integer vector, listing edge indices in the trimmed tree that we originally longer
edges and have been trimmed. In other words, these are the edges that "crossed"
the trimming height.

Author(s)

Stilianos Louca

See Also

split_tree_at_height

Examples

generate a random tree, include node names
tree = generate_random_tree(list(birth_rate_intercept=1),

max_time=1000,
node_basename="node.")$tree

print number of tips
cat(sprintf("Simulated tree has %d tips\n",length(tree$tip.label)))

396 write_tree

trim tree at height 500
trimmed = trim_tree_at_height(tree, height=500)$tree

print number of tips in trimmed tree
cat(sprintf("Trimmed tree has %d tips\n",length(trimmed$tip.label)))

write_tree Write a tree in Newick (parenthetic) format.

Description

Write a phylogenetic tree to a file or a string, in Newick (parenthetic) format. If the tree is unrooted,
it is first rooted internally at the first node.

Usage

write_tree (tree,
file = "",
append = FALSE,
digits = 10,
quoting = 0,
include_edge_labels = FALSE,
include_edge_numbers = FALSE)

Arguments

tree A tree of class "phylo".

file An optional path to a file, to which the tree should be written. The file may be
overwritten without warning. If left empty (default), then a string is returned
representing the tree.

append Logical, specifying whether the tree should be appended at the end of the file,
rather than replacing the entire file (if it exists).

digits Integer, number of significant digits for writing edge lengths.

quoting Integer, specifying whether and how to quote tip/node/edge names, as follows:
0:no quoting at all, 1:always use single quotes, 2:always use double quotes, -
1:only quote when needed and prefer single quotes if possible, -2:only quote
when needed and prefer double quotes if possible.

include_edge_labels

Logical, specifying whether to include edge labels (if available) in the output
tree, inside square brackets. Note that this is an extension (Matsen et al. 2012)
to the standard Newick format, as, and edge labels in square brackets may not
be supported by all Newick readers.

include_edge_numbers

Logical, specifying whether to include edge numbers (if available) in the output
tree, inside curly braces. Note that this is an extension (Matsen et al. 2012)
to the standard Newick format, and edge numbers in curly braces may not be
supported by all Newick readers.

write_tree 397

Details

If your tip and/or node and/or edge labels contain special characters (round brackets, commas,
colons or quotes) then you should set quoting to non-zero, as appropriate.

If the tree contains edge labels (as a character vector named edge.label) and include_edge_labels==TRUE,
then edge labels are written in square brackets (Matsen et al. 2012). If tree contains edge num-
bers (as an integer vector named edge.number) and include_edge_numbers==TRUE, then edge
numbers are written in curly braces (Matsen et al. 2012).

This function is comparable to (but typically much faster than) the ape function write.tree.

Value

If file=="", then a string is returned containing the Newick representation of the tree. Otherwise,
the tree is directly written to the file and no value is returned.

Author(s)

Stilianos Louca

References

Frederick A. Matsen et al. (2012). A format for phylogenetic placements. PLOS One. 7:e31009

See Also

read_tree

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=100)$tree

obtain a string representation of the tree in Newick format
Newick_string = write_tree(tree)

Index

∗ BM model
asr_independent_contrasts, 7
asr_squared_change_parsimony, 18
fit_and_compare_bm_models, 70
fit_bm_model, 77
generate_tree_with_evolving_rates,

228
get_independent_contrasts, 245
get_independent_sister_tips, 248
get_random_diffusivity_matrix, 253
hsp_independent_contrasts, 279
hsp_squared_change_parsimony, 291
simulate_bm_model, 346

∗ BiSSE
fit_musse, 155
get_transition_index_matrix, 270
simulate_dsse, 361
simulate_tdsse, 377

∗ HBDS
model_adequacy_hbds, 315

∗ HiSSE
fit_musse, 155
get_transition_index_matrix, 270

∗ MRCA
extract_deep_frame, 56
get_mrca_of_set, 249
get_pairwise_mrcas, 252
get_tips_for_mrcas, 263
is_monophyletic, 296

∗ Mk model
asr_mk_model, 13
count_transitions_between_clades,

43
fit_mk, 150
generate_tree_with_evolving_rates,

228
get_random_mk_transition_matrix,

254
get_stationary_distribution, 257

get_transition_index_matrix, 270
hsp_mk_model, 284
simulate_mk_model, 368

∗ MuSSE
fit_musse, 155
get_transition_index_matrix, 270
simulate_dsse, 361
simulate_tdsse, 377

∗ OU model
simulate_ou_model, 370
simulate_rou_model, 372

∗ Ornstein-Uhlenbeck
mean_abs_change_scalar_ou, 304

∗ SBM model
expected_distances_sbm, 52
fit_and_compare_sbm_const, 73
fit_sbm_const, 168
fit_sbm_geobiased_const, 173
fit_sbm_linear, 179
fit_sbm_on_grid, 185
fit_sbm_parametric, 191
simulate_sbm, 374

∗ Sankoff’s algorithm
asr_empirical_probabilities, 5
asr_max_parsimony, 10
hsp_empirical_probabilities, 277
hsp_max_parsimony, 282

∗ algebra
exponentiate_matrix, 53
map_to_state_space, 303

∗ ancestor
get_ancestral_nodes, 242

∗ ancestral state reconstruction
asr_empirical_probabilities, 5
asr_independent_contrasts, 7
asr_max_parsimony, 10
asr_mk_model, 13
asr_squared_change_parsimony, 18
asr_subtree_averaging, 20

398

INDEX 399

fit_mk, 150
hsp_binomial, 273
hsp_empirical_probabilities, 277
hsp_independent_contrasts, 279
hsp_max_parsimony, 282
hsp_mk_model, 284
hsp_squared_change_parsimony, 291
hsp_subtree_averaging, 293
map_to_state_space, 303

∗ bifurcation
is_bifurcating, 295

∗ birth-death model
congruent_hbds_model, 29
fit_hbd_model_on_grid, 100
fit_hbd_model_parametric, 106
fit_hbd_pdr_on_best_grid_size, 114
fit_hbd_pdr_on_grid, 119
fit_hbd_pdr_parametric, 126
fit_hbd_psr_on_best_grid_size, 132
fit_hbd_psr_on_grid, 137
fit_hbd_psr_parametric, 143
generate_tree_hbd_reverse, 223
simulate_deterministic_hbd, 348
simulate_deterministic_hbds, 352

∗ birth-death-sampling model
fit_hbds_model_on_grid, 80
fit_hbds_model_parametric, 92
generate_tree_hbds, 218

∗ dating
congruent_divergence_times, 26
date_tree_red, 44
shift_clade_times, 344

∗ dispersal
correlate_phylo_geodistances, 38
fit_sbm_const, 168
fit_sbm_geobiased_const, 173
fit_sbm_linear, 179
fit_sbm_on_grid, 185
fit_sbm_parametric, 191
geographic_acf, 233

∗ exponential
exponentiate_matrix, 53

∗ fitting
fit_sbm_const, 168
fit_sbm_geobiased_const, 173
fit_sbm_linear, 179
fit_sbm_on_grid, 185
fit_sbm_parametric, 191

fit_tree_model, 199
reconstruct_past_diversification,

329
∗ gene tree

generate_gene_tree_msc, 205
generate_gene_tree_msc_hgt_dl, 208

∗ hidden state prediction
hsp_binomial, 273
hsp_empirical_probabilities, 277
hsp_independent_contrasts, 279
hsp_max_parsimony, 282
hsp_mk_model, 284
hsp_nearest_neighbor, 289
hsp_squared_change_parsimony, 291
hsp_subtree_averaging, 293

∗ homogenous birth-death model
loglikelihood_hbd, 299

∗ joining trees
join_rooted_trees, 297

∗ lineages through time
clade_densities, 21
count_lineages_through_time, 40

∗ maximum likelihood
asr_mk_model, 13
fit_mk, 150
hsp_mk_model, 284

∗ maximum parsimony
asr_empirical_probabilities, 5
asr_independent_contrasts, 7
asr_max_parsimony, 10
asr_squared_change_parsimony, 18
hsp_empirical_probabilities, 277
hsp_independent_contrasts, 279
hsp_max_parsimony, 282
hsp_squared_change_parsimony, 291

∗ multifurcations
collapse_monofurcations, 23
merge_nodes_to_multifurcations,

306
merge_short_edges, 308
multifurcations_to_bifurcations,

321
∗ phylogenetic distance

extract_tip_radius, 60
get_all_distances_to_root, 236
get_all_distances_to_tip, 238
get_all_node_depths, 239
get_all_pairwise_distances, 240

400 INDEX

get_pairwise_distances, 250
get_tree_span, 271
shift_clade_times, 344

∗ phylogeography
correlate_phylo_geodistances, 38
fit_sbm_const, 168
fit_sbm_geobiased_const, 173
fit_sbm_linear, 179
fit_sbm_on_grid, 185
fit_sbm_parametric, 191
geographic_acf, 233

∗ placement
expanded_tree_from_jplace, 50
place_tips_taxonomically, 324

∗ pruning
collapse_tree_at_resolution, 24
extract_tip_neighborhood, 58
extract_tip_radius, 60
get_subtree_at_node, 259
get_subtree_with_tips, 261
get_subtrees_at_nodes, 258
split_tree_at_height, 385
trim_tree_at_height, 394

∗ pulled diversification rate
fit_hbd_pdr_on_best_grid_size, 114

∗ pulled speciation rate
fit_hbd_psr_on_best_grid_size, 132
fit_hbd_psr_on_grid, 137

∗ random
fit_musse, 155
fit_sbm_const, 168
fit_sbm_geobiased_const, 173
fit_sbm_linear, 179
fit_sbm_on_grid, 185
fit_sbm_parametric, 191
generate_gene_tree_msc, 205
generate_gene_tree_msc_hgt_dl, 208
generate_random_tree, 214
generate_tree_with_evolving_rates,

228
get_random_diffusivity_matrix, 253
get_random_mk_transition_matrix,

254
pick_random_tips, 322
simulate_bm_model, 346
simulate_dsse, 361
simulate_mk_model, 368
simulate_ou_model, 370

simulate_rou_model, 372
simulate_sbm, 374
simulate_tdsse, 377
tree_from_branching_ages, 389
tree_from_sampling_branching_ages,

390
∗ relative evolutionary divergence

date_tree_red, 44
get_reds, 255

∗ rerooting
asr_mk_model, 13
fit_mk, 150
hsp_mk_model, 284

∗ rooting
root_at_midpoint, 336
root_at_node, 338
root_in_edge, 339
root_via_outgroup, 341
root_via_rtt, 342

∗ simulation
congruent_hbds_model, 29
fit_sbm_const, 168
fit_sbm_geobiased_const, 173
fit_sbm_linear, 179
fit_sbm_on_grid, 185
fit_sbm_parametric, 191
generate_gene_tree_msc, 205
generate_gene_tree_msc_hgt_dl, 208
generate_random_tree, 214
generate_tree_hbd_reverse, 223
generate_tree_hbds, 218
generate_tree_with_evolving_rates,

228
simulate_bm_model, 346
simulate_deterministic_hbd, 348
simulate_deterministic_hbds, 352
simulate_diversification_model,

357
simulate_dsse, 361
simulate_mk_model, 368
simulate_ou_model, 370
simulate_rou_model, 372
simulate_sbm, 374
simulate_tdsse, 377
tree_from_branching_ages, 389
tree_from_sampling_branching_ages,

390
∗ skyline model

INDEX 401

fit_hbd_model_on_grid, 100
fit_hbds_model_on_grid, 80

∗ stationary distribution
get_stationary_distribution, 257

∗ subtree
collapse_tree_at_resolution, 24
extract_tip_neighborhood, 58
extract_tip_radius, 60
get_subtree_at_node, 259
get_subtree_with_tips, 261
get_subtrees_at_nodes, 258

∗ taxonomy
consensus_taxonomies, 33
place_tips_taxonomically, 324
tree_from_taxa, 392

∗ trait evolution
consentrait_depth, 35
discrete_trait_depth, 46
get_trait_acf, 264
get_trait_stats_over_time, 267

∗ traversal
get_tree_traversal_root_to_tips,

272
reorder_tree_edges, 335

∗ tree comparison
congruent_divergence_times, 26
tree_distance, 386

∗ tree model
congruent_hbds_model, 29
fit_hbd_model_on_grid, 100
fit_hbd_model_parametric, 106
fit_hbd_pdr_on_best_grid_size, 114
fit_hbd_pdr_on_grid, 119
fit_hbd_pdr_parametric, 126
fit_hbd_psr_on_best_grid_size, 132
fit_hbd_psr_on_grid, 137
fit_hbd_psr_parametric, 143
fit_hbds_model_on_grid, 80
fit_hbds_model_parametric, 92
fit_musse, 155
fit_tree_model, 199
generate_gene_tree_msc, 205
generate_gene_tree_msc_hgt_dl, 208
generate_random_tree, 214
generate_tree_hbd_reverse, 223
generate_tree_hbds, 218
generate_tree_with_evolving_rates,

228

loglikelihood_hbd, 299
reconstruct_past_diversification,

329
simulate_deterministic_hbd, 348
simulate_deterministic_hbds, 352
simulate_diversification_model,

357
simulate_dsse, 361
simulate_tdsse, 377
tree_from_branching_ages, 389
tree_from_sampling_branching_ages,

390
∗ ultrametric

congruent_divergence_times, 26
date_tree_red, 44
extend_tree_to_height, 55

asr_empirical_probabilities, 5, 278
asr_independent_contrasts, 7, 19, 21, 247,

280
asr_max_parsimony, 7, 9, 10, 17, 19, 282–284
asr_mk_model, 7, 9, 12, 13, 19, 153, 154, 158,

166, 284, 286, 288, 303
asr_squared_change_parsimony, 7, 9, 12,

17, 18, 21, 281, 292
asr_subtree_averaging, 20, 294

castor (castor-package), 4
castor-package, 4
clade_densities, 21
collapse_monofurcations, 23, 307, 322
collapse_tree_at_resolution, 24
congruent_divergence_times, 26, 46, 389
congruent_hbds_model, 29
consensus_taxonomies, 33, 393
consentrait_depth, 35, 47, 48, 236, 267
correlate_phylo_geodistances, 38, 236
count_lineages_through_time, 40, 333,

360
count_tips_per_node, 42
count_transitions_between_clades, 43

date_tree_red, 28, 44
discrete_trait_depth, 37, 46

evaluate_spline, 49, 88, 104, 118, 123, 125,
141, 384

expanded_tree_from_jplace, 50, 325
expected_distances_sbm, 52

402 INDEX

exponentiate_matrix, 53, 255, 257, 370
extend_tree_to_height, 28, 55
extract_deep_frame, 56
extract_fasttree_constraints, 57
extract_tip_neighborhood, 58
extract_tip_radius, 60

find_farthest_tip_pair, 64
find_farthest_tips, 62, 65, 67
find_nearest_tips, 63, 65, 65
find_root, 67, 69
find_root_of_monophyletic_tips, 68, 68
fit_and_compare_bm_models, 70
fit_and_compare_sbm_const, 73
fit_bm_model, 70–72, 77, 347
fit_hbd_model_on_grid, 100, 112, 118, 125,

131, 136, 142, 148, 302, 329, 333
fit_hbd_model_parametric, 105, 106, 118,

125, 131, 136, 142, 148, 302, 329,
333

fit_hbd_pdr_on_best_grid_size, 114, 136
fit_hbd_pdr_on_grid, 103, 105, 112, 114,

117, 118, 119, 131, 136, 142, 148,
302, 329

fit_hbd_pdr_parametric, 105, 112, 118,
125, 126, 136, 142, 148, 302, 329

fit_hbd_psr_on_best_grid_size, 118, 132,
142

fit_hbd_psr_on_grid, 103, 105, 118, 132,
136, 137, 329

fit_hbd_psr_parametric, 131, 143
fit_hbds_model_on_grid, 80, 98, 112
fit_hbds_model_parametric, 32, 90, 92,

222, 357
fit_mk, 16, 17, 150
fit_musse, 154, 155, 368, 382
fit_sbm_const, 53, 73, 75, 76, 168, 175,

182–184, 188, 190, 196, 198, 376
fit_sbm_geobiased_const, 171, 172, 173
fit_sbm_linear, 76, 172, 178, 179, 190, 198
fit_sbm_on_grid, 172, 178, 184, 185
fit_sbm_parametric, 76, 172, 178, 179, 181,

184, 188, 190, 191
fit_tree_model, 159, 166, 199, 333

gamma_statistic, 204
generate_gene_tree_msc, 205, 211, 213,

222
generate_gene_tree_msc_hgt_dl, 208, 208

generate_random_tree, 199, 203, 208, 213,
214, 222, 226, 227, 333, 359, 360

generate_tree_hbd_reverse, 222, 223
generate_tree_hbds, 32, 99, 218, 315, 320,

357
generate_tree_with_evolving_rates, 228
geographic_acf, 39, 233, 267
get_all_distances_to_root, 236, 239, 241,

251, 345
get_all_distances_to_tip, 61, 238
get_all_node_depths, 239
get_all_pairwise_distances, 238, 240,

251
get_ancestral_nodes, 242
get_clade_list, 243
get_independent_contrasts, 72, 80, 245,

248
get_independent_sister_tips, 247, 248
get_mrca_of_set, 242, 249, 253, 264, 296
get_pairwise_distances, 237, 238, 241,

250, 271
get_pairwise_mrcas, 57, 242, 250, 252, 264
get_random_diffusivity_matrix, 253
get_random_mk_transition_matrix, 254,

254, 270
get_reds, 255
get_stationary_distribution, 255, 257,

369, 370
get_subtree_at_node, 42, 259, 259, 262
get_subtree_with_tips, 60, 259, 260, 261
get_subtrees_at_nodes, 258
get_tips_for_mrcas, 28, 57, 250, 253, 263
get_trait_acf, 37, 48, 236, 264
get_trait_stats_over_time, 267
get_transition_index_matrix, 158, 270
get_tree_span, 271, 345
get_tree_traversal_root_to_tips, 272,

336

hsp_binomial, 273
hsp_empirical_probabilities, 274, 276,

277
hsp_independent_contrasts, 8, 279
hsp_max_parsimony, 11, 12, 17, 276, 279,

281, 282, 288, 290, 292
hsp_mk_model, 12, 17, 276, 277, 279, 281,

284, 284, 290, 292
hsp_nearest_neighbor, 289

INDEX 403

hsp_squared_change_parsimony, 288, 291,
294

hsp_subtree_averaging, 293

is_bifurcating, 295
is_monophyletic, 296

join_rooted_trees, 297

loglikelihood_hbd, 105, 112, 118, 125, 131,
136, 142, 148, 227, 299, 352

map_to_state_space, 6, 7, 11, 12, 15, 17,
153, 278, 279, 283, 284, 287, 288,
292, 303, 369

mean_abs_change_scalar_ou, 304
merge_nodes_to_multifurcations, 306
merge_short_edges, 308
model_adequacy_hbd, 118, 125, 131, 136,

142, 148, 310, 320
model_adequacy_hbds, 314, 315
multifurcations_to_bifurcations, 24,

307, 309, 321

pick_random_tips, 322
place_tips_taxonomically, 34, 51, 324,

393

read_fasta, 325
read_tree, 326, 327, 397
reconstruct_past_diversification, 203,

329
reorder_tree_edges, 273, 335
root_at_midpoint, 68, 336, 339, 340, 342,

343
root_at_node, 59, 61, 68, 235, 238, 241, 251,

266, 338, 338, 340, 342, 343
root_in_edge, 338, 339, 339, 342, 343
root_via_outgroup, 338–340, 341, 343
root_via_rtt, 338–340, 342, 342

shift_clade_times, 344
simulate_bm_model, 71, 72, 80, 229, 230,

254, 346, 370, 372, 373, 376
simulate_deterministic_hbd, 105, 112,

118, 125, 131, 136, 142, 148, 226,
227, 302, 310, 311, 314, 348, 357

simulate_deterministic_hbds, 29, 32, 90,
99, 222, 320, 352

simulate_diversification_model, 203,
357

simulate_dsse, 166, 232, 359, 361, 377, 381,
382

simulate_mk_model, 154, 347, 368, 372, 373
simulate_musse, 382
simulate_musse (simulate_dsse), 361
simulate_ou_model, 306, 347, 370, 370, 372,

373, 376
simulate_rou_model, 347, 370, 372, 372,

376
simulate_sbm, 75, 76, 172, 175, 178, 184,

190, 198, 234, 374
simulate_tdsse, 368, 377
spline_coefficients, 50, 383
split_tree_at_height, 298, 385, 395

tree_distance, 28, 386
tree_from_branching_ages, 389, 392
tree_from_sampling_branching_ages, 390,

390
tree_from_taxa, 392
tree_imbalance, 393
trim_tree_at_height, 56, 345, 386, 394

write_tree, 329, 396

	castor-package
	asr_empirical_probabilities
	asr_independent_contrasts
	asr_max_parsimony
	asr_mk_model
	asr_squared_change_parsimony
	asr_subtree_averaging
	clade_densities
	collapse_monofurcations
	collapse_tree_at_resolution
	congruent_divergence_times
	congruent_hbds_model
	consensus_taxonomies
	consentrait_depth
	correlate_phylo_geodistances
	count_lineages_through_time
	count_tips_per_node
	count_transitions_between_clades
	date_tree_red
	discrete_trait_depth
	evaluate_spline
	expanded_tree_from_jplace
	expected_distances_sbm
	exponentiate_matrix
	extend_tree_to_height
	extract_deep_frame
	extract_fasttree_constraints
	extract_tip_neighborhood
	extract_tip_radius
	find_farthest_tips
	find_farthest_tip_pair
	find_nearest_tips
	find_root
	find_root_of_monophyletic_tips
	fit_and_compare_bm_models
	fit_and_compare_sbm_const
	fit_bm_model
	fit_hbds_model_on_grid
	fit_hbds_model_parametric
	fit_hbd_model_on_grid
	fit_hbd_model_parametric
	fit_hbd_pdr_on_best_grid_size
	fit_hbd_pdr_on_grid
	fit_hbd_pdr_parametric
	fit_hbd_psr_on_best_grid_size
	fit_hbd_psr_on_grid
	fit_hbd_psr_parametric
	fit_mk
	fit_musse
	fit_sbm_const
	fit_sbm_geobiased_const
	fit_sbm_linear
	fit_sbm_on_grid
	fit_sbm_parametric
	fit_tree_model
	gamma_statistic
	generate_gene_tree_msc
	generate_gene_tree_msc_hgt_dl
	generate_random_tree
	generate_tree_hbds
	generate_tree_hbd_reverse
	generate_tree_with_evolving_rates
	geographic_acf
	get_all_distances_to_root
	get_all_distances_to_tip
	get_all_node_depths
	get_all_pairwise_distances
	get_ancestral_nodes
	get_clade_list
	get_independent_contrasts
	get_independent_sister_tips
	get_mrca_of_set
	get_pairwise_distances
	get_pairwise_mrcas
	get_random_diffusivity_matrix
	get_random_mk_transition_matrix
	get_reds
	get_stationary_distribution
	get_subtrees_at_nodes
	get_subtree_at_node
	get_subtree_with_tips
	get_tips_for_mrcas
	get_trait_acf
	get_trait_stats_over_time
	get_transition_index_matrix
	get_tree_span
	get_tree_traversal_root_to_tips
	hsp_binomial
	hsp_empirical_probabilities
	hsp_independent_contrasts
	hsp_max_parsimony
	hsp_mk_model
	hsp_nearest_neighbor
	hsp_squared_change_parsimony
	hsp_subtree_averaging
	is_bifurcating
	is_monophyletic
	join_rooted_trees
	loglikelihood_hbd
	map_to_state_space
	mean_abs_change_scalar_ou
	merge_nodes_to_multifurcations
	merge_short_edges
	model_adequacy_hbd
	model_adequacy_hbds
	multifurcations_to_bifurcations
	pick_random_tips
	place_tips_taxonomically
	read_fasta
	read_tree
	reconstruct_past_diversification
	reorder_tree_edges
	root_at_midpoint
	root_at_node
	root_in_edge
	root_via_outgroup
	root_via_rtt
	shift_clade_times
	simulate_bm_model
	simulate_deterministic_hbd
	simulate_deterministic_hbds
	simulate_diversification_model
	simulate_dsse
	simulate_mk_model
	simulate_ou_model
	simulate_rou_model
	simulate_sbm
	simulate_tdsse
	spline_coefficients
	split_tree_at_height
	tree_distance
	tree_from_branching_ages
	tree_from_sampling_branching_ages
	tree_from_taxa
	tree_imbalance
	trim_tree_at_height
	write_tree
	Index

