Package ‘businessPlanR’

August 15, 2023

Type Package
Title Simple Modelling Tools for Business Plans

Description A collection of S4 classes, methods and functions to create
and visualize business plans. Different types of cash flows can be
defined, which can then be used and tabulated to create profit and
loss statements, cash flow plans, investment and depreciation
schedules, loan amortization schedules, etc. The methods are
designed to produce handsome tables in both PDF and HTML using
'RMarkdown' or 'Shiny'.

Depends R (>=4.0.0)
Imports methods,kableExtra knitr
Suggests testthat,rmarkdown,shiny
VignetteBuilder knitr

URL https://www.c3s.cc

BugReports https://github.com/C3S/businessPlanR/issues
License GPL (>=3)

Encoding UTF-8

LazyLoad yes

Version 0.1-0

Date 2023-08-14

RoxygenNote 7.2.2

Collate '00_environment.R' '01_class_01_operations.R'
'01_class_02_transaction.R' '01_class_03_revenue.R'
'01_class_04_expense.R' '01_class_05_loan.R'
'01_class_06_depreciation.R' '01_class_07_transaction_plan.R’
'02_method_barplot.R' '02_method_condense.R'
'02_method_get_set_as.R' '02_method_kable_bpR.R'
'02_method_kbl_by_types.R' '02_method_model2df.R’
'02_method_update_operations.R' '02_method_update_plan.R'
'businessPlanR-package.R' 'businessPlanR _internal.R’
'calc_staff.R' 'fin_needs.R' 'first_last.R' 'growth.R’

1

https://www.c3s.cc
https://github.com/C3S/businessPlanR/issues

R topics documented:

'model_node.R' 'nice_numbers.R' 'options.R' ‘permalink2list.R’
'regularly.R' 'regularly_delayed.R'

NeedsCompilation no

Author Meik Michalke [aut, cre]

Maintainer Meik Michalke <meik.michalke@c3s.cc>

Repository CRAN

Date/Publication 2023-08-15 11:20:09 UTC

R topics documented:

Index

businessPlanR-package 3
barplot L e e e 3
calc_staff L L e 4
CONAENSE . . . v v vt e e e e e e e e e e e e e e e e e 5
depreciation,-class L. L 6
EXPense,-Class e 8
fin_needs s 10
first_1ast e s 11
GELTEVENUE . .« . v v v v v et e e e e e e e e e e e e e e e e e e 12
growth . . . L L e e 16
kable_ bpR e e 17
KbI_by_types o o e e e e 20
loan,-Class e e 21
model2df e e 23
NICE NUMDELS o o o o e e e e e e 24
operations,-class L e 25
permalink2list e 27
regularly L L e 28
regularly_delayed 29
TEVENUE,-ClasS o e e 30
SELEYPES .« v i e e e e 32
table_model e 33
transaction,-class e 34
transaction_plan,-class 35
update_Operations<-o i e 36
update_plan<- e e e 37

39

barplot

businessPlanR-package Simple Modelling Tools for Business Plans

Description

A collection of S4 classes, methods and functions to create and visualize business plans. Differ-
ent types of cash flows can be defined, which can then be used and tabulated to create profit and
loss statements, cash flow plans, investment and depreciation schedules, loan amortization sched-
ules, etc. The methods are designed to produce handsome tables in both PDF and HTML using

’RMarkdown’ or ’Shiny’.

Details
The DESCRIPTION file:

Package:
Type:
Version:
Date:
Depends:
Encoding:
License:

LazyLoad:

URL:

Author(s)

NA
Maintainer: NA

See Also
Useful links:

e https://www.c3s.cc

businessPlanR
Package

0.1-0
2023-08-14

R (>=4.0.0)
UTEF-8

GPL (>=3)
yes

https://www.c3s.cc

* Report bugs at https://github.com/C3S/businessPlanR/issues

barplot Plot business plan transactions

Description

Plot business plan transactions

https://www.c3s.cc
https://github.com/C3S/businessPlanR/issues

4 calc_staff
Usage
barplot(height,)
S4 method for signature 'revenue'
barplot(height, resolution = "month”, types = "default”, ...)
S4 method for signature 'expense'
barplot(height, resolution = "month”, types = "default”, ...)
S4 method for signature 'operations'
barplot(height, resolution = "month”, scope = "profit”,
types = "default”, ...)
Arguments
height An object of class operations, revenue or expense
Any other argument suitable for barplot().
resolution One of "month”, "quarter”, or "year".
types Character string naming the model types defined by set_types to be used.
scope One of "revenue”, "expense”, "rev_exp"”, "profit".
Value
See barplot.
calc_staff Calculate the number of staff persons necessary to complete a task
Description
Calculates two values (split by "boom_months’) and returns both in a vector, so that there’s never a
shortage of staff.
Usage
calc_staff(
task,
workdays = 205,
hours = 8,
rnd = 0.25,

boom_months = 6,
boom_pct = 0.5

condense 5

Arguments
task The total number of hours to get done in one year.
workdays Numeric, average total working days for a staff person. 205 is the conser-
vative lower end for Germany, see https://www.deutschlandinzahlen.de/
tab/deutschland/arbeitsmarkt/arbeitszeit/arbeitstage.
hours Number of hours per working day.
rnd Round numbers up to this next fraction of a part-time job.
boom_months Number of months with highest workload, e.g., festival summer
boom_pct Total fraction of task that needs to be done during boom_months.
Details

Set boom_months=6 and boom_pct=.5 to get all hours spread evenly across the year.

Value
A named vector with two elements, high (number of staff needed for months with higher workload)

and low (number of staff needed for months with lower workload).

Examples

calc_staff(12328)

condense Condense operations objects into neat data frame

Description

Uses the provided model to create a data frame from the operations object. Depending on the
type of data frame requestet (i.e., default or cashflow) and the temporal resolution (month, quarter
or year), various subsets of the overall data in obj are returned.

Usage
condense(
obj,
model = get_model(),
resolution = c("year"”, "quarter”, "month"),

keep_types = TRUE,
cashflow = FALSE,

cf_init = 0,

cf_names = c(begin = "Begin”, end = "End"),
years = get_period(obj, years = TRUE),
digits = 2

https://www.deutschlandinzahlen.de/tab/deutschland/arbeitsmarkt/arbeitszeit/arbeitstage
https://www.deutschlandinzahlen.de/tab/deutschland/arbeitsmarkt/arbeitszeit/arbeitstage

6 depreciation,-class
S4 method for signature 'operations'
condense(
obj,
model = get_model(),
resolution = c("year"”, "quarter”, "month"),
keep_types = TRUE,
cashflow = FALSE,
cf_init = 0,
cf_names = c(begin = "Begin”, end = "End"),
years = get_period(obj, years = TRUE),
digits =
)
Arguments
obj An object of class operations.
model A named list of named lists describing the stepwise accounting rules for all data
in in obj.
resolution One of "month”, "quarter”, or "year".
keep_types Logical, whether the returned data frame should keep the intermediate results
for each relevant type of transaction. This will add a column type to the data
frame.
cashflow Logical, whether the model describes a cashflow plan. If TRUE, calculations will
start with the initial value as specified by cf_init and use the result of each
period as the starting value of following periods.
cf_init Numeric, used as the initial value for cashflow calculations if cashflow=TRUE;
i.e., the first beginning cash value.
cf_names Character vector with two entries named begin and end, used in the resulting
table for beginning cash and ending cash.
years Character (or numeric) vector defining the year(s) to be represented in the out-
put. This is intended to be useful for splitting up quarterly or monthly output.
digits Number of digits used for rounding values, disabled if set to NA.
Value
A data frame with a subset of the financial transactions of obj.
depreciation,-class S4 Class depreciation
Description

This is a special case of the generic class transaction.

depreciation,-class

Usage

S4 method for signature 'depreciation'

initialize(
.Object,
type,
category,
name,
amount,
obsolete,

invest_month = format(Sys.Date(), "%Y.%m"),
method = c("linear”, "writedown”, "sumofyears”, "doubledecline"),
valid_types = "default”,

value

Arguments
.Object

type
category

name

amount

obsolete

invest_month

method

valid_types

value

Details

The object to initialize.
A character string defining the type of transaction as defined by valid_types.
A character string, custom category for this transaction.

A character string, custom name or ID for this transaction (i.e., a particular asset
that was purchased).

Numeric, the amount of money invested into the asset.

Integer value defining the period (in months) over which the value of the asset
diminishes to zero.

Character string in YYYY .MM format, the month of the investment/purchase.
One of the following, defining the depreciation method:

e "linear": The straight line depreciation. This is currently the only imple-
mented option.

* "writedown": The written-down value depreciation, not yet implemented.

* "sumofyears”: The sum-of-years depreciation, not yet implemented.

* "doubledecline”: The double-declining depreciation, not yet implemented.

A character string, the model types defined by set_types to be used for valida-
tion. If "default”, pre-defined example types are used.

A valid data frame to be used as the value slot directly, omitting calculation via
amount, obsolete, invest_month, etc.

In contrast to revenue or expense, the time range of this class of objects is defined by details of
the investment as specified. Only when used as an aspect of an operations class object, this range
is adjusted to fit that particular object.

8 expense,-class

Slots

type A character string, for valid values see valid_types. You might use all valid types pre-
defined for either revenue or expense, considering that you might be the depreciation giver
or receiver.

category A character string, custom category for this depreciation.
name A character string, custom name or ID for this depreciation.

value Data frame containing an investment plan and allowance for depreciation balance, each
month in a row named YYYY .MM. The columns are investment, depreciation, and remaining
value.

valid_types A character string, the model types defined by set_types to be used for validation.

Constructor function

Should you need to manually generate objects of this class, the constructor function depreciation(. ..

can be used instead of new("depreciation”, ...).

NA
Should you need to manually generate objects of this class, the constructor function depreciation(. ..
can be used instead of new("depreciation”, ...).

Examples

depreciation_printer <- depreciation(
type="Depreciation”,
category="0ffice",
name="Printer"”,
amount=100,
obsolete=36,
invest_month="2019.04"

)

turn depreciation object into an expense
depreciation_as_expense_printer <- as_transaction(
depreciation_printer,
to="expense",
aspect="depreciation”

expense,-class S4 Class expense

Description

This is a special case of the generic class transaction.

expense,-class

Usage

S4 method for signature 'expense'

initialize(
.Object,
type,
category,
name,
per_use,

missing = c("rep”, "interpol”, "0"),

due_month =

NA,

valid_types = "default”,

.list = list()

Arguments

.Object
type
category
name
per_use

missing

due_month

valid_types

.list

Slots

The object to initialize.

A character string defining the type of transaction as defined by valid_types.
A character string, custom category for this transaction.

A character string, custom name or ID for this transaction.

If given, the numbers provided via ... (or .list) are not interpreted as the
monetary value, but as number of transactions in that month, and the actual
fiscal value is calculated by multiplying it with the value given here.

One of "rep”, "interpol”, or "@". This defines how gaps are filled: If "rep”,
present values are repeated until the next valid value; if "interpol”, missing
values are interpolated using approx; if "0", missing values are set to zero.

Character vector to define months where transactions are due. This argument
causes previous amounts to be cumulated and thereby postponed to the given
month of a year. Combined with e.g. . list this makes it easier to turn monthly
amounts into quarterly ones.

A character string, the model types defined by set_types to be used for valida-
tion. If "default”, pre-defined example types are used.

Numeric values named in YYYY .MM format, defining the transaction amount for a
particular month. The resulting object will automatically cover all months from
the earliest to the latest among all given values.

An alternative to . . . if the values are already present as a list. If both are given,
their values will be merged into one list.

type A character string, for valid values see valid_types.

category A character string, custom category for this expense.

name A character string, custom name or ID for this expense.

value Data frame containing all expenses, each month in a column named YYYY.MM.

valid_types A character string, the model types defined by set_types to be used for validation.

10 fin_needs

Constructor function

Should you need to manually generate objects of this class, the constructor function expense(. . .)
can be used instead of new("expense”, ...).

Examples

exp_2019_2021 <- expense(
type="Goods",
category="Merch",
name="T-Shirts",

"2019.03"=65,
"2019.07"=170,
"2020.02"=210,
"2020.08"=312,
"2021.01"=450,
"2021.06"=600,
"2021.10"=720
)
fin_needs Estimate capital requirement from cash flow
Description

To avoid cash flow issues, this function takes a data frame as returned by condense with cashflow=TRUE
to calculate the amount of financial needs per time resolution.

Usage
fin_needs(
cashflow_df,
resolution = c("year"”, "quarter”, "month"),
row_names = c("Financial needs"”, "Cumulative")
)
Arguments
cashflow_df Data frame as returned by condense with cashflow=TRUE.
resolution One of "month”, "quarter”, or "year"”. Must be identical to the value used
with the call to condense!
row_names Character vector of two, names for the rows of the resulting data frame. The
first represents financial need per time period (column), the second is cumulated
over all columns.
Details

Only negative values are returned, so the row sum can be used as an estimate of the overall financial
demand for the given period of time.

first_last 11

Value

A data frame with two rows and columns depending on resolution and period covered by cashflow_df.

first_last Shortcut for lists with steady transactions.

Description

Generates a list of two elements, first and last month of the full years range, both with the same
value specified.

Usage

first_last(years, value)

Arguments

years Integer vector, at least two elements, the range of years to cover.

value The transaction amount that is assumed to remain unchanged over all years.
Details

You can use this in combination with the . 1ist argument of expense, revenue, and transaction.

Value

A list with two elements named after the first and last month of the years’ range in YYYY .MM format.

Examples

expense (
type="0Operation”,
category="Bank",
name="Accounting”,
missing="rep",
list=first_last(2022:2025, value=20)

12 get_revenue

get_revenue Getter/setter methods for businessPlanR objects

Description

These methods return the requested slots from objects of class operations, revenue, expense,
transaction_plan, loan or depreciation, or, in case of their <- counterparts, replace slots with
a given value.

Usage

get_revenue(
obj,
drop_nonyear_cols = FALSE,
resolution = c("month”, "quarter”, "year"),
only_type,
not_type

S4 method for signature 'operations'
get_revenue(
obj,
drop_nonyear_cols = FALSE,
resolution = c("month”, "quarter”, "year"),
only_type,
not_type

get_expense(
obj,
drop_nonyear_cols = FALSE,
resolution = c("month”, "quarter”, "year"),
only_type,
not_type

S4 method for signature 'operations'
get_expense(
obj,
drop_nonyear_cols = FALSE,
resolution = c("month”, "quarter”, "year"),
only_type,
not_type

get_value(
obj,

get_revenue

drop_nonyear_cols = FALSE,

resolution = c("month”, "quarter”, "year")
)
S4 method for signature 'transaction_plan'
get_value(

obj,

drop_nonyear_cols = FALSE,

resolution = c("month”, "quarter”, "year")
)
S4 method for signature 'loan'
get_value(

obj,

drop_nonyear_cols = FALSE,

resolution = c("month”, "quarter”, "year")
)
S4 method for signature 'depreciation'
get_value(

obj,

drop_nonyear_cols = FALSE,

resolution = c("month”, "quarter”, "year")
)
S4 method for signature 'revenue'
get_value(

obj,

drop_nonyear_cols = FALSE,

resolution = c("month”, "quarter”, "year")
)
S4 method for signature 'expense'
get_value(

obj,

drop_nonyear_cols = FALSE,

resolution = c("month”, "quarter”, "year")
)

get_loans(obj, as_data_frame = TRUE)

S4 method for signature 'operations'
get_loans(obj, as_data_frame = TRUE)

get_plan(obj, type, category, name, valid_types = "default”)

S4 method for signature 'transaction_plan'
get_plan(obj, type, category, name, valid_types = "default")

14

get_period(obj, years = FALSE)

S4 method for signature 'operations'
get_period(obj, years = FALSE)

S4 method for signature 'transaction_plan'
get_period(obj, years = FALSE)

S4 method for signature 'loan'
get_period(obj, years = FALSE)

S4 method for signature 'depreciation'
get_period(obj, years = FALSE)

get_depreciation_plan(obj, as_data_frame = TRUE)

S4 method for signature 'operations'
get_depreciation_plan(obj, as_data_frame = TRUE)

get_plan_type(obj)

S4 method for signature 'transaction_plan'
get_plan_type(obj)

get_misc(obj, name)

S4 method for signature 'operations'
get_misc(obj, name)

set_misc(obj, name) <- value

S4 replacement method for signature 'operations'
set_misc(obj, name) <- value

list_plans(obj)

S4 method for signature 'transaction_plan'
list_plans(obj)

get_sum(obj)

S4 method for signature 'revenue'
get_sum(obj)

S4 method for signature 'expense'
get_sum(obj)

get_revenue

get_revenue

as_transaction(obj, to, aspect, valid_types =

15

"default”, type)

S4 method for signature 'loan'

as_transaction(

obj,
to = c("revenue”, "expense"),
aspect = c("interest”, "balance_start”, "principal”, "total”, "cumsum”,

"balance_remain"),

valid_types
type

"default”,

S4 method for signature 'depreciation'

as_transaction(

obj,
to = c("revenue”, "expense"),
aspect = c("investment”, "depreciation”, "value"),
valid_types = "default”,
type

)

Arguments
obj An object of class operations, revenue, expense, transaction_plan, loan

or depreciation

drop_nonyear_cols

resolution
only_type

not_type

as_data_frame

type
category
name

valid_types

years

value
to
aspect

Logical, whether to drop or keep columns specifying type, category or name or
TOWS.

One of "month”, "quarter”, or "year".

Optional character vector, if given, only rows with matching type are returned.
Overrides not_type if both are provided.

Optional character vector, if given, only rows with types not matching the vector
entries are returned.

Logical, if FALSE returns an object of class transaction_plan instead of a data
frame.

Character string, a valid type name for the resulting object.
A character string, custom category for this transaction.

Character or integer, specifying which element to get/set. If missing, the whole
list is returned/replaced.

A character string, the model types defined by set_types to be used for valida-
tion. If "default”, pre-defined example types are used.

Logical, if TRUE doesn’t return the period vector but a vector of all years in the
period.

A value to assign to the object.
Character string, the transaction class to coerce into.

Character string, the row/column of the input objects’s value data frame to use
in the resulting object. All additional data are silently dropped.

16 growth
Details

If as_transaction(..., aspect="balance_start") is being called on a loan object, only the

initial value (and perhaps growth instead of declining values) is used, e.g. as revenue for calcula-

tions.
Value

Depending on the method, either a data frame or a numeric value.

growth Growth of a numeric vector

Description

Calculates the differences between consecutive values in a numeric vector.
Usage

growth(x, round = c("round”, "ceiling"”, "floor"”), digits = @, init = x[1])
Arguments

X A numeric vector.

round One of "round” (invokes round on x before calculation), "ceiling"” (calling

ceiling), or "floor" (calling floor instead of round, respectively).

digits Integer, passed to round if round="round".

init Numeric, the initial value to compare the first element of x to.
Value

A numeric vector the same length as x.
Examples

growth(c(1,10,12,15,122))

kable_bpR

17

kable_bpR Format table from condensed objects

Description

This method uses the kableExtra package for table formatting.

Usage
kable_bpR(
obj,
model = get_model(),
resolution = c("year”, "quarter”, "month"),

keep_types = TRUE,

detailed = FALSE,

cashflow = FALSE,

currency = "€",

DIY = FALSE,
longtable_clean_cut = TRUE,
font_size = NULL,

latex_options = "striped”,
stripe_color = "gray!6",
years = get_period(obj, years = TRUE),
detail_names = c(revenue = "Revenue”, expense = "Exepense"”),
detail_colors = c(color = "white”, background = "grey"),
cf_init = 0,
cf_names = c(begin = "Begin”, end = "End"),
space = c(html = " ", latex = "\\,"),
detail_width,
)
S4 method for signature 'operations'
kable_bpR(
obj,
model = get_model(),
resolution = c("year"”, "quarter”, "month"),

keep_types = TRUE,

detailed = FALSE,

cashflow = FALSE,

currency = "€",

DIY = FALSE,

longtable_clean_cut = TRUE,

font_size = NULL,

latex_options = "striped”,
stripe_color = "gray!6",

years = get_period(obj, years = TRUE),

kable_bpR

detail_names = c(revenue = "Revenue"”, expense = "Exepense”),
detail_colors = c(color = "white”, background = "grey"),
cf_init = 0,

cf_names = c(begin = "Begin”, end = "End"),

space = c(html = " ", latex = "\\,"),
detail_width,

)
S4 method for signature 'loan'
kable_bpR(
obj,
resolution = c("month”, "quarter”, "year"),
currency = "€",
DIY = FALSE,
font_size = NULL,
latex_options = "striped”,
stripe_color = "gray!6",
loan_names = c(balance_start = "Balance start”, interest = "Interest”, principal =
"Principal”, total = "Total”, cumsum = "Cumulated”, balance_remain =

"Balance remain"),
space = c(html = " ", latex = "\\,"),

S4 method for signature 'transaction_plan'
kable_bpR(

obj,

resolution = c("month”, "quarter”, "year"),

keep_types = FALSE,

currency = "€",

DIY = FALSE,

longtable_clean_cut = TRUE,

font_size = NULL,

latex_options = "basic”,

stripe_color = "gray!6",

years = get_period(obj, years = TRUE),

dep_names = c(investment = "Investment"”, depreciation = "Depreciation”, value =

"Value"”, sum = "Sum"),

loan_names = c(balance_start = "Balance start”, interest = "Interest”, principal =
"Principal”, total = "Total”, cumsum = "Cumulated”, balance_remain =
"Balance remain”, sum = "Sum"),

space = c(html = " ", latex = "\\,"),
zeroes = c(html = "#C0COCQ", latex = "gray!25"),

kable_bpR

Arguments

obj
model

resolution

keep_types

detailed

cashflow

currency
DIY

19

An object of class operations or loan.

A named list of named lists describing the stepwise accounting rules for all data
in in obj.

One of "month”, "quarter”, or "year".

Logical, whether the returned data frame should keep the intermediate results
for each relevant type of transaction. This will add a column type to the data
frame.

Logical, supersedes keep_types. If TRUE, the table includes detailed informa-
tion all the way down to types, categories, and transaction names.

Logical, whether the model describes a cash flow plan. If TRUE, calculations will
start with the initial value as specified by cf_init and use the result of each pe-
riod as the starting value of following periods. This only works if detailed=FALSE.

Character defining a currency symbol.

Logical, if TRUE returns the kable object prior to any row collapsing, column
specs or kable styling, so you can apply all of those as you wish.

longtable_clean_cut

font_size

latex_options
stripe_color

years

detail_names

detail_colors

cf_init

cf_names

space

detail_width

loan_names

dep_names

zeroes

Passed to collapse_rows.
Passed to kable_styling.
Passed to kable_styling.
Passed to kable_styling.

Character (or numeric) vector defining the year(s) to be represented in the out-
put. This is intended to be useful for splitting up quarterly or monthly output.

A named character vector with two entries, revenue and expense, defining the
global names used for the two transaction classes in the data frame if detailed=TRUE.

A named character vector with two entries, color and background, defining
the color scheme for position headlines (revenue and expense). Only relevant if
detailed=TRUE.

Numeric, used as the initial value for cash flow calculations if cashflow=TRUE;
i.e., the first beginning cash value.

Character vector with two entries named begin and end, used in the resulting
table for beginning cash and ending cash.

Character, a space definition to put between currency and value.

Optional vector of length 3, if given defined the width of the three categorial
columns, Type, Category, and Name.

Additional arguments passed on to kb1.

Like dep_names but with seven named entries, balance_start, interest, principal,

total, cumsum, balance_remain, and sum, for loan plans, respectively.

A named character vector with four entries, investment, depreciation, value,
and sum, used in table to describe the rows of each depreciation item, with sum
only being used in the final set of rows showing a summary over all items.

Named character vector defining the text color to use for zero amounts, for both
LaTeX and HTML format.

20

Value

An object of class kable.

kbl_by_types

kbl_by_types Format table from collection of types of operations objects

Description

This method uses the kableExtra package for table formatting.

Usage

kbl_by_types(

)

obj,

types,

resolution = c("year"”, "quarter”, "month"),

currency = "€",

digits = 0,

DIY = FALSE,

font_size = NULL,

latex_options = "striped”,

stripe_color = "gray!6",

years = get_period(obj, years = TRUE),

sum_names = c(subtotal = "Subtotal”, total = "Total"),
type_colors = c(color = "white"”, background = "grey"),
space = c(html = " ", latex = "\\,"),

S4 method for signature 'operations'
kbl_by_types(

obj,

types,

resolution = c("year"”, "quarter”, "month"),

currency = "€",

digits = 0,

DIY = FALSE,

font_size = NULL,

latex_options = "striped”,

stripe_color = "gray!6",

years = get_period(obj, years = TRUE),

sum_names = c(subtotal = "Subtotal”, total = "Total"),
type_colors = c(color = "white"”, background = "grey"),
space = c(html = " ", latex = "\\,"),

loan,-class

Arguments

obj
types

resolution
currency
digits

DIY

font_size
latex_options
stripe_color

years

sum_names

type_colors

space

Value

21

An object of class operations or loan.

A named character vector of types to fetch from obj and print in the resulting
table. Names must be the type names, their value must be one of "revenue” or
"expense” so the method knows what to use in case identical type names are
defined for both.

One of "month”, "quarter”, or "year".
Character defining a currency symbol.
Integer, round values to number of digits.

Logical, if TRUE returns the kable object prior to any row packing, specs or
kable styling, so you can apply all of those as you wish.

Passed to kable_styling.
Passed to kable_styling.
Passed to kable_styling.

Character (or numeric) vector defining the year(s) to be represented in the out-
put. This is intended to be useful for splitting up quarterly or monthly output.

A named character vector with two entries, subtotal and total, to be used in
the resulting table for those values.

A named character vector with two entries, color and background, defining the
color scheme for type headlines.

Character, a space definition to put between currency and value.

Additional arguments passed on to kb1.

An object of class kable.

loan,-class

S4 Class loan

Description

This is a special case of the generic class transaction.

Usage

S4 method for signature 'loan'

initialize(
.Object,
type,
category,
name,
amount,

22

period,
interest,

loan,-class

first_month = format(Sys.Date(), "%Y.%m"),

schedule

due_month =

c("annuity”, "amortization"”, "maturity"),
NA,

valid_types = "default”,

value

Arguments

.Object
type
category
name

amount
period
interest
first_month

schedule

due_month

valid_types

value

Details

The object to initialize.

A character string defining the type of transaction as defined by valid_types.
A character string, custom category for this transaction.

A character string, custom name or ID for this transaction.

Numeric, the amount of money loaned.

Integer, number of months to fully repay the loan.

Numeric, the nominal interest rate per annum (a value between 0 and 1).
Character string in YYYY .MM format, defining the initial date of the loan.

One of the following, defining the repayment schedule:

e "annuity": Equal rates of total repayment over period, thereby interest is
relatively higher and principal payment relatively lower at the beginning.

e "amortization": Repayment of equal rates of principal payment with de-
creasing interest and total payments over period.

* "maturity”: Repayment of the full loan amount at the end of period, until
then only payment of interest.

Integer value defining the first month of principal repayment. The selected
schedule will not begin before this month, until then only interest rates are
due. Beware that this is a different behaviour of this argument compared to
transaction.

A character string, the model types defined by set_types to be used for valida-
tion. If "default”, pre-defined example types are used.

A valid data frame to be used as the value slot directly, omitting calculation via
amount, period, interest, etc.

In contrast to revenue or expense, the time range of this class of objects is defined by details of the
loan as specified. Only when used as an aspect of an operations class object, this range is adjusted
to fit that particular object.

Slots

type A character string, for valid values see valid_types. You might use all valid types pre-
defined for either revenue or expense, considering that you might be the loan giver or re-

ceiver.

model2df 23

category A character string, custom category for this loan.
name A character string, custom name or ID for this loan.

value Data frame containing an amortization schedule for the loan, each month in a row named
YYYY .MM. It has a row for each month and the columns balance_start, interest, principal,
total, cumsum, and balance_remain.

valid_types A character string, the model types defined by set_types to be used for validation.

Constructor function

Should you need to manually generate objects of this class, the constructor function loan(...) can
be used instead of new("loan”, ...).

NA
Should you need to manually generate objects of this class, the constructor function loan(...) can
be used instead of new("loan”, ...).

Examples

loan_2019 <- loan(
type="Interest"”,
category="Bank",
name="New office”,
amount=10000,
period=60,
interest=0.075,
first_month="2019.04",
schedule=c("amortization")

)

turn loan object into an expense
loan_as_expense_2019 <- as_transaction(
loan_2019,
to="expense",
aspect="interest"”

model2df Convert model from list to data frame

Description

Converting a model from list format into a data frame makes it easier to work with nested sub-
positions, and to check the model for completeness.

24 nice_numbers

Usage

model2df (model = get_model(), factorize = TRUE)

S4 method for signature 'list'
model2df (model = get_model(), factorize = TRUE)

Arguments
model A named list describing a transaction model.
factorize Logical, whether columns not representing a transaction type should be returned
as a factor.
Details

The list provided must have named entries which form the top level of the transaction model. Values
are in turn a list with optional named arguments:
* subpos A named list, nested sub-position to this level, structured like any higher level position.

* carry Name of a previous position of the same level, its value is used as the starting value of
this position.

* revenue Character vecotor of valid revenue types, their values are added to the position total.

» expense Character vecotor of valid expense types, their values are subtracted from the position
total.

Value

A data frame, representing the model structure that was defined with table_model.

nice_numbers Format numbers in nice layout

Description

Uses format with some customized defaults. It’s being called by kable_bpR.

Usage
nice_numbers(
X,
prefix,
suffix,
digits = oL,
width = NULL,

nsmall = digits,
space = c(html = " ", latex = "\\,")

operations,-class 25

Arguments
X The numeric value to format. Can be a single number, numeric vector, matrix,
or data frame.
prefix An optional symbol to prepend, ignored if missing.
suffix An optional symbol to append, ignored if missing.
digits See round.
width See format.
nsmall See format.
space Named character vector, a space definition to put between prefix/suffix and
value. Defaults to a thin space for both, LaTeX and HTML. If you use pro-
vide one character, that one is used regardless of the output environment.
Value

A formatted character string.

Examples

nice_numbers(12345.6789, suffix="€", digits=2)

operations,-class S$4 Class operations

Description

This class is used for objects that contain all transactions of the business plan.

Slots

period A character vector defining beginning and end of the time period covered by the business
plan. Values can either be a vector of two in YYYY .MM format, or a numeric vector of full fiscal
years which will automatically be transformed into character.

revenue Data frame containing type, category, name, and all revenues, each month in a column
named YYYY.MM. If these are not covering period exactly, missing values will be set to zero.

expense Data frame containing all expenses, data structure like the revenue slot.
loan Data frame, basically the plan slot as in transaction_plan with plan_type="1loan".
depreciation Data frame, like loan, but with plan_type="depreciation”, respectively.

misc A list to keep miscellaneous data or information for documentation or re-use.

Constructor function

Should you need to manually generate objects of this class, the constructor function operations(...)
can be used instead of new("operations”, ...).

26 operations,-class

Examples

rev_2019_2021_merch <- revenue(
type="Sale",
category="Merch",
name="T-Shirts”,
"2019.01"=100,
"2019.08"=267,
"2020.03"=344,
"2020.09"=549,
"2021.02"=770,
"2021.07"=1022,
"2021.12"=1263

)

rev_2019_2021_rec <- revenue(
type="Sale",
category="Records"”,
name="Albums"”,
"2019.01"=220,
"2019.08"=234,
"2020.03"=221,
"2020.09"=354,
"2021.02"=276,
"2021.07"=285,
"2021.12"=311

)

rev_2019_2021_inv <- revenue(
type="Invest income”,
category="Rent",
name="Studio",
"2019.01"=120,
"2019.08"=234,
"2020.03"=321,
"2020.09"=454,
"2021.02"=376,
"2021.07"=385,
"2021.12"=211

)

exp_2019_2021_merch <- expense(
type="Goods",
category="Merch",
name="T-Shirts",
"2019.01"=65,
"2019.07"=170,
"2020.02"=210,
"2020.08"=312,
"2021.01"=450,
"2021.06"=600,
"2021.12"=720

)

exp_2019_2021_rec <- expense(
type="Goods",
category="Records”,

permalink2list 27

name="Pressing",
"2019.01"=1860,
"2019.02"=0,
"2020.08"=600,
"2020.09"=0,
"2021.12"=0

0p_2019_2021 <- operations(

period=c("2019.01", "2021.12") # alternative: 2019:2021
)
update_operations(op_2019_2021) <- rev_2019_2021_merch
update_operations(op_2019_2021) <- exp_2019_2021_merch
update_operations(op_2019_2021) <- rev_2019_2021_rec
update_operations(op_2019_2021) <- exp_2019_2021_rec
update_operations(op_2019_2021) <- rev_2019_2021_inv

permalink2list Turn a Shiny permalink into a list

Description

The Shiny package can generate permalinks of its web apps, making it possible to share individual
configurations of the app with others. This function translated such a permalink into a named list,
so you can use the configuration also in R code.

Usage
permalink2list(permalink, prefix = ".*\\?_inputs_&")
Arguments
permalink Character string, the actual URL with arguments copied from the Shiny app
as-is.
prefix Character string or regular expression, should capture everything up to the first
argument name. This is the part that will be discarded.
Details

When this package was written, we also wrote a Shiny web app for it but separated the actual
calculations from the app’s code. This allowed us to use the same functions and objects in RMark-
down. We were discussing the numbers in the web tool using permalinks, and finally transferred
the calculations to the PDF version.

To transfer the configuration from the web app to the markdown document, this function discards the
URL prefix and splits the arguments into a named list that behaves like the input object commonly
used in Shiny apps.

28 regularly

Value

A named list with one element for each argument in permalink.

Examples

permalink2list(
pasted(
"https://example.com/businessPlanR/?_inputs_&salary=50000",
"&loan_interest=3.22&loan_period=7&loan_due=2&years=%5B%222022%22%2C%222026%22%5D"
)
)

regularly Generate list of repeating financial transactions

Description

For all years defined, generates a list of values as defined by pa and due at the given month. The
result can be used as input for the . 1ist argument of expense, revenue, and transaction.

Usage
regularly(
years,
pa,
month = "01",
last = 0,
first = 0,
merge = list(),
digits = 2
)
Arguments
years Integer vector, the range of years to cover.
pa A vector with values for each year. This amounts to the total sum for the respec-
tive year.
month Character, but numeric description of a month in "MM" format when to account
the values of pa. If you provide more than a single month here, e.g., quarterly
payments, the amounts defined by pa are divided the number of months.
last Defines the final entry, last month of the last year. It can be either a numeric
value (taken as-is), "rep” (repeats the last value of pa), or "none” to omit adding
a last month (e.g., to later merge with results of another call to this function).
Only used if month is not "12".
first Defines how to treat years if January was included in in month. This could be

desired for merging, but problematic if you want to create a new transaction
object. Valid values are the same as for last except "rep”.

regularly_delayed 29

merge Another list of values to be merged with the results, can be used for nested calls
of this function to generate more complex patterns.
digits Number of digits used for rounding when month is more than one entry.
Value

A list of monthly transactions named in "YYYY.MM" scheme (regularly_delayed).

Examples

expense(

type="0Operation”,

category="Insurance”,

name="Electronics"”,

missing="0",

.list=regularly(
years=2021:2025,
pa=rep(111.11, 5),

month="01",
last=0
)
)
regularly_delayed Generate list of repeating financial transactions with delayed starting
month
Description

In case you only know the annual sum of transactions for given years but also that they don’t begin
in January of the first year, you can use the function regularly_delayed to split the sums to be
used in revenue or expense objects that acknowledge the delay. It extends regularly.

Usage

regularly_delayed(years, pa, start_month = 1)

delayed(pa, start_month = 1)

Arguments
years See regularly.
pa See regularly.
start_month Integer number, the month of the first revenue/expense. All earlier monthly

transactions will be 0 and the sum for the respective year divided by the number
months left for that year.

30 revenue,-class

Details

The delayed function assumes pa to be a total value for a full year, but does not distribute it
evenly over the active months, but rather subtracts any amount that would have been due before
start_month

Value

Either a list of monthly transactions named in "YYYY.MM" scheme (regularly_delayed), or
vector of the same length as pa (delayed).

Examples

say you earn 3000 each year, but payment starts in September
calculate payment sums
delayed_2019_2021 <- delayed(

pa=rep(3000, 3),

start_month=9

)

now use the result to caclulate monthly amounts
delayed_monthly_2019_2021 <- regularly_delayed(
years=2019:2021,
pa=delayed_2019_2021,
start_month=9

revenue,-class S4 Class revenue

Description

This is a special case of the generic class transaction.

Usage

S4 method for signature 'revenue'
initialize(

.Object,

type,

category,

name,

per_use,

missing = c("rep”, "interpol”, "0"),

due_month = NA,

valid_types = "default”,

.list = list()

revenue,-class

Arguments

.Object
type
category
name

per_use

missing

due_month

valid_types

.list

Slots

31

The object to initialize.

A character string defining the type of transaction as defined by valid_types.
A character string, custom category for this transaction.

A character string, custom name or ID for this transaction.

If given, the numbers provided via ... (or .list) are not interpreted as the
monetary value, but as number of transactions in that month, and the actual
fiscal value is calculated by multiplying it with the value given here.

One of "rep”, "interpol”, or "0". This defines how gaps are filled: If "rep”,
present values are repeated until the next valid value; if "interpol”, missing
values are interpolated using approx; if "0", missing values are set to zero.

Character vector to define months where transactions are due. This argument
causes previous amounts to be cumulated and thereby postponed to the given
month of a year. Combined with e.g. . list this makes it easier to turn monthly
amounts into quarterly ones.

A character string, the model types defined by set_types to be used for valida-
tion. If "default”, pre-defined example types are used.

Numeric values named in YYYY .MM format, defining the transaction amount for a
particular month. The resulting object will automatically cover all months from
the earliest to the latest among all given values.

An alternative to . . . if the values are already present as a list. If both are given,
their values will be merged into one list.

type A character string, for valid values see valid_types.

category A character string, custom category for this revenue.

name A character string, custom name or ID for this revenue.

value Data frame

containing all revenues, each month in a column named YYYY . MM.

valid_types A character string, the model types defined by set_types to be used for validation.

Constructor function

Should you need to manually generate objects of this class, the constructor function revenue(. . .)
can be used instead of new("revenue”, ...).

Examples

rev_2019_2021 <-
type="Sale",

revenue(

category="Merch”,
name="T-Shirts”,

"2019.03"=100,
"2019.08"=267,
"2020.03"=344,

32 set_types

"2020.09"=549,
"2021.02"=770,
"2021.07"=1022,
"2021.10"=1263

set_types Define valid types of revenues and expenses

Description

These functions change the globally available options of the running R session. Its values define
types of transactions you want to be able to use in your business plan.

Usage
set_types(types, class = c("revenue”, "expense"), name = "default")
get_types(
name = "default”,
class = c("revenue”, "expense"),
names_only = FALSE
)

get_model ()

Arguments
types Named list, one entry for each type. Values define the color to use in plots.
class One of "revenue"” or "expense”.
name Character string, giving the set of types a name. You can use this to have multiple
sets of types simultaneously in the same session.
names_only Logical, whether the full list or only the names of defined types should be re-
turned.
Details

The getter functions return a list of default types if none have been defined so far.

Value

set_types is a wrapper for options and adds/replaces a list called name to the businessPlanR op-
tion of the running session. get_types returns the list from the businessPlanR option. get_model
just returns the internal definition of default operations model as a list.

table_model 33

table_model Define a model node for business plan tables

Description

Tool to define a (possibly nested) model for generating tables for our business plan. The "model" is
in fact a nested list.

Usage
table_model (..., valid_types, check_carry = TRUE)
model_node(carry, ..., revenue, expense)
Arguments
Optional named lists of nodes (table_model) or nested sub-nodes (model_node),
like subsections of this section. You can use model_node recursive to define
these named nodes. Just don’t forget to give each a unique name.
valid_types Optional character string, the name of the type set to use for checking if all used

revenue and expense names are actually valid.

check_carry Logical, if TRUE all node names used und the nested list will be looked up if they
are referenced by carry somewhere down the line.

carry Optional character string, the name of another already defined named list, prob-
ably at the same level. The sum of that list will then be used as the initial value
for the calculation of this node.

revenue Optional character vector defining names defined as class revenue via set_types.
expense Optional character vector defining names defined as class expense via set_types.
Details

If you define nested levels, you want to probably only want to combine this node with carry and
neither revenue nor expense.

Value

A nested, named list.

Examples

my_model <- table_model(
"Basic Income"=model_node(
revenue="Sale"
),
"Basic Costs"=model_node(
carry="Basic Income",
expense=c(

34 transaction,-class

"Goods",
"Operation”
)
),
valid_types="default”,
check_carry=TRUE
)

transaction,-class S4 Class transaction

Description

This is a generic class used by subclasses revenue and expense.

Usage

S4 method for signature 'transaction'
initialize(

.Object,

type,

category,

name,

per_use,

missing = c("rep”, "interpol”, "0"),

due_month = NA,

valid_types = "default”,

.list = list()

)
Arguments

.Object The object to initialize.

type A character string defining the type of transaction as defined by valid_types.

category A character string, custom category for this transaction.

name A character string, custom name or ID for this transaction.

per_use If given, the numbers provided via ... (or .list) are not interpreted as the
monetary value, but as number of transactions in that month, and the actual
fiscal value is calculated by multiplying it with the value given here.

missing One of "rep”, "interpol”, or "@". This defines how gaps are filled: If "rep”,
present values are repeated until the next valid value; if "interpol”, missing
values are interpolated using approx; if "0", missing values are set to zero.

due_month Character vector to define months where transactions are due. This argument

causes previous amounts to be cumulated and thereby postponed to the given
month of a year. Combined with e.g. .1ist this makes it easier to turn monthly
amounts into quarterly ones.

transaction_plan,-class 35

valid_types A character string, the model types defined by set_types to be used for valida-
tion. If "default”, pre-defined example types are used.

Numeric values named in YYYY .MM format, defining the transaction amount for a
particular month. The resulting object will automatically cover all months from
the earliest to the latest among all given values.

.list An alternative to . . . if the values are already present as a list. If both are given,
their values will be merged into one list.

Slots

type A character string, valid values are defined by the subclasses.

category A character string, custom category for this transaction.

name A character string, custom name or ID for this transaction.

value Data frame containing all transactions, each month of each year in a column named YYYY . MM.

valid_types A character string, the model types defined by set_types to be used for validation.

Constructor function

Should you need to manually generate objects of this class, the constructor function transaction(...)
can be used instead of new("”transaction”, ...). Ituses the same arguments like the initialize()
method.

You should either provide exactly one named value for each month of the full scope of the respective
business plan, or at least two, representing the first and last value.

Missing values

How missing values are dealt with depends on the value of the missing parameter. By default
(missing="rep") a given value will be repeated until a later value comes, which will then be
repeated further on. That is, you can define a staring value and only have to provide updated values
for months that differ from the previous value. Alternatively, missing="interpol” will interpolate
missing values linearly, and missing="0" fills missing values with zeroes.

transaction_plan,-class
S4 Class transaction_plan

Description

This is a container class for multiple objects of either class depreciation or loan, similar to
operations for revenues and expenses. Its main data frame stores each transaction object in mul-
tiple rows. Investment have three rows, investment, depreciation, and remaining value, while
loans have six named balance_start, interest, principal, total, cumsum, and balance_remain,
repectively. This makes it easier to create nice overview tables via kable_bpR.

36 update_operations<-

Details

The data frame has four meta data columns, type, category, name, and part, followed by a column
for each month covered by any of the contained transaction objects. The first three columns take
their values from the respective object, while the fourth, part, defines the rows as explained earlier.

Slots

plan_type One of "depreciation” or "loan”, defining which type of transactions are accumu-
lated in the object.

plan A data frame with three rows for each depreciation or six for each loan class object added
to it, e.g., via update_plan.

Constructor function

Should you need to manually generate objects of this class, the constructor function transaction_plan(...)
can be used instead of new("transaction_plan”, ...).

Examples

depreciation_printer <- depreciation(
type="Depreciation”,
category="0ffice",
name="Printer"”,
amount=100,
obsolete=36,
invest_month="2019.04"

)

depreciation_laptop <- depreciation(
type="Depreciation”,
category="0ffice",
name="Laptop”,
amount=1200,
obsolete=36,
invest_month="2019.02"

)

initialize an empty plan

dep_plan <- transaction_plan()

add your assets to the plan

update_plan(dep_plan) <- depreciation_printer

update_plan(dep_plan) <- depreciation_laptop

update_operations<- Update operations objects

Description

You can use this method to add or replace transactions to an existing object of class operations.

update_plan<- 37

Usage

update_operations(obj, cut_to_period = TRUE, warning = FALSE, as_transaction) <- value

S4 replacement method for signature 'operations'
update_operations(obj, cut_to_period = TRUE, warning = FALSE,
as_transaction) <- value

Arguments

obj An object of class operations.

cut_to_period Logical, whether to adjust the data of value to the period covered by obj. This
means that missing months will be added with zero values, and months that lie
beyond the covered period will be dropped. This only affects objects of class
revenue and expense.

warning Logical, if TRUE shows a warning when cut_to_period=TRUE and months are
adjusted.

as_transaction Optional list of vectors of arguments for value of class loan or depreciation,
as used by as_transaction. If given, the object provided as value will also
be processed as if as_transaction was also called. This is repeated for each
vector of arguments.

value An object of either class revenue, expense, loan, depreciation, or transaction_plan.

Value

An updated object of class operations.

update_plan<- Update transaction_plan objects

Description

You can use this method to add or replace depreciation or loan class objects to/in an existing
object of class transaction_plan.

Usage
update_plan(obj) <- value
S4 replacement method for signature 'transaction_plan'
update_plan(obj) <- value

Arguments

obj An object of class transaction_plan.

value An object of class depreciation or loan.

38

Value

An updated object of class transaction_plan.

Examples

depreciation_printer <- depreciation(
type="Depreciation”,
category="0ffice",
name="Printer"”,
amount=100,
obsolete=36,
invest_month="2019.04"

)

depreciation_laptop <- depreciation(
type="Depreciation”,
category="0ffice",
name="Laptop”,
amount=1200,
obsolete=36,
invest_month="2019.02"

)

initialize an empty plan

dep_plan <- transaction_plan()

add your assets to the plan

update_plan(dep_plan) <- depreciation_printer

update_plan(dep_plan) <- depreciation_laptop

update_plan<-

Index

* classes
depreciation,-class, 6
expense,-class, 8
loan,-class, 21
operations,-class, 25
revenue,-class, 30
transaction,-class, 34
transaction_plan,-class, 35

as_transaction, 37

as_transaction (get_revenue), 12

as_transaction,-methods (get_revenue),
12

as_transaction,depreciation-method
(get_revenue), 12

as_transaction, loan-method
(get_revenue), 12

barplot, 3, 4

barplot,expense-method (barplot), 3
barplot,operations-method (barplot), 3
barplot, revenue-method (barplot), 3
businessPlanR (businessPlanR-package), 3
businessPlanR-package, 3

calc_staff, 4

ceiling, 16

collapse_rows, 19

condense, 5, 10

condense, -methods (condense), 5
condense, operations-method (condense), 5
condense-methods (condense), 5

delayed (regularly_delayed), 29
depreciation, 12, 15, 35-37
depreciation (depreciation,-class), 6
depreciation,-class, 6
depreciation-class
(depreciation,-class), 6

expense, 4,7,11, 12,15, 22, 28, 34, 37

39

expense (expense,-class), 8
expense,-class, 8
expense-class (expense,-class), 8

fin_needs, 10
first_last, 11
floor, 16

format, 24, 25

get_depreciation_plan (get_revenue), 12

get_depreciation_plan,-methods
(get_revenue), 12

get_depreciation_plan,operations-method
(get_revenue), 12

get_expense (get_revenue), 12

get_expense, -methods (get_revenue), 12

get_expense,operations-method
(get_revenue), 12

get_loans (get_revenue), 12

get_loans,-methods (get_revenue), 12

get_loans,operations-method
(get_revenue), 12

get_misc (get_revenue), 12

get_misc,-methods (get_revenue), 12

get_misc,operations-method
(get_revenue), 12

get_model (set_types), 32

get_period (get_revenue), 12

get_period,-methods (get_revenue), 12

get_period,depreciation-method
(get_revenue), 12

get_period,loan-method (get_revenue), 12

get_period,operations-method
(get_revenue), 12

get_period, transaction_plan-method
(get_revenue), 12

get_plan (get_revenue), 12

get_plan,-methods (get_revenue), 12

get_plan, transaction_plan-method
(get_revenue), 12

40

get_plan_type (get_revenue), 12
get_plan_type,-methods (get_revenue), 12
get_plan_type, transaction_plan-method
(get_revenue), 12
get_revenue, 12
get_revenue, -methods (get_revenue), 12
get_revenue,operations-method
(get_revenue), 12
get_sum(get_revenue), 12
get_sum,-methods (get_revenue), 12
get_sum,expense-method (get_revenue), 12
get_sum,revenue-method (get_revenue), 12
get_types (set_types), 32
get_value (get_revenue), 12
get_value,-methods (get_revenue), 12
get_value,depreciation-method
(get_revenue), 12
get_value,expense-method (get_revenue),
12
get_value, loan-method (get_revenue), 12
get_value,revenue-method (get_revenue),
12
get_value, transaction_plan-method
(get_revenue), 12
growth, 16

initialize,depreciation-method
(depreciation,-class), 6
initialize,expense-method
(expense,-class), 8
initialize,loan-method (loan,-class), 21
initialize,revenue-method
(revenue,-class), 30
initialize, transaction-method
(transaction,-class), 34

kable_bpR, 17, 24, 35

kable_bpR,-methods (kable_bpR), 17

kable_bpR, loan-method (kable_bpR), 17

kable_bpR,operations-method
(kable_bpR), 17

kable_bpR, transaction_plan-method
(kable_bpR), 17

kable_styling, 19, 21

kbl, 19, 21

kbl_by_types, 20

kbl_by_types,-methods (kbl_by_types), 20

kbl_by_types,operations-method
(kbl_by_types), 20

INDEX

list_plans (get_revenue), 12

list_plans,-methods (get_revenue), 12

list_plans, transaction_plan-method
(get_revenue), 12

loan, 12, 15, 19, 21, 35-37

loan (loan,-class), 21

loan, -class, 21

loan-class (loan,-class), 21

model2df, 23

model2df, -methods (model2df), 23
model2df,list-method (model2df), 23
model_node (table_model), 33

nice_numbers, 24

operations, 4-7, 12, 15, 19, 21, 22, 35-37
operations (operations,-class), 25
operations,-class, 25

operations-class (operations,-class), 25
options, 32

permalink2list, 27

regularly, 28, 29
regularly_delayed, 29

revenue, 4, 7,11, 12,15, 22, 28, 34, 37
revenue (revenue,-class), 30
revenue,-class, 30

revenue-class (revenue,-class), 30
round, 16, 25

set_misc<- (get_revenue), 12
set_misc<-,-methods (get_revenue), 12
set_misc<-,operations-method
(get_revenue), 12
set_types, 4, 7-9, 15, 22, 23, 31, 32, 33, 35

table_model, 24, 33
transaction, 6,8, 11,21, 22, 28, 30
transaction (transaction,-class), 34
transaction,-class, 34
transaction-class (transaction,-class),
34
transaction_plan, 12, 15, 25, 37
transaction_plan
(transaction_plan,-class), 35
transaction_plan,-class, 35
transaction_plan-class
(transaction_plan,-class), 35

INDEX

update_operations<-, 36
update_operations<-,-methods
(update_operations<-), 36
update_operations<-,operations-method
(update_operations<-), 36
update_plan, 36
update_plan (update_plan<-), 37
update_plan<-, 37
update_plan<-,-methods (update_plan<-),
37
update_plan<-,transaction_plan-method
(update_plan<-), 37

41

	businessPlanR-package
	barplot
	calc_staff
	condense
	depreciation,-class
	expense,-class
	fin_needs
	first_last
	get_revenue
	growth
	kable_bpR
	kbl_by_types
	loan,-class
	model2df
	nice_numbers
	operations,-class
	permalink2list
	regularly
	regularly_delayed
	revenue,-class
	set_types
	table_model
	transaction,-class
	transaction_plan,-class
	update_operations<-
	update_plan<-
	Index

