Package 'auctestr'

October 12, 2022

Title Statistical Testing for AUC Data

Version 1.0.0

Maintainer Josh Gardner <jpgard@umich.edu>

Description Performs statistical testing to compare predictive models based on multiple observations of the A' statistic (also known as Area Under the Receiver Operating Characteristic Curve, or AUC). Specifically, it implements a testing method based on the equivalence between the A' statistic and the Wilcoxon statistic. For more information, see Hanley and McNeil (1982) <doi:10.1148/radiology.143.1.7063747>.

Imports dplyr, tidyr

Depends R (>= 3.3.1)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Josh Gardner [aut, cre]

Repository CRAN

Date/Publication 2017-11-13 09:46:18 UTC

R topics documented:

auctestr	2
auc_compare	2
fbh_test	
sample_experiment_data	5
se_auc	6
stouffer_z	7
	_
	8

Index

auctestr

Description

auctestr currently provides four main useful functions for statistical testing of the AUC, or A', statistic: fbh_auc_compare, stouffer_z, fbh_test, and se_auc.

auc_compare

Compare AUC values using the FBH method.

Description

Apply the FBH method to compare outcome_col by compare_col, averaging over time_col (due to non-independence) and then over over_col by using Stouffer's Method.

Usage

```
auc_compare(df, compare_values, filter_value, time_col = "time",
  outcome_col = "auc", compare_col = "model_id", over_col = "dataset",
  n_col = "n", n_p_col = "n_p", n_n_col = "n_n",
  filter_col = "model_variant")
```

Arguments

df	DataFrame containing time_col, outcome_col, compare_col, and over_col.
compare_values	names of models to compare (character vector of length 2). These should match exactly the names as they appear in compare_col.
filter_value	(optional) keep only observations which contain filter_value for filter_col.
time_col	name of column in df representing time of observations (z-scores are averaged over time_col within each model/dataset due to non-independence). These can also be other dependent groupings, such as cross-validation folds.
outcome_col	name of column in df representing outcome to compare; this should be Area Under the Receiver Operating Characteristic or A' statistic (this method applies specifically to AUC and not other metrics (i.e., sensitivity, precision, F1)
compare_col	name of column in df representing two conditions to compare (should contain at least 2 unique values; these two values are specified as compare_values).
over_col	identifier for independent experiments, iterations, etc. over which z-scores for models are to be compared (using Stouffer's Z).
n_col	name of column in df with total number of observations in the sample tested by each row.
n_p_col	name of column in df with n_p, number of positive observations.
n_n_col	name of column in df with n_n, number of negative observations.
filter_col	(optional) name of column in df to filter observations on; keep only observations which contain filter_value for filter_col.

auc_compare

Value

numeric, overall z-score of comparison using the FBH method.

References

Fogarty, Baker and Hudson, Case Studies in the use of ROC Curve Analysis for Sensor-Based Estimates in Human Computer Interaction, Proceedings of Graphics Interface (2005) pp. 129-136.

Stouffer, S.A.; Suchman, E.A.; DeVinney, L.C.; Star, S.A.; Williams, R.M. Jr. The American Soldier, Vol.1: Adjustment during Army Life (1949).

See Also

Other fbh method: fbh_test, se_auc

Examples

```
## load sample experiment data
data(sample_experiment_data)
## compare VariantA of ModelA and ModelB
auc_compare(sample_experiment_data,
   compare_values = c('ModelA', 'ModelB'),
   filter_value = c('VariantA'),
   time_col = 'time',
   outcome_col = 'auc',
   compare_col = 'model_id',
   over_col = 'dataset',
   filter_col = 'model_variant')
## compare VariantC of ModelA and ModelB
auc_compare(sample_experiment_data,
   compare_values = c('ModelA', 'ModelB'),
   filter_value = c('VariantC'),
   time_col = 'time',
   outcome_col = 'auc'
   compare_col = 'model_id',
   over_col = 'dataset',
    filter_col = 'model_variant')
## compare ModelC, VariantA and VariantB
auc_compare(sample_experiment_data,
   compare_values = c('VariantA', 'VariantB'),
    filter_value = c('ModelC'),
   time_col = 'time',
   outcome_col = 'auc',
   compare_col = 'model_variant',
   over_col = 'dataset',
    filter_col = 'model_id')
```

fbh_test

Description

Apply z-test for difference between auc_1 and auc_2 using FBH method.

Usage

fbh_test(auc_1, auc_2, n_p, n_n)

Arguments

auc_1	value of A' statistic (or AUC, or Area Under the Receiver operating characteris- tic curve) for the first group (numeric).
auc_2	value of A' statistic (or AUC, or Area Under the Receiver operating characteris- tic curve) for the second group (numeric).
n_p	number of positive observations (needed for calculation of standard error of Wilcoxon statistic) (numeric).
n_n	number of negative observations (needed for calculation of standard error of Wilcoxon statistic) (numeric).

Value

numeric, single aggregated z-score of comparison A'_1 - A'_2.

References

Fogarty, Baker and Hudson, Case Studies in the use of ROC Curve Analysis for Sensor-Based Estimates in Human Computer Interaction, Proceedings of Graphics Interface (2005) pp. 129-136.

See Also

Other fbh method: auc_compare, se_auc

Examples

Two models with identical AUC return z-score of zero
fbh_test(0.56, 0.56, 1000, 2500)
Compare two models; note that changing order changes sign of z-statistic
fbh_test(0.56, 0.59, 1000, 2500)
fbh_test(0.59, 0.56, 1000, 2500)

sample_experiment_data

Performance of several predictive models over three different datasets, using multiple cutoff points for time within each dataset.

Description

A dataset containing the performance of several predictive models over three different datasets, where models are built using data from multiple time points (where time 1 has less data than time 2, but each subsequent time point T also uses data from all prior time points up to that time t<= T.) This represents the typical output of a machine learning experiment where several models are being considered across multiple datasets, often with different variants of each model type being considered (i.e., different hyperparameter settings of each model).

Usage

sample_experiment_data

Format

A data frame with 180 rows and 10 variables:

auc Area Under the Receiver Operating Characteristic Curve, or AUC, for this model configuration.

precision Precision for this model configuration.

accuracy Accuracy for this model configuration.

- **n** Number of observations in this dataset.
- **n_n** Number of negative observations (i.e., outcome == 0) in this dataset (required for standard error estimation of AUC statistic).
- **n_p** Number of positive observations (i.e., outcome == 1) in this dataset (required for standard error estimation of AUC statistic).

dataset indicator for different datasets.

- **time** indicator for different time points used to build each dataset; these represent dependent observations of model performance.
- **model_id** Indicator for the statistical algorithm used (this could be 'Logistic Regression', 'SVM', etc.).
- **model_variant** Indicator for different variants of each model which are not equivalent and should be used individually (model should not be averaged over these, and instead should be held fixed when comparing to other model). Example of this could be various hyperparameter settings for a given model (i.e., cost for an SVM).

se_auc

Description

Compute standard error of AUC score, using its equivalence to the Wilcoxon statistic.

Usage

se_auc(auc, n_p, n_n)

Arguments

auc	value of A' statistic (or AUC, or Area Under the Receiver operating characteris- tic curve) (numeric).
n_p	number of positive cases (integer).
n_n	number of negative cases (integer).

References

Hanley and McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology (1982) 43 (1) pp. 29-36.

Fogarty, Baker and Hudson, Case Studies in the use of ROC Curve Analysis for Sensor-Based Estimates in Human Computer Interaction, Proceedings of Graphics Interface (2005) pp. 129-136.

See Also

Other fbh method: auc_compare, fbh_test

Examples

se_auc(0.75, 20, 200)
standard error decreases when data become more balanced over
positive/negative outcome class, holding sample size fixed
se_auc(0.75, 110, 110)
standard error increases when sample size shrinks
se_auc(0.75, 20, 20)

stouffer_z

Description

Compute aggregate z-score using Stouffer's method.

Usage

```
stouffer_z(z_vec, ignore.na = TRUE)
```

Arguments

z_vec	vector of z-scores (numeric).
ignore.na	should NA values be ignored? defaults to TRUE.

Value

numeric, Z-score using Stouffer's method aggregated over z_vec.

References

Stouffer, S.A.; Suchman, E.A.; DeVinney, L.C.; Star, S.A.; Williams, R.M. Jr. The American Soldier, Vol.1: Adjustment during Army Life (1949).

Index

* datasets
 sample_experiment_data, 5

auc_compare, 2, 4, 6
auctestr, 2
auctestr-package (auctestr), 2

fbh_test, *3*, *4*, *6*

sample_experiment_data, 5
se_auc, 3, 4, 6
stouffer_z, 7