---
title: "WQM"
output:
# rmarkdown::html_vignette:
bookdown::html_vignette2:
toc: true
number_sections: true
vignette: >
%\VignetteIndexEntry{WQM}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
editor_options:
chunk_output_type: console
---
```{r, include = FALSE}
#------------------------------------------------------------------------------#
# global parameters----
op <- par() # save original par
# WBC parameters
wavelet <- "morlet"
dt <- 1
dj <- 1
num.sim <- 5
theta <- switch(1, 0.1, 0.2, 0.5, 1) # mm/h or mm/d
QM <- switch(3, "MBCr","MRS","QDM") # MBC include MBCp, MBCr, MBCn
variable <- switch(2, "sine", "prep")
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = "85%", fig.width = 9, fig.height = 9, dpi=300,
fig.align = "center", fig.pos = "h!"
)
```
# Required packages
```{r setup}
library(WQM)
library(MBC)
library(WaveletComp)
library(tidyr)
library(dplyr)
library(data.table)
library(scales)
library(ggplot2)
```
# Load data
```{r dat}
data(NWP.rain)
summary(NWP.rain)
station.no <- levels(NWP.rain$Station)
Ind.samp <- c(34,75)[1]; Ind.samp
station.samp <- station.no[Ind.samp]; station.samp
station.samp
NWP.rain.h <- NWP.rain %>% na.omit() %>% subset(Station==station.samp)
summary(NWP.rain.h)
#obs overview
plot(NWP.rain.h$obs, type="l",col=1, ylab="P", xlab=NA)
lines(NWP.rain.h$mod, type="l", col=2)
```
# Continous Wavelet Transform
```{r cwt}
folds <- cut(seq(1,nrow(NWP.rain.h)),breaks=2,labels=FALSE)
subset <- which(folds==1, arr.ind=TRUE)
variable <- "prep"
PRand <- TRUE
seed <- 2021-11-28
###===============================###===============================###
if(TRUE){
data <- list()
l <- 1
data[[l]] <- NWP.rain.h
#cat("Station:", l)
### list for storing results
data_sim <- list()
data[[l]]$index <- as.numeric(format(data[[l]]$Date,format='%j'))
summary(data[[l]]$obs[subset])
wt_o <- t(WaveletComp::WaveletTransform(x=data[[l]]$obs[subset],dt=dt,dj=dj)$Wave)
wt_m <- t(WaveletComp::WaveletTransform(x=data[[l]]$mod[subset],dt=dt,dj=dj)$Wave)
wt_p <- t(WaveletComp::WaveletTransform(x=data[[l]]$mod[-subset],dt=dt,dj=dj)$Wave)
if(l==1) print(paste0("No of decomposition level: ", ncol(wt_o)))
### return CWT coefficients as a complex matrix with rows and columns representing times and scales, respectively.
wt_o_mat <- as.matrix(wt_o)
real.o <- Re(wt_o_mat)
modulus.o <- Mod(wt_o_mat) ### derive modulus of complex numbers (radius)
phases.o <- Arg(wt_o_mat) ### extract phases (argument)
apply(modulus.o, 2, var)
wt_m_mat <- as.matrix(wt_m)
real.m <- Re(wt_m_mat)
modulus.m <- Mod(wt_m_mat)
phases.m <- Arg(wt_m_mat)
wt_p_mat <- as.matrix(wt_p)
real.p <- Re(wt_p_mat)
modulus.p <- Mod(wt_p_mat)
phases.p <- Arg(wt_p_mat)
}
```
# Amplitudes and Phases
```{r fig}
# CWT plot----
# selected decomposition level to plot
level.samp <- c(seq(1,ncol(modulus.o), by=1));level.samp
df.cwt <- data.frame(No=data[[l]]$Date[subset],
obs=data[[l]]$obs[subset],modulus.o) %>%
gather(Group, Value,2:(ncol(modulus.o)+2))
df.cwt_sub <- subset(df.cwt, Group %in% c("obs",paste0("X",level.samp)))
summary(factor(df.cwt_sub$Group))
##observations----
p0 <- ggplot(subset(df.cwt_sub,Group=="obs"), aes(x=No, y=Value)) +
geom_line()+
#facet_grid(Group~., switch="both") +
#facet_wrap(Group~., strip.position = "left", ncol=1, labeller = label_parsed) +
scale_y_continuous(breaks = pretty_breaks(n = 4)) +
scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m", expand = c(0,0)) +
#scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
labs(y="Precipitation(mm/h)") +
theme_bw() +
theme(text = element_text(size = 16),
plot.margin = unit(c(0.5,1,0.5, 1), "cm"),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.text.y = element_text(size=16),
# axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
# axis.title.x = element_text(size=16),
# axis.title.y = element_text(size=16),
strip.background = element_blank(),
strip.placement = "outside",
axis.title.x = element_blank(),
#axis.title.y = element_blank()
)
p0
##amplitudes of observations----
df.cwt_sub$Group <- factor(df.cwt_sub$Group, labels=c("obs",paste('italic(s)[',level.samp-1,']',sep = '')))
p1 <- ggplot(subset(df.cwt_sub,Group!="obs"), aes(x=No, y=Value)) +
geom_line()+
#facet_grid(Group~., switch="both") +
facet_wrap(Group~., strip.position = "left", ncol=1, labeller = label_parsed) +
scale_y_continuous(breaks = pretty_breaks(n = 4)) +
scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m",expand = c(0,0)) +
#scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
labs(y="Amplitudes", color="temp") +
theme_bw() +
theme(text = element_text(size = 16),
plot.margin = unit(c(0.2,0.4,0.5, 0), "cm"),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.text.y = element_text(size=16),
# axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
# axis.title.x = element_text(size=16),
# axis.title.y = element_text(size=16),
strip.background = element_blank(),
strip.placement = "outside",
axis.title.x = element_blank(),
axis.title.y = element_text(margin = margin(t = 0, r = -2, b = 0, l = 0))
#axis.title.y = element_blank()
)
p1 %>% print()
##phases of observations----
df.cwt <- data.frame(No=data[[l]]$Date[subset],
obs=data[[l]]$obs[subset],phases.o) %>%
gather(Group, Value,2:(ncol(modulus.o)+2))
df.cwt_sub <- subset(df.cwt, Group %in% c("obs",paste0("X",level.samp)))
summary(factor(df.cwt_sub$Group))
df.cwt_sub$Group <- factor(df.cwt_sub$Group, labels=c("obs",paste('italic(s)[',level.samp-1,']',sep = '')))
p2 <- ggplot(subset(df.cwt_sub,Group!="obs"), aes(x=No, y=Value)) +
geom_line()+
#facet_grid(Group~., switch="both") +
facet_wrap(Group~., strip.position = "left", ncol=1, labeller = label_parsed) +
scale_y_continuous(limits=c(-pi,pi),breaks = pretty_breaks(n = 4)) +
#scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m",expand = c(0,0)) +
labs(y="Phases",color="temp") +
theme_bw() +
theme(text = element_text(size = 16),
plot.margin = unit(c(0.2,0.4,0.5, 0), "cm"),
panel.border = element_rect(color = 'black'),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.text.y = element_text(size=16),
# axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
# axis.title.x = element_text(size=16),
# axis.title.y = element_text(size=16),
strip.background = element_blank(),
strip.placement = "outside",
axis.title.x = element_blank(),
axis.title.y = element_text(margin = margin(t = 0, r = -2, b = 0, l = 0))
#axis.title.y = element_blank()
)
p2 %>% print()
```
# Bias correction
```{r}
if(QM %like% "MBC"){
modulus.tmp <- do.call(QM,list(o.c=modulus.o, m.c=modulus.m,
m.p=modulus.p, ratio.seq=rep(TRUE, ncol(modulus.m)), #trace=TRUE,
silent=TRUE,n.tau=100
))
modulus.bcc <- modulus.tmp$mhat.c
modulus.bcf <- modulus.tmp$mhat.p
} else if(QM=="MRS") {
modulus.tmp <- do.call(QM,list(o.c=modulus.o, m.c=modulus.m, m.p=modulus.p))
modulus.bcc <- modulus.tmp$mhat.c
modulus.bcf <- modulus.tmp$mhat.p
} else if(QM=="QDM") {
#cat("QDM with ratio=T \n")
modulus.tmp <- lapply(1:ncol(modulus.o), function(i)
QDM(o.c=modulus.o[,i], m.c=modulus.m[,i], m.p=modulus.p[,i], ratio=FALSE))
modulus.bcc <- sapply(modulus.tmp, function(ls) ls$mhat.c)
modulus.bcf <- sapply(modulus.tmp, function(ls) ls$mhat.p)
}
sum(modulus.bcc<0)
sum(modulus.bcf<0)
modulus.bcf[modulus.bcf<0] <-0
modulus.bcc[modulus.bcc<0] <-0
phases.tmp <- lapply(1:ncol(phases.o), function(i)
QDM(o.c=phases.o[,i], m.c=phases.m[,i], m.p=phases.p[,i]))
phases.bcc <- sapply(phases.tmp, function(ls) ls$mhat.c)
phases.bcf <- sapply(phases.tmp, function(ls) ls$mhat.p)
## modulus----
df.modulus <- rbind(data.frame(mod="obs",no=data[[l]]$Date[subset],modulus.o),
data.frame(mod="cur",no=data[[l]]$Date[subset],modulus.m),
data.frame(mod="bcc",no=data[[l]]$Date[subset],modulus.bcc)) %>%
gather(lev, amp, 3:((ncol(modulus.o)+2))) #%>% mutate(amp=as.numeric(amp), subset=as.numeric(subset))
summary(df.modulus$mod)
df.modulus$mod <- factor(df.modulus$mod, levels = c("obs","cur","bcc"),
labels = c("obs"="Observed","mod"="Raw","QM"))
df.modulus_sub <- subset(df.modulus, lev %in% c(paste0("X",level.samp)))
summary(factor(df.modulus_sub$lev))
df.modulus_sub$lev <- factor(df.modulus_sub$lev, labels=c(paste('italic(s)[',level.samp-1,']',sep = '')))
p3 <- ggplot(df.modulus_sub, aes(x=no, y=amp, color=mod)) +
geom_line(linewidth=0.5)+
#facet_grid(Group~., switch="both") +
facet_wrap(lev~., strip.position = "left", ncol=1, labeller = label_parsed) +
scale_color_manual(values=c("black","red","blue"))+
#scale_y_continuous(limits=c(-pi,pi),breaks = scales::pretty_breaks(n = 3)) +
#scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m", expand = c(0,0)) +
labs(color=NULL, x="Date") +
theme_bw() +
theme(text = element_text(size = 12),
plot.margin = unit(c(0.2,0.1,0.5, 0), "cm"),
panel.border = element_rect(color = 'black'),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.text.y = element_text(size=16),
# axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
# axis.title.x = element_text(size=16),
# axis.title.y = element_text(size=16),
#legend.position = 'none',
legend.position = c(0.68,0.98),
legend.direction = "horizontal",
legend.background = element_rect(fill = "transparent"),
strip.background = element_blank(),
strip.placement = "outside",
#axis.title.x = element_blank(),
axis.title.y = element_blank()
)
p3
summary(df.modulus_sub)
p4 <- ggplot(df.modulus_sub) +
stat_ecdf(aes(x=amp, color=mod, size=mod), geom = "step",pad = TRUE) +
facet_wrap(lev~., strip.position = "left", ncol=1, labeller = label_parsed)+
scale_x_continuous(trans="log2",limits = c(1/2^10,16), breaks=c(0.001,0.05,1,6)) +
#scale_x_continuous(trans="sqrt",limits = c(0,4), breaks=c(0,1,2,4)) +
scale_color_manual(values=c("black","red","blue"))+
scale_size_manual(values=c(1,0.5,0.5))+
#guides(color=guide_legend(override.aes = list(size=5))) +
labs(color=NULL, size=NULL, x="log2") +
theme_bw() +
theme(text = element_text(size = 12),
plot.margin = unit(c(0.2,0.1,0.5, 0), "cm"),
panel.border = element_rect(color = 'black'),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
strip.text.y = element_text(size=16),
# axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
# axis.title.x = element_text(size=16),
# axis.title.y = element_text(size=16),
legend.position = 'none',
strip.background = element_blank(),
strip.placement = "outside",
#axis.title.x = element_blank(),
axis.title.y = element_blank()
)
p4
```
# Phase Randomization
```{r Prand}
# Phase random - validation same for calibration
noise_mat <- list()
for (r in 1:num.sim) {
data.obs <- as.vector(sapply(data, function(ls) ls$obs[subset]))
ts_wn <- sample(data.obs, size=length(data[[1]]$obs[-subset]), replace=T)
wt_noise <- t(WaveletComp::WaveletTransform(x=ts_wn,dt=dt,dj=dj)$Wave)
noise_mat[[r]] <- as.matrix(wt_noise)
}
phases.rand <- lapply(1:num.sim, function(r) {
tmp <- Arg(noise_mat[[r]])
ord.phases <- apply(phases.p, 2, order)
#ord.phases <- apply(phases.p, 2, order)
tmp.rank <- apply(tmp, 2, sort)
tmp.n <- sapply(1:ncol(tmp), function(ii) {tmp[ord.phases[,ii],ii] <- tmp.rank[,ii];
return(tmp[,ii])})
return(tmp.n)
})
## bcf----
mat_new_val <- matrix(complex(modulus=modulus.bcf,argument=phases.p),ncol=ncol(phases.p))
rec_val <- fun_icwt(x.wave=mat_new_val,dt=dt,dj=dj)
if(variable=="prep") rec_val[rec_val<=theta] <- 0
### apply wavelet reconstruction to randomized signal----
mat_val_r <- prsim(modulus.bcf, phases.p, noise_mat)
data_sim_val <- sapply(1:num.sim, function(r) fun_icwt(x.wave=mat_val_r[[r]], dt=dt, dj=dj))
if(variable=="prep") data_sim_val[data_sim_val<=theta] <- 0
colnames(data_sim_val) <- paste0("r",seq(1:num.sim))
data.val <- data[[l]][-subset,]
data.val$bcf <- rec_val
data.val <- data.frame(data.val, data_sim_val)
summary(data.val)
```
# Quantile Mapping
```{r qm}
# QM approach-------------------------------------------------------------------
for(k_fold in 1){
data.o <- data[[l]]$obs[subset];
data.m <- data[[l]]$mod[subset];
data.p <- data[[l]]$mod[-subset];
data.tmp <- QDM(o.c=data.o, m.c=data.m, m.p=data.p, ratio=TRUE)#, ratio.max = 1, trace=theta))
data.bcc <- data.tmp$mhat.c
data.bcf <- data.tmp$mhat.p
}
```
# Compare
```{r comp}
df_fut <- cbind(data.val[,c('Date',"obs","mod","bcf",paste0("r",1:num.sim))],qm=data.bcf) %>%
gather(Group, Value,2:(4+num.sim+1))
summary(factor(df_fut$Group))
summary(df_fut)
p5 <- ggplot(data=df_fut,aes(x=Value,color = Group, size=Group)) +
stat_ecdf(aes(color = Group, size=Group), geom = "step", pad = FALSE) +
#stat_density(geom='line', position='identity') +
#facet_grid(W~Station, scales = "free") + #, labeller = labeller(Grid = Predictor.labs)) +
# scale_color_manual(values=c("black","red","green","blue"))+#,
# scale_size_manual(values=c(1,1,0.5,0.5))+
scale_color_manual(values = c("Black",alpha("Red",0.6),alpha("green",0.6),
alpha("blue",0.6), rep('grey',5))) +
scale_size_manual(values=c(1,1,0.5,0.5, rep(0.1,5))) +
#labels=c("obs","mod.c","mod.bcc")) +
scale_x_continuous(limits=c(0, 20), breaks = pretty_breaks(n = 3)) +
#labs(color=paste0(variable.ncep[i], "-level: ",level[j])) +
guides(color=guide_legend(override.aes = list(alpha=1)),
size=guide_legend(override.aes = list(size=1))) +
theme_bw() +
theme(text = element_text(size = 16),
plot.margin = unit(c(1,1,0.5, 1), "cm"),
# panel.grid.minor = element_blank(),
# panel.grid.major = element_blank(),
# axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
# axis.title.x = element_text(size=16),
# axis.title.y = element_text(size=16),
legend.title=element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank()
)
p5
```