Package 'Umoments'

January 20, 2025

Type Package

Title Unbiased Central Moment Estimates

Version 1.0.1

Maintainer Inna Gerlovina <innager@berkeley.edu>

Description Calculates one-sample unbiased central moment estimates and two-sample pooled estimates up to 6th order, including estimates of powers and products of central moments. Provides the machinery for obtaining unbiased central moment estimators beyond 6th order by generating expressions for expectations of raw sample moments and their powers and products.

Gerlovina and Hubbard (2019) <doi:10.1080/25742558.2019.1701917>.

Depends R (>= 3.4.0)

Imports stats, utils

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Inna Gerlovina [aut, cre], Alan Hubbard [aut]

Repository CRAN

Date/Publication 2024-10-02 08:10:02 UTC

Contents

one_combination	2
uM	3
uM2	4
uM2M3	5
uM2M3pool	6

one_combination

uM2M4	7
uM2M4pool	8
uM2pool	9
uM2pow2	10
uM2pow2pool	11
uM2pow3	12
uM2pow3pool	13
uM3	14
uM3pool	14
uM3pow2	15
uM3pow2pool	16
uM4	17
uM4pool	18
uM5	19
uM5pool	20
uM6	21
uM6pool	22
uMpool	23
	25

Index

one_combination

Generate symbolic expression for expectation

Description

Generate a string with symbolic expression for expectation of powers and products of non-central (raw) sample moments of an arbitrary order.

Usage

```
one_combination(powvect, smpsize = "n")
```

Arguments

powvect	vector of non-negative integers representing exponents j_1, \ldots, j_m of non-central
	moments in expectation (see "Details"). The position (index) of an element of
	this vector indicates a corresponding moment, e.g. for $E(\overline{X}^5\overline{X^4})$, powvect
	= c(5, 0, 0, 1). Thus the vector will have m elements if m'th is the highest
	moment.
smpsize	symbol to be used for sample size. Defaults to "n".

Details

For a zero-mean random variable X and a sample X_1, \ldots, X_n , find $E(\overline{X}^{j_1} \overline{X}^{2^{j_2}} \overline{X}^{3^{j_3}} \cdots \overline{X}^{m^{j_m}})$, where $overline X^k = 1/n \sum_{i=1}^n X_i^k$ is a k'th non-central sample moment. The expression is given in terms of sample size and true moments μ_k of X. These expectations can subsequently be used for generating unbiased central moment estimators of an arbitrary order, Edgeworth expansions, and possibly solving other higher-order problems.

Value

A string representing a symbolic expression for further processing using computer algebra (e.g. with *Sage* or *SymPy*), for calculating numeric values, or to be rendered with *Latex*.

Examples

one_combination(c(5, 0, 2, 1))

uМ

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products up to specified order.

Usage

uM(smp, order)

Arguments

smp	sample.
order	highest order of the estimates to calclulate. Estimates of lower orders will be
	included.

Details

Unbiased estimates up to the 6th order can be calculated. Second and third orders contain estimates of the variance and third central moment, fourth order includes estimates of fourth moment and squared variance (μ_2^2) , fifth order - of fifth moment and a product of second and third moments $(\mu_2\mu_3)$, sixth order - of sixth moment, a product of second and fourth moments $(\mu_2\mu_4)$, squared third moment (μ_3^2) , and cubed variance (μ_2^3) .

Value

A named vector of estimates of central moments and their powers and products up to order. The highest order available is 6th. The names of the elements are "M2", "M3", "M4", "M5", "M6" for corresponding central moments, "M2M3", "M2M4" for products of the moments (second and third, second and fourth), and "M2pow2", "M2pow3", "M3pow2" for powers of the moments - corresponding to estimates of squared variance, cubed variance, and squared third moment.

References

Gerlovina, I. and Hubbard, A.E. (2019). *Computer algebra and algorithms for unbiased moment estimation of arbitrary order.* Cogent Mathematics & Statistics, 6(1).

See Also

uMpool for two-sample pooled estimates.

Examples

smp <- rgamma(10, shape = 3)
uM(smp, 6)</pre>

uM2

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2(m2, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
n	sample size.

Value

Unbiased variance estimate.

See Also

Other unbiased estimates (one-sample): uM2M3(), uM2M4(), uM2pow2(), uM2pow3(), uM3(), uM3pow2(), uM4(), uM5(), uM6()

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
m <- c(m, mean((smp - m[1])^2))
uM2(m[2], n) - var(smp)</pre>
```

uM2M3

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2M3(m2, m3, m5, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a vector X.
m5	naive biased fifth central moment estimate $m_5 = \sum_{i=1}^{n} ((X_i - \bar{X})^5)$ for a vector X.
n	sample size.

Value

Unbiased estimate of a product of second and third central moments $\mu_2\mu_3$, where μ_2 and μ_3 are second and third central moments respectively.

See Also

Other unbiased estimates (one-sample): uM2(), uM2M4(), uM2pow2(), uM2pow3(), uM3(), uM3pow2(), uM4(), uM5(), uM6()

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:5) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2M3(m[2], m[3], m[5], n)</pre>
```

uM2M3pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2M3pool(m2, m3, m5, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
m5	naive biased fifth central moment estimate $m_5 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^5 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^5 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of a product of second and third central moments $\mu_2\mu_3$, where μ_2 and μ_3 are second and third central moments respectively.

See Also

```
Other pooled estimates (two-sample): uM2M4pool(), uM2pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pow2pool(), uM4pool(), uM5pool(), uM6pool()
```

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(5)
for (j in 2:5) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2M3pool(m[2], m[3], m[5], nx, ny)
```

uM2M4

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2M4(m2, m3, m4, m6, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a vector X.
m4	naive biased fourth central moment estimate $m_4 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^4)^4$ for a vector X.
m6	naive biased sixth central moment estimate $m_6 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^6$ for a vector X.
n	sample size.

Value

Unbiased estimate of a product of second and fourth central moments $\mu_2\mu_4$, where μ_2 and μ_4 are second and fourth central moments respectively.

See Also

Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2pow2(), uM2pow3(), uM3(), uM3pow2(), uM4(), uM5(), uM6()

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2M4(m[2], m[3], m[4], m[6], n)</pre>
```

uM2M4pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2M4pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
m4	naive biased fourth central moment estimate $m_4 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^4 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^4 \text{ for vectors X and Y.})$
m6	naive biased sixth central moment estimate $m_6 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^6 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^6 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of a product of second and fourth central moments $\mu_2\mu_4$, where μ_2 and μ_4 are second and fourth central moments respectively.

See Also

Other pooled estimates (two-sample): uM2M3pool(), uM2pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pool(), uM4pool(), uM5pool(), uM6pool()

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2M4pool(m[2], m[3], m[4], m[6], nx, ny)
```

uM2pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

 $uM2pool(m2, n_x, n_y)$

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled variance estimate.

See Also

Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pool(), uM4pool(), uM5pool(), uM6pool()

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
m2 <- mean(c((smpx - mean(smpx))^2, (smpy - mean(smpy))^2))
uM2pool(m2, nx, ny)</pre>
```

uM2pow2

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2pow2(m2, m4, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m4	naive biased fourth central moment estimate $m_4 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^4)^4$ for a vector X.
n	sample size.

Value

Unbiased estimate of squared variance μ_2^2 , where μ_2 is a variance.

See Also

Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow3(), uM3(), uM3pow2(), uM4(), uM5(), uM6()

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:4) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2pow2(m[2], m[4], n)</pre>
```

uM2pow2pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2pow2pool(m2, m4, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m4	naive biased fourth central moment estimate $m_4 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^4 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^4 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of squared variance μ_2^2 , where μ_2 is a variance.

See Also

```
Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pool(), uM2pow3pool(), uM3pool(), uM3pow2pool(), uM4pool(), uM5pool(), uM6pool()
```

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(4)
for (j in 2:4) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2pow2pool(m[2], m[4], nx, ny)
```

uM2pow3

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM2pow3(m2, m3, m4, m6, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a vector X.
m4	naive biased fourth central moment estimate $m_4 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^4)^4$ for a vector X.
m6	naive biased sixth central moment estimate $m_6 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^6$ for a vector X.
n	sample size.

Value

Unbiased estimate of cubed second central moment μ_2^3 , where μ_2 is a variance.

See Also

Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow2(), uM3(), uM3pow2(), uM4(), uM5(), uM6()

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM2pow3(m[2], m[3], m[4], m[6], n)</pre>
```

uM2pow3pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM2pow3pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
m4	naive biased fourth central moment estimate $m_4 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^4 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^4)^4)$ for vectors X and Y.
m6	naive biased sixth central moment estimate $m_6 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^6 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^6 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of cubed variance central moment μ_2^3 , where μ_2 is a variance.

See Also

```
Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pool(), uM2pow2pool(), uM3pool(), uM3pow2pool(), uM4pool(), uM5pool(), uM6pool()
```

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM2pow3pool(m[2], m[3], m[4], m[6], nx, ny)
```

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM3(m3, n)

Arguments

m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a
	vector X.
n	sample size.

Value

Unbiased estimate of a third central moment.

See Also

Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow2(), uM2pow3(), uM3pow2(), uM4(), uM5(), uM6()

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:3) {
    m <- c(m, mean((smp - m[1])^j))
}
uM3(m[3], n)</pre>
```

```
uM3pool
```

Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM3pool(m3, n_x, n_y)

uM3

uM3pow2

Arguments

m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of a third central moment.

See Also

```
Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pow2pool(), uM2pow3pool(), uM3pow2pool(), uM4pool(), uM5pool(), uM6pool()
```

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(3)
for (j in 2:3) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM3pool(m[3], nx, ny)
```

uM3pow2

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM3pow2(m2, m3, m4, m6, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a
	vector X.

m4	naive biased fourth central moment estimate $m_4 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^4)^4$ for a vector X.
m6	naive biased sixth central moment estimate $m_6 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^6)$ for a vector X.
n	sample size.

Value

Unbiased estimate of squared third central moment μ_3^2 , where μ_3 is a third central moment.

See Also

```
Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow2(), uM2pow3(), uM3(), uM4(), uM5(), uM6()
```

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM3pow2(m[2], m[3], m[4], m[6], n)</pre>
```

uM3pow2pool *Pooled central moment estimates - two-sample*

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM3pow2pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
m4	naive biased fourth central moment estimate $m_4 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^4 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^4 \text{ for vectors X and Y.})$
m6	naive biased sixth central moment estimate $m_6 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^6 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^6 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

uM4

Value

Pooled estimate of squared third central moment μ_3^2 , where μ_3 is a third central moment.

See Also

```
Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM4pool(), uM5pool(), uM6pool()
```

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM3pow2pool(m[2], m[3], m[4], m[6], nx, ny)
```

uM4

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM4(m2, m4, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m4	naive biased fourth central moment estimate $m_4 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^4)^4$ for a vector X.
n	sample size.

Value

Unbiased estimate of a fourth central moment.

See Also

```
Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow2(), uM2pow3(), uM3(), uM3pow2(), uM5(), uM6()
```

Examples

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:4) {
    m <- c(m, mean((smp - m[1])^j))
}
uM4(m[2], m[4], n)</pre>
```

```
uM4pool
```

Pooled central moment estimates - two-sample

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM4pool(m2, m4, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^2 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^2)^2$ for vectors X and Y.
m4	naive biased fourth central moment estimate $m_4 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^4 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^4 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of a fourth central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pov2pool(), uM5pool(), uM6pool()

Examples

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(4)</pre>
```

18

uM5

```
for (j in 2:4) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM4pool(m[2], m[4], nx, ny)</pre>
```

uM5

Unbiased central moment estimates

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM5(m2, m3, m5, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a vector X.
m5	naive biased fifth central moment estimate $m_5 = \sum_{i=1}^n ((X_i - \bar{X})^5)$ for a vector X.
n	sample size.

Value

Unbiased estimate of a fifth central moment.

See Also

```
Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow2(), uM2pow3(), uM3(), uM3pow2(), uM4(), uM6()
```

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:5) {
    m <- c(m, mean((smp - m[1])^j))
}
uM5(m[2], m[3], m[5], n)</pre>
```

uM5pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM5pool(m2, m3, m5, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
m5	naive biased fifth central moment estimate $m_5 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^5 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^5)$ for vectors X and Y.
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Pooled estimate of a fifth central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pow2pool(), uM4pool(), uM6pool()

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(5)
for (j in 2:5) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM5pool(m[2], m[3], m[5], nx, ny)
```

uM6

Description

Calculate unbiased estimates of central moments and their powers and products.

Usage

uM6(m2, m3, m4, m6, n)

Arguments

m2	naive biased variance estimate $m_2 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^2)$ for a vector X.
m3	naive biased third central moment estimate $m_3 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^3)$ for a vector X.
m4	naive biased fourth central moment estimate $m_4 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^4)^4$ for a vector X.
m6	naive biased sixth central moment estimate $m_6 = 1/n \sum_{i=1}^n ((X_i - \bar{X})^6)$ for a vector X.
n	sample size.

Value

Unbiased estimate of a sixth central moment.

See Also

Other unbiased estimates (one-sample): uM2(), uM2M3(), uM2M4(), uM2pow2(), uM2pow3(), uM3(), uM3pow2(), uM4(), uM5()

```
n <- 10
smp <- rgamma(n, shape = 3)
m <- mean(smp)
for (j in 2:6) {
    m <- c(m, mean((smp - m[1])^j))
}
uM6(m[2], m[3], m[4], m[6], n)</pre>
```

uM6pool

Description

Calculate pooled unbiased estimates of central moments and their powers and products.

Usage

uM6pool(m2, m3, m4, m6, n_x, n_y)

Arguments

m2	naive biased variance estimate $m_2 = 1/(n_x+n_y)\sum_{i=1}^{n_x}((X_i-\bar{X})^2+\sum_{i=1}^{n_y}((Y_i-\bar{Y})^2)^2)$ for vectors X and Y.
m3	naive biased third central moment estimate $m_3 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^3 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^3 \text{ for vectors X and Y.})$
m4	naive biased fourth central moment estimate $m_4 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^4 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^4 \text{ for vectors X and Y.})$
m6	naive biased sixth central moment estimate $m_6 = 1/(n_x + n_y) \sum_{i=1}^{n_x} ((X_i - \bar{X})^6 + \sum_{i=1}^{n_y} ((Y_i - \bar{Y})^6 \text{ for vectors X and Y.})$
n_x	number of observations in the first group.
n_y	number of observations in the second group.

Value

Unbiased estimate of a sixth central moment.

See Also

Other pooled estimates (two-sample): uM2M3pool(), uM2M4pool(), uM2pool(), uM2pow2pool(), uM2pow3pool(), uM3pool(), uM3pow2pool(), uM4pool(), uM5pool()

```
nx <- 10
ny <- 8
shp <- 3
smpx <- rgamma(nx, shape = shp) - shp
smpy <- rgamma(ny, shape = shp)
mx <- mean(smpx)
my <- mean(smpy)
m <- numeric(6)
for (j in 2:6) {
    m[j] <- mean(c((smpx - mx)^j, (smpy - my)^j))
}
uM6pool(m[2], m[3], m[4], m[6], nx, ny)
```

uMpool

Description

Calculate unbiased pooled estimates of central moments and their powers and products up to specified order.

Usage

uMpool(smp, a, order)

Arguments

smp	sample.
а	vector of the same length as smp specifying categories of observations (should contain two unique values).
order	highest order of the estimates to calclulate. Estimates of lower orders will be included.

Details

Pooled estimates up to the 6th order can be calculated. Second and third orders contain estimates of the variance and third central moment, fourth order includes estimates of fourth moment and squared variance (μ_2^2) , fifth order - of fifth moment and a product of second and third moments $(\mu_2\mu_3)$, sixth order - of sixth moment, a product of second and fourth moments $(\mu_2\mu_4)$, squared third moment (μ_3^2) , and cubed variance (μ_2^3) .

Value

A named vector of estimates of central moments and their powers and products up to order. The highest order available is 6th. The names of the elements are "M2", "M3", "M4", "M5", "M6" for corresponding central moments, "M2M3", "M2M4" for products of the moments (second and third, second and fourth), and "M2pow2", "M2pow3", "M3pow2" for powers of the moments - corresponding to estimates of squared variance, cubed variance, and squared third moment.

References

Gerlovina, I. and Hubbard, A.E. (2019). *Computer algebra and algorithms for unbiased moment estimation of arbitrary order*. Cogent Mathematics & Statistics, 6(1).

See Also

uM for one-sample unbiased estimates.

uMpool

Examples

```
nsmp <- 23
smp <- rgamma(nsmp, shape = 3)
treatment <- sample(0:1, size = nsmp, replace = TRUE)
uMpool(smp, treatment, 6)</pre>
```

24

Index

* pooled estimates (two-sample) uM2M3pool, 6 uM2M4pool, 8 uM2pool, 9 uM2pow2pool, 11 uM2pow3pool, 13 uM3pool, 14 uM3pow2pool, 16 uM4pool, 18 uM5pool, 20 uM6pool, 22 * unbiased estimates (one-sample) uM2, 4 uM2M3, 5 uM2M4, 7 uM2pow2, 10 uM2pow3, 12 uM3, 14 uM3pow2, 15 uM4, 17 uM5, 19 uM6, 21 one_combination, 2 uM, 3, 23 uM2, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM2M3, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM2M3pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM2M4, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM2M4pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM2pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM2pow2, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM2pow2pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM2pow3, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM2pow3pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM3, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM3pool, 6, 8, 9, 11, 13, 14, 17, 18, 20, 22 uM3pow2, 4, 5, 7, 10, 12, 14, 15, 17, 19, 21 uM3pow2pool, 6, 8, 9, 11, 13, 15, 16, 18, 20, 22

uM4, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM4pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM5, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM5pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uM6, 4, 5, 7, 10, 12, 14, 16, 17, 19, 21 uM6pool, 6, 8, 9, 11, 13, 15, 17, 18, 20, 22 uMpool, 4, 23