Package 'NGBVS'

January 20, 2025

Type Package

Title Bayesian Variable Selection for SNP Data using Normal-Gamma

Version 0.3.0

Date 2022-09-12

Author Abdulaziz Alenazi [aut, cre]

Maintainer Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

Depends R (>= 3.6.0)

Imports stats, Rfast

Description Posterior distribution of case-control fine-mapping. Specifically, Bayesian variable selection for single-nucleotide polymorphism (SNP) data using the normal-gamma prior. Alenazi A.A., Cox A., Juarez M., Lin W-Y. and Walters, K. (2019) Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies, Genetic Epidemiology. <doi:10.1002/gepi.22213>.

License GPL (≥ 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2022-09-16 16:36:05 UTC

Contents

NGBVS-package	. 2
asym_m_ng	. 2
asym_s_ng	. 4
m_ng	. 5
Random value generation from the Generalized Inverse Gaussian Distribution	. 6
s_ng	. 7

8

Index

```
NGBVS-package
```

Description

The NGBVS package provides posterior distribution of case-control fine-mapping. Specifically Bayesian variable selection for Single-Nucleotide Polymorphism (SNP) data using the Normal-Gamma prior.

Details

Package:	NG
Type:	Package
Version:	0.3.0
Date:	2022-09-112
License:	GPL-2

Maintainers

Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

Author(s)

Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

asym_m_ng

Modified NG prior via FS scores

Description

Modified Normal Gamma prior calculates the posterior distribution for the fine mapping casescontrols study. The number of case-controls must be greater than the number of SNPs.

Usage

asym_m_ng (y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)

asym_m_ng

Arguments

У	A vector of the pheontype, where takes 0s and 1s.
data	An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
FS	FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS.
medstar	The value of M where M takes two values.
numb	Number of samples for each SNP.
burnin	The amount of burn-in for the MCMC sample.
every	The amount of thining for the MCMC sample.

Value

A list including:

alpha	A vector of the posterior distribution of the intercept.
beta	A matrix of the posterior distribution of the effect sizes.
psi	A matrix of the posterior distribution of ψ .
lambda	A vector of the posterior distribution of λ .
gammasq	A vector of the posterior distribution of γ^2 .
W	A vector of the posterior distribution of W .
Н	A vector of the posterior distribution of H .

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed(1)
data <- matrix(sample( c( 0, 1, 2 ), 500 * 30, replace = TRUE,
prob <- c( 0.35, 0.35, 0.3)), ncol = 30 )
FS <- sample( c( 0.1, 0.5, 0.7, NA ), ncol( data ), replace = TRUE)
asym_m_ng(y = rbinom(500, 1, 0.5), data = data, FS = FS)</pre>
```

asym_s_ng

Description

Standard Normal Gammp prior calculates the posterior distribution for the fine mapping casescontrols study. The number of case-controls must be greater than the number of SNPs.

Usage

asym_s_ng(y, data, medstar = 1, numb = 100, burnin = 1, every = 1)

Arguments

У	A vector of the pheontype, where takes 0s and 1s.
data	An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
medstar	The value of M.
numb	Number of samples for each SNP.
burnin	The amount of burn-in for the MCMC sample.
every	The amount of thining for the MCMC sample.

Value

A list including:

alpha	A vector of the posterior distribution of the intercept.
beta	A matrix of the posterior distribution of the effect sizes.
psi	A matrix of the posterior distribution of ψ .
lambda	A vector of the posterior distribution of λ .
gammasq	A vector of the posterior distribution of γ^2 .

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed( 1 )
data <- matrix(sample( c( 0, 1, 2 ), 500 * 30, replace = TRUE,
prob = c( 0.35, 0.35, 0.3)), ncol = 30)
asym_s_ng(y = rbinom(500, 1, 0.5), data = data)</pre>
```

m_ng

Description

Modified Normal Gammp prior calculates the posterior distribution for the fine mapping study. The number of individuals must be greater than the number of SNPs.

Usage

```
m_ng (y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)
```

Arguments

У	A vector of the pheontype.
data	An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
FS	FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS.
medstar	The value of M where M takes two values.
numb	Number of samples for each SNP.
burnin	The amount of burn-in for the MCMC sample.
every	The amount of thining for the MCMC sample.

Value

A list including:

alpha	A vector of the posterior distribution of the intercept.
beta	A matrix of the posterior distribution of the effect sizes.
sigmasq	A vector of the posterior distribution of σ^2 .
psi	A matrix of the posterior distribution of ψ .
lambda	A vector of the posterior distribution of λ .
gammasq	A vector of the posterior distribution of γ^2 .
W	A vector of the posterior distribution of W .
Н	A vector of the posterior distribution of H .

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed( 1 )
data <- matrix(rnorm(500 * 30), ncol = 30)
FS <- sample( c( 0.1, 0.5, 0.7, NA ), ncol( data ), replace = TRUE)
m_ng(y = rnorm( 500 ), data = data, FS = FS)</pre>
```

```
Random value generation from the Generalized Inverse Gaussian
Distribution
Random value generation from the Generalized Inverse Gaussian
```

```
Random value generation from the Generalized Inverse Gaussian Dis-
tribution
```

Description

Random value generation from the Generalized Inverse Gaussian (GIG) Distribution.

Usage

rgig(n = 10, lambda = 1, chi = 1, psi = 1)

Arguments

n	Number of observations.
lambda	A shape and scale and parameter.
chi	Shape parameter. Must be positive.
psi	Scale parameter. Must be positive.

Details

rgig uses the code from the GIG-random number generator from the R package *fBasics*. I copied the code from the "ghyp" package because it had not longer a maintainer.

Value

A vector with random values from the GIG distrigution.

Author(s)

David Luethi. Minor changes made by Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>.

References

The algorithm for simulating generalized inverse gaussian variates is copied from the R package *fBasics* from Diethelm Wuertz.

Dagpunar, J.S. (1989). An easily implemented generalised inverse Gaussian generator. Communications in Statistics-Computation and Simulation, **18**, 703–710.

Raible S. (2000). *Levy Processes in Finance: Theory, Numerics and Empirical Facts*, PhD Thesis, University of Freiburg, Germany, 161 pages.

6

Examples

x <- rgig(n = 10, lambda = 1, chi = 1, psi = 1)

s_ng

Standard NG prior

Description

Standard Normal Gammp prior calculates the posterior distribution for the fine mapping study. The number of individuals must be greater than the number of SNPs.

Usage

```
s_ng(y, data, medstar = 1, numb = 100, burnin = 1, every = 1)
```

Arguments

У	A vector of the pheontype.
data	An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
medstar	The value of M.
numb	Number of samples for each SNP.
burnin	The amount of burn-in for the MCMC sample.
every	The amount of thining for the MCMC sample.

Value

A list including:

alpha	A vector of the posterior distribution of the intercept.
beta	A matrix of the posterior distribution of the effect sizes.
sigmasq	A vector of the posterior distribution of σ^2 .
psi	A matrix of the posterior distribution of ψ .
lambda	A vector of the posterior distribution of λ .
gammasq	A vector of the posterior distribution of γ^2 .

Author(s)

Abulaziz Alenazi.

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

```
set.seed(1)
data <- matrix( rnorm(500 * 30), ncol = 30)
s_ng(y = rnorm(500), data = data)</pre>
```

Index

asym_m_ng, 2 asym_s_ng, 4 m_ng, 5 NGBVS-package, 2 Random value generation from the Generalized Inverse Gaussian Distribution, 6 rgig (Random value generation from the Generalized Inverse Gaussian Distribution), 6

s_ng, 7