
Package ‘LaMa’
November 13, 2024

Type Package

Title Fast Numerical Maximum Likelihood Estimation for Latent Markov
Models

Version 2.0.1

Description A variety of latent Markov models, including hidden Markov models, hidden semi-
Markov models,
state-space models and continuous-time variants can be formulated and esti-
mated within the same framework via directly maximising the likelihood function using the so-
called forward algorithm.
Applied researchers often need custom models that standard software does not easily support.
Writing tailored 'R' code offers flexibility but suffers from slow estimation speeds.
We address these issues by providing easy-to-
use functions (written in 'C++' for speed) for common tasks like the forward algorithm.
These functions can be combined into custom models in a Lego-
type approach, offering up to 10-20 times faster estimation via standard numerical optimisers.
To aid in building fully custom likelihood functions, several vignettes are in-
cluded that show how to simulate data from and estimate all the above model classes.

URL https://janoleko.github.io/LaMa/

License GPL-3

Encoding UTF-8

Imports Rcpp, mgcv, Matrix, stats, utils, MASS, mvtnorm, splines,
methods, CircStats, circular

LinkingTo Rcpp, RcppArmadillo

Depends R (>= 3.5.0), RTMB

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0), PHSMM, MSwM, scales

VignetteBuilder knitr

Config/testthat/edition 3

LazyData true

NeedsCompilation yes

Author Jan-Ole Koslik [aut, cre] (<https://orcid.org/0009-0004-1556-9053>)

1

https://janoleko.github.io/LaMa/
https://orcid.org/0009-0004-1556-9053

2 Contents

Maintainer Jan-Ole Koslik <jan-ole.koslik@uni-bielefeld.de>

Repository CRAN

Date/Publication 2024-11-13 08:30:09 UTC

Contents
buildSmoothDens . 3
calc_trackInd . 4
dgmrf2 . 5
forward . 6
forward_g . 8
forward_hsmm . 9
forward_ihsmm . 11
forward_p . 13
forward_phsmm . 15
forward_s . 17
forward_sp . 18
gamma2 . 20
generator . 21
make_matrices . 22
make_matrices_dens . 23
nessi . 24
penalty . 24
pred_matrix . 26
pseudo_res . 27
pseudo_res_discrete . 29
qreml . 30
sdreportMC . 33
stateprobs . 35
stateprobs_g . 36
stateprobs_p . 37
stationary . 38
stationary_cont . 39
stationary_p . 40
stationary_p_sparse . 41
stationary_sparse . 42
tpm . 43
tpm_cont . 44
tpm_emb . 45
tpm_emb_g . 46
tpm_g . 47
tpm_hsmm . 48
tpm_hsmm2 . 49
tpm_ihsmm . 50
tpm_p . 51
tpm_phsmm . 53
tpm_phsmm2 . 54

buildSmoothDens 3

tpm_thinned . 55
trex . 56
trigBasisExp . 57
viterbi . 58
viterbi_g . 59
viterbi_p . 60
vm . 61

Index 63

buildSmoothDens Build the design and penalty matrices for smooth density estimation

Description

This high-level function can be used to prepare objects needed to estimate mixture models of smooth
densities using P-Splines.

Usage

buildSmoothDens(data, type = "real", par, k = 20, degree = 3, diff_order = 2)

Arguments

data named data frame of different data streams

type type of each data stream, either "real" for data on the reals, "positive" for
data on the positive reals or "circular" for angular data. Needs to be a vector
corresponding to the number of data streams in data.

par nested named list of initial means and sds/concentrations for each data stream

k number of basis functions for each data stream

degree degree of the B-spline basis functions for each data stream, defaults to cubic
B-splines

diff_order order of differencing used for the P-Spline penalty matrix for each data stream.
Defaults to second-order differences.

Details

Under the hood, make_matrices_dens is used for the actual construction of the design and penalty
matrices.

You can provide one or multiple data streams of different types (real, positive, circular) and specify
initial means and standard deviations/ concentrations for each data stream. This information is
then converted into suitable spline coefficients. buildSmoothDens then constructs the design and
penalty matrices for standardised B-splines basis functions (integrating to one) for each data stream.
For types "real" and "circular" the knots are placed equidistant in the range of the data, for type
"positive" the knots are placed using polynomial spacing.

4 calc_trackInd

Value

a nested list containing the design matrices Z, the penalty matrices S, the initial coefficients coef the
prediction design matrices Z_predict, the prediction grids xseq, and details for the basis expansion
for each data stream.

Examples

3 data streams, each with one distribution
normal data with mean 0 and sd 1
x1 = rnorm(100, mean = 0, sd = 1)
gamma data with mean 5 and sd 3
x2 = rgamma2(100, mean = 5, sd = 3)
circular data
x3 = rvm(100, mu = 0, kappa = 2)

data = data.frame(x1 = x1, x2 = x2, x3 = x3)

par = list(x1 = list(mean = 0, sd = 1),
x2 = list(mean = 5, sd = 3),
x3 = list(mean = 0, concentration = 2))

SmoothDens = buildSmoothDens(data,
type = c("real", "positive", "circular"),
par)

extracting objects for x1
Z1 = SmoothDensZx1
S1 = SmoothDensSx1
coefs1 = SmoothDens$coef$x1

one data stream, but mixture of two distributions
normal data with mean 0 and sd 1
x = rnorm(100, mean = 0, sd = 1)
data = data.frame(x = x)

now parameters for mixture of two normals
par = list(x = list(mean = c(0, 5), sd = c(1,1)))

SmoothDens = buildSmoothDens(data, par = par)

extracting objects
Z = SmoothDensZx
S = SmoothDensSx
coefs = SmoothDens$coef$x

calc_trackInd Calculate the index of the first observation of each track based on an
ID variable

dgmrf2 5

Description

Function to conveniently calculate the trackInd variable that is needed internally when fitting a
model to longitudinal data with multiple tracks.

Usage

calc_trackInd(ID)

Arguments

ID ID variable of track IDs that is of the same length as the data to be analysed

Value

A vector of indices of the first observation of each track which can be passed to the forward and
forward_g to sum likelihood contributions of each track

Examples

uniqueID = c("Animal1", "Animal2", "Animal3")
ID = rep(uniqueID, c(100, 200, 300))
trackInd = calc_trackInd(ID)

dgmrf2 Reparametrised multivariate Gaussian distribution

Description

Density function of the multivariate Gaussian distribution reparametrised in terms of its precision
matrix (inverse variance). This implementation is particularly useful for defining the joint log-
likelihood with penalised splines or i.i.d. random effects that have a multivariate Gaussian distribu-
tion with fixed precision/ penalty matrix λS. As S is fixed and only scaled by λ, it is more efficient
to precompute the determinant of S (for the normalisation constant) and only scale the quadratic
form by λ when multiple spline parameters/ random effects with different λ’s but the same penalty
matrix S are evaluated.

Usage

dgmrf2(x, mu = 0, S, lambda, logdetS = NULL, log = FALSE)

Arguments

x density evaluation point, either a vector or a matrix

mu mean parameter. Either scalar or vector

S unscaled precision matrix

6 forward

lambda precision scaling parameter
Can be a vector if x is a matrix. Then each row of x is evaluated with the
corresponding lambda. This is benefitial from an efficiency perspective because
the determinant of S is only computed once.

logdetS Optional precomputed log determinant of the precision matrix S. If the precision
matrix does not depend on parameters, it can be precomputed and passed to the
function.

log logical; if TRUE, densities are returned on the log scale.

Details

This implementation allows for automatic differentiation with RTMB.

Value

vector of density values

Examples

x = matrix(runif(30), nrow = 3)

iid random effects
S = diag(10)
sigma = c(1, 2, 3) # random effect standard deviations
lambda = 1 / sigma^2
d = dgmrf2(x, 0, S, lambda)

P-splines
L = diff(diag(10), diff = 2) # second-order difference matrix
S = t(L) %*% L
lambda = c(1,2,3)
d = dgmrf2(x, 0, S, lambda, log = TRUE)

forward Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm with homogeneous transition probability
matrix

Description

Calculates the log-likelihood of a sequence of observations under a homogeneous hidden Markov
model using the forward algorithm.

Usage

forward(delta, Gamma, allprobs, trackID = NULL, ad = NULL, report = TRUE)

forward 7

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma transition probability matrix of dimension c(N,N), or array of k transition prob-
ability matrices of dimension c(N,N,k), if trackID is provided

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)
trackID optional vector of length n containing IDs

If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. In this case, Gamma can be a matrix, leading to the same transition
probabilities for each track, or an array of dimension c(N,N,k), with one (homo-
geneous) transition probability matrix for each track. Furthermore, instead of a
single vector delta corresponding to the initial distribution, a delta matrix of
initial distributions, of dimension c(k,N), can be provided, such that each track
starts with it’s own initial distribution.

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

report logical, indicating whether delta, Gamma and allprobs should be reported from
the fitted model. Defaults to TRUE, but only works if ad = TRUE.

Value

log-likelihood for given data and parameters

See Also

Other forward algorithms: forward_g(), forward_hsmm(), forward_ihsmm(), forward_p(), forward_phsmm()

Examples

negative log likelihood function
nll = function(par, step) {
parameter transformations for unconstrained optimisation
Gamma = tpm(par[1:2]) # multinomial logit link
delta = stationary(Gamma) # stationary HMM
mu = exp(par[3:4])
sigma = exp(par[5:6])
calculate all state-dependent probabilities
allprobs = matrix(1, length(step), 2)
ind = which(!is.na(step))
for(j in 1:2) allprobs[ind,j] = dgamma2(step[ind], mu[j], sigma[j])
simple forward algorithm to calculate log-likelihood
-forward(delta, Gamma, allprobs)
}

fitting an HMM to the trex data
par = c(-2,-2, # initial tpm params (logit-scale)

log(c(0.3, 2.5)), # initial means for step length (log-transformed)
log(c(0.2, 1.5))) # initial sds for step length (log-transformed)

mod = nlm(nll, par, step = trex$step[1:1000])

8 forward_g

forward_g General Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockforward algorithm with time-varying transition probability
matrix

Description

Calculates the log-likelihood of a sequence of observations under a hidden Markov model with
time-varying transition probabilities using the forward algorithm.

Usage

forward_g(delta, Gamma, allprobs, trackID = NULL, ad = NULL, report = TRUE)

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma array of transition probability matrices of dimension c(N,N,n-1), as in a time
series of length n, there are only n-1 transitions.
If an array of dimension c(N,N,n) for a single track is provided, the first slice
will be ignored.
If the elements of Γ(t) depend on covariate values at t or covariates t+1 is your
choice in the calculation of the array, prior to using this function. When con-
ducting the calculation by using tpm_g(), the choice comes down to including
the covariate matrix Z[-1,] oder Z[-n,].
If trackInd is provided, Gamma needs to be an array of dimension c(N,N,n),
matching the number of rows of allprobs. For each track, the transition matrix
at the beginning will be ignored. If the parameters for Gamma are pooled across
tracks or not, depends on your calculation of Gamma. If pooled, you can use
tpm_g(Z, beta) to calculate the entire array of transition matrices when Z is of
dimension c(n,p).

This function can also be used to fit continuous-time HMMs, where each array
entry is the Markov semigroup Γ(∆t) = exp(Q∆t) and Q is the generator of
the continuous-time Markov chain.

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

trackID optional vector of length n containing IDs
If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. In this case, Gamma needs to be an array of dimension c(N,N,n),
matching the number of rows of allprobs. For each track, the transition matrix
at the beginning of the track will be ignored (as there is no transition between
tracks). Furthermore, instead of a single vector delta corresponding to the
initial distribution, a delta matrix of initial distributions, of dimension c(k,N),
can be provided, such that each track starts with it’s own initial distribution.

forward_hsmm 9

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

report logical, indicating whether delta, Gamma and allprobs should be reported from
the fitted model. Defaults to TRUE, but only works if ad = TRUE.

Value

log-likelihood for given data and parameters

See Also

Other forward algorithms: forward(), forward_hsmm(), forward_ihsmm(), forward_p(), forward_phsmm()

Examples

negative log likelihood function
nll = function(par, step, Z) {
parameter transformations for unconstrained optimisation
beta = matrix(par[1:6], nrow = 2)
Gamma = tpm_g(Z, beta) # multinomial logit link for each time point
delta = stationary(Gamma[,,1]) # stationary HMM
mu = exp(par[7:8])
sigma = exp(par[9:10])
calculate all state-dependent probabilities
allprobs = matrix(1, length(step), 2)
ind = which(!is.na(step))
for(j in 1:2) allprobs[ind,j] = dgamma2(step[ind], mu[j], sigma[j])
simple forward algorithm to calculate log-likelihood
-forward_g(delta, Gamma, allprobs)

}

fitting an HMM to the trex data
par = c(-2,-2, # initial tpm intercepts (logit-scale)

rep(0, 4), # initial tpm slopes
log(c(0.3, 2.5)), # initial means for step length (log-transformed)
log(c(0.2, 1.5))) # initial sds for step length (log-transformed)

mod = nlm(nll, par, step = trex$step[1:500], Z = trigBasisExp(trex$tod[1:500]))

forward_hsmm Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for homogeneous hidden semi-Markov
models

Description

Calculates the (approximate) log-likelihood of a sequence of observations under a homogeneous
hidden semi-Markov model using a modified forward algorithm.

10 forward_hsmm

Usage

forward_hsmm(
dm,
omega,
allprobs,
trackID = NULL,
delta = NULL,
eps = 1e-10,
report = TRUE

)

Arguments

dm list of length N containing vectors of dwell-time probability mass functions
(PMFs) for each state. The vector lengths correspond to the approximating
state aggregate sizes, hence there should be little probablity mass not covered
by these.

omega matrix of dimension c(N,N) of conditional transition probabilites, also called
embedded transition probability matrix.
Contains the transition probabilities given that the current state is left. Hence,
the diagonal elements need to be zero and the rows need to sum to one. Can be
constructed using tpm_emb.

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)
which will automatically be converted to the appropriate dimension.

trackID optional vector of length n containing IDs
If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. In this case, dm can be a nested list, where the top layer con-
tains k dm lists as described above. omega can then also be an array of dimen-
sion c(N,N,k) with one conditional transition probability matrix for each track.
Furthermore, instead of a single vector delta corresponding to the initial dis-
tribution, a delta matrix of initial distributions, of dimension c(k,N), can be
provided, such that each track starts with it’s own initial distribution.

delta optional vector of initial state probabilities of length N
By default, the stationary distribution is computed (which is typically recom-
mended).

eps small value to avoid numerical issues in the approximating transition matrix
construction. Usually, this should not be changed.

report logical, indicating whether initial distribution, approximating transition prob-
ability matrix and allprobs matrix should be reported from the fitted model.
Defaults to TRUE.

Details

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs, where the state duration
distribution is explicitly modelled by a distribution on the positive integers. For direct numerical

forward_ihsmm 11

maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities.

This function is designed to be used with automatic differentiation based on the R package RTMB. It
will be very slow without it!

Value

log-likelihood for given data and parameters

See Also

Other forward algorithms: forward(), forward_g(), forward_ihsmm(), forward_p(), forward_phsmm()

Examples

currently no examples

forward_ihsmm Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for hidden semi-Markov models with
inhomogeneous state durations and/ or conditional transition proba-
bilities

Description

Calculates the (approximate) log-likelihood of a sequence of observations under an inhomogeneous
hidden semi-Markov model using a modified forward algorithm.

Usage

forward_ihsmm(
dm,
omega,
allprobs,
trackID = NULL,
delta = NULL,
startInd = NULL,
eps = 1e-10,
report = TRUE

)

12 forward_ihsmm

Arguments

dm list of length N containing matrices (or vectors) of dwell-time probability mass
functions (PMFs) for each state.
If the dwell-time PMFs are constant, the vectors are the PMF of the dwell-time
distribution fixed in time. The vector lengths correspond to the approximating
state aggregate sizes, hence there should be little probablity mass not covered
by these.
If the dwell-time PMFs are inhomogeneous, the matrices need to have n rows,
where n is the number of observations. The number of columns again corre-
ponds to the size of the approximating state aggregates.
In the latter case, the first max(sapply(dm, ncol)) - 1 observations will not be
used because the first approximating transition probability matrix needs to be
computed based on the first max(sapply(dm, ncol)) covariate values (repre-
sented by dm).

omega matrix of dimension c(N,N) or array of dimension c(N,N,n) of conditional tran-
sition probabilites, also called embedded transition probability matrix.
It contains the transition probabilities given the current state is left. Hence, the
diagonal elements need to be zero and the rows need to sum to one. Such a
matrix can be constructed using tpm_emb and an array using tpm_emb_g.

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

trackID trackID optional vector of length n containing IDs
If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. Instead of a single vector delta corresponding to the initial dis-
tribution, a delta matrix of initial distributions, of dimension c(k,N), can be
provided, such that each track starts with it’s own initial distribution.

delta optional vector of initial state probabilities of length N
By default, instead of this, the stationary distribution is computed corresponding
to the first approximating transition probability matrix of each track is computed.
Contrary to the homogeneous case, this is not theoretically motivated but just for
convenience.

startInd optional integer index at which the forward algorithm starts.
When approximating inhomogeneous HSMMs by inhomogeneous HMMs, the
first transition probability matrix that can be constructed is at time max(sapply(dm,
ncol)) (as it depends on the previous covariate values). Hence, when not pro-
vided, startInd is chosen to be max(sapply(dm, ncol)). Fixing startInd at
a value larger than max(aggregate sizes) is useful when models with different
aggregate sizes are fitted to the same data and are supposed to be compared. In
that case it is important that all models use the same number of observations.

eps small value to avoid numerical issues in the approximating transition matrix
construction. Usually, this should not be changed.

report logical, indicating whether initial distribution, approximating transition prob-
ability matrix and allprobs matrix should be reported from the fitted model.
Defaults to TRUE.

forward_p 13

Details

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs, where the state du-
ration distribution is explicitly modelled by a distribution on the positive integers. This function
can be used to fit HSMMs where the state-duration distribution and/ or the conditional transition
probabilities vary with covariates. For direct numerical maximum likelhood estimation, HSMMs
can be represented as HMMs on an enlarged state space (of size M) and with structured transition
probabilities.

This function is designed to be used with automatic differentiation based on the R package RTMB. It
will be very slow without it!

Value

log-likelihood for given data and parameters

See Also

Other forward algorithms: forward(), forward_g(), forward_hsmm(), forward_p(), forward_phsmm()

Examples

currently no examples

forward_p Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm with for periodically varying transition
probability matrices

Description

Calculates the log-likelihood of a sequence of observations under a hidden Markov model with
periodically varying transition probabilities using the forward algorithm.

Usage

forward_p(
delta,
Gamma,
allprobs,
tod,
trackID = NULL,
ad = NULL,
report = TRUE

)

14 forward_p

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma array of transition probability matrices of dimension c(N,N,L).

Here we use the definition Pr(St = j | St−1 = i) = γ
(t)
ij such that the transition

probabilities between time point t− 1 and t are an element of Γ(t).

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

tod (Integer valued) variable for cycle indexing in 1, ..., L, mapping the data index
to a generalised time of day (length n)
For half-hourly data L = 48. It could, however, also be day of year for daily data
and L = 365.

trackID optional vector of length n containing IDs
If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. Instead of a single vector delta corresponding to the initial dis-
tribution, a delta matrix of initial distributions of dimension c(k,N), can be
provided, such that each track starts with it’s own initial distribution.

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

report logical, indicating whether delta, Gamma and allprobs should be reported from
the fitted model. Defaults to TRUE, but only works if ad = TRUE.

Details

When the transition probability matrix only varies periodically (e.g. as a function of time of day),
there are only L unique matrices if L is the period length (e.g. L = 24 for hourly data and time-
of-day variation). Thus, it is much more efficient to only calculate these L matrices and index them
by a time variable (e.g. time of day or day of year) instead of calculating such a matrix for each
index in the data set (which would be redundant). This function allows for that by only expecting
a transition probability matrix for each time point in a period and an integer valued (1, . . . , L) time
variable that maps the data index to the according time.

Value

log-likelihood for given data and parameters

See Also

Other forward algorithms: forward(), forward_g(), forward_hsmm(), forward_ihsmm(), forward_phsmm()

Examples

negative log likelihood function
nll = function(par, step, tod) {
parameter transformations for unconstrained optimisation
beta = matrix(par[1:6], nrow = 2)
Gamma = tpm_p(1:24, beta = beta) # multinomial logit link for each time point
delta = stationary_p(Gamma, tod[1]) # stationary HMM

forward_phsmm 15

mu = exp(par[7:8])
sigma = exp(par[9:10])
calculate all state-dependent probabilities
allprobs = matrix(1, length(step), 2)
ind = which(!is.na(step))
for(j in 1:2) allprobs[ind,j] = dgamma2(step[ind], mu[j], sigma[j])
simple forward algorithm to calculate log-likelihood
-forward_p(delta, Gamma, allprobs, tod)

}

fitting an HMM to the nessi data
par = c(-2,-2, # initial tpm intercepts (logit-scale)

rep(0, 4), # initial tpm slopes
log(c(0.3, 2.5)), # initial means for step length (log-transformed)
log(c(0.2, 1.5))) # initial sds for step length (log-transformed)

mod = nlm(nll, par, step = trex$step[1:500], tod = trex$tod[1:500])

forward_phsmm Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for hidden semi-Markov models with
periodically inhomogeneous state durations and/ or conditional
transition probabilities

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs, where the state du-
ration distribution is explicitly modelled by a distribution on the positive integers. This function
can be used to fit HSMMs where the state-duration distribution and/ or the conditional transition
probabilities vary with covariates. For direct numerical maximum likelhood estimation, HSMMs
can be represented as HMMs on an enlarged state space (of size M) and with structured transition
probabilities.

This function can be used to fit HSMMs where the state-duration distribution and/ or the conditional
transition probabilities vary periodically. In the special case of periodic variation (as compared
to arbitrary covariate influence), this version is to be preferred over forward_ihsmm because it
computes the correct periodically stationary distribution and no observations are lost for the
approximation.

This function is designed to be used with automatic differentiation based on the R package RTMB. It
will be very slow without it!

Usage

forward_phsmm(
dm,
omega,
allprobs,
tod,
trackID = NULL,

16 forward_phsmm

delta = NULL,
eps = 1e-10,
report = TRUE

)

Arguments

dm list of length N containing matrices (or vectors) of dwell-time probability mass
functions (PMFs) for each state.
If the dwell-time PMFs are constant, the vectors are the PMF of the dwell-time
distribution fixed in time. The vector lengths correspond to the approximating
state aggregate sizes, hence there should be little probablity mass not covered
by these.
If the dwell-time PMFs are inhomogeneous, the matrices need to have L rows,
where L is the cycle length. The number of columns again correpond to the size
of the approximating state aggregates.

omega matrix of dimension c(N,N) or array of dimension c(N,N,L) of conditional tran-
sition probabilites, also called embedded transition probability matrix
It contains the transition probabilities given the current state is left. Hence, the
diagonal elements need to be zero and the rows need to sum to one. Such a
matrix can be constructed using tpm_emb and an array using tpm_emb_g.

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

tod (Integer valued) variable for cycle indexing in 1, ..., L, mapping the data index
to a generalised time of day (length n). For half-hourly data L = 48. It could,
however, also be day of year for daily data and L = 365.

trackID optional vector of length n containing IDs
If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. Instead of a single vector delta corresponding to the initial dis-
tribution, a delta matrix of initial distributions, of dimension c(k,N), can be
provided, such that each track starts with it’s own initial distribution.

delta Optional vector of initial state probabilities of length N. By default, instead of
this, the stationary distribution is computed corresponding to the first approxi-
mating t.p.m. of each track is computed. Contrary to the homogeneous case,
this is not theoretically motivated but just for convenience.

eps small value to avoid numerical issues in the approximating transition matrix
construction. Usually, this should not be changed.

report logical, indicating whether initial distribution, approximating transition prob-
ability matrix and allprobs matrix should be reported from the fitted model.
Defaults to TRUE.

Details

Calculates the (approximate) log-likelihood of a sequence of observations under a periodically in-
homogeneous hidden semi-Markov model using a modified forward algorithm.

forward_s 17

Value

log-likelihood for given data and parameters

See Also

Other forward algorithms: forward(), forward_g(), forward_hsmm(), forward_ihsmm(), forward_p()

Examples

currently no examples

forward_s Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for hidden semi-Markov models with
homogeneous transition probability matrix

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs that can be approximated
by HMMs on an enlarged state space (of size M) and with structured transition probabilities.

Usage

forward_s(delta, Gamma, allprobs, sizes)

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma transition probability matrix of dimension c(M,M)

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)
which will automatically be converted to the appropriate dimension.

sizes state aggregate sizes that are used for the approximation of the semi-Markov
chain.

Value

log-likelihood for given data and parameters

18 forward_sp

Examples

generating data from homogeneous 2-state HSMM
mu = c(0, 6)
lambda = c(6, 12)
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)
simulation
for a 2-state HSMM the embedded chain always alternates between 1 and 2
s = rep(1:2, 100)
C = x = numeric(0)
for(t in 1:100){

dt = rpois(1, lambda[s[t]])+1 # shifted Poisson
C = c(C, rep(s[t], dt))
x = c(x, rnorm(dt, mu[s[t]], 1.5)) # fixed sd 2 for both states

}

negative log likelihood function
mllk = function(theta.star, x, sizes){

parameter transformations for unconstraint optimization
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE) # omega fixed (2-states)
lambda = exp(theta.star[1:2]) # dwell time means
dm = list(dpois(1:sizes[1]-1, lambda[1]), dpois(1:sizes[2]-1, lambda[2]))
Gamma = tpm_hsmm2(omega, dm)
delta = stationary(Gamma) # stationary
mu = theta.star[3:4]
sigma = exp(theta.star[5:6])
calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigma[j]) }
return negative for minimization
-forward_s(delta, Gamma, allprobs, sizes)

}

fitting an HSMM to the data
theta.star = c(log(5), log(10), 1, 4, log(2), log(2))
mod = nlm(mllk, theta.star, x = x, sizes = c(20, 30), stepmax = 5)

forward_sp Rhrefhttps://www.taylorfrancis.com/books/mono/10.1201/b20790/hidden-
markov-models-time-series-walter-zucchini-iain-macdonald-roland-
langrockForward algorithm for hidden semi-Markov models with
periodically varying transition probability matrices

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs that can be approximated
by HMMs on an enlarged state space (of size M) and with structured transition probabilities. Re-
cently, this inference procedure has been generalised to allow either the dwell-time distributions or
the conditional transition probabilities to depend on external covariates such as the time of day. This
special case is implemented here. This function allows for that, by expecting a transition probability

forward_sp 19

matrix for each time point in a period, and an integer valued (1, . . . , L) time variable that maps the
data index to the according time.

Usage

forward_sp(delta, Gamma, allprobs, sizes, tod)

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma array of transition probability matrices of dimension c(M,M,L).

Here we use the definition Pr(St = j | St−1 = i) = γ
(t)
ij such that the transition

probabilities between time point t− 1 and t are an element of Γ(t).

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)
which will automatically be converted to the appropriate dimension.

sizes state aggregate sizes that are used for the approximation of the semi-Markov
chain.

tod (Integer valued) variable for cycle indexing in 1, ..., L, mapping the data index
to a generalised time of day (length n). For half-hourly data L = 48. It could,
however, also be day of year for daily data and L = 365.

Value

log-likelihood for given data and parameters

Examples

generating data from homogeneous 2-state HSMM
mu = c(0, 6)
beta = matrix(c(log(4),log(6),-0.2,0.2,-0.1,0.4), nrow=2)
time varying mean dwell time
Lambda = exp(cbind(1, trigBasisExp(1:24, 24, 1))%*%t(beta))
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)
simulation
for a 2-state HSMM the embedded chain always alternates between 1 and 2
s = rep(1:2, 100)
C = x = numeric(0)
tod = rep(1:24, 50) # time of day variable
time = 1
for(t in 1:100){

dt = rpois(1, Lambda[tod[time], s[t]])+1 # dwell time depending on time of day
time = time + dt
C = c(C, rep(s[t], dt))
x = c(x, rnorm(dt, mu[s[t]], 1.5)) # fixed sd 2 for both states

}
tod = tod[1:length(x)]

negative log likelihood function
mllk = function(theta.star, x, sizes, tod){

20 gamma2

parameter transformations for unconstraint optimization
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE) # omega fixed (2-states)
mu = theta.star[1:2]
sigma = exp(theta.star[3:4])
beta = matrix(theta.star[5:10], nrow=2)
time varying mean dwell time
Lambda = exp(cbind(1, trigBasisExp(1:24, 24, 1))%*%t(beta))
dm = list()
for(j in 1:2){

dm[[j]] = sapply(1:sizes[j]-1, dpois, lambda = Lambda[,j])
}
Gamma = tpm_phsmm2(omega, dm)
delta = stationary_p(Gamma, tod[1])
calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigma[j]) }
return negative for minimization
-forward_sp(delta, Gamma, allprobs, sizes, tod)

}

fitting an HSMM to the data
theta.star = c(1, 4, log(2), log(2), # state-dependent parameters

log(4), log(6), rep(0,4)) # state process parameters dm
mod = nlm(mllk, theta.star, x = x, sizes = c(10, 15), tod = tod, stepmax = 5)

gamma2 Reparametrised gamma distribution

Description

Density, distribution function, quantile function and random generation for the gamma distribution
reparametrised in terms of mean and standard deviation.

Usage

dgamma2(x, mean = 1, sd = 1, log = FALSE)

pgamma2(q, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

qgamma2(p, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

rgamma2(n, mean = 1, sd = 1)

Arguments

x, q vector of quantiles

mean mean parameter, must be positive scalar.

sd standard deviation parameter, must be positive scalar.

generator 21

log, log.p logical; if TRUE, probabilities/ densities p are returned as log(p).

lower.tail logical; if TRUE, probabilities are P [X <= x], otherwise, P [X > x].

p vector of probabilities

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Details

This implementation allows for automatic differentiation with RTMB.

Value

dgamma2 gives the density, pgamma2 gives the distribution function, qgamma2 gives the quantile
function, and rgamma2 generates random deviates.

Examples

x = rgamma2(1)
d = dgamma2(x)
p = pgamma2(x)
q = qgamma2(p)

generator Build the generator matrix of a continuous-time Markov chain

Description

This function builds the infinitesimal generator matrix for a continuous-time Markov chain
from an unconstrained parameter vector.

Usage

generator(param, byrow = FALSE, report = TRUE)

Arguments

param unconstrained parameter vector of length N*(N-1) where N is the number of
states of the Markov chain

byrow logical indicating if the transition probability matrix should be filled by row

report logical, indicating whether the generator matrix Q should be reported from the
fitted model. Defaults to TRUE, but only works if when automatic differentiation
with RTMB is used.

Value

infinitesimal generator matrix of dimension c(N,N)

22 make_matrices

See Also

Other transition probability matrix functions: tpm(), tpm_cont(), tpm_emb(), tpm_emb_g(), tpm_g(),
tpm_p()

Examples

2 states: 2 free off-diagonal elements
generator(rep(-1, 2))
3 states: 6 free off-diagonal elements
generator(rep(-2, 6))

make_matrices Build the design matrix and the penalty matrix for models involving
penalised splines based on a formula and a data set

Description

Build the design matrix and the penalty matrix for models involving penalised splines based on a
formula and a data set

Usage

make_matrices(formula, data, knots = NULL)

Arguments

formula right side of a formula as used in mgcv

data data frame containing the variables in the formula

knots optional list containing user specified knot values to be used for basis construc-
tion
For most bases the user simply supplies the knots to be used, which must match
up with the k value supplied (note that the number of knots is not always just k).
See mgcv documentation for more details.

Value

a list containing the design matrix Z, the penalty matrix S, the formula, the data and the knots

Examples

modmat = make_matrices(~ s(x), data.frame(x = 1:10))

make_matrices_dens 23

make_matrices_dens Build a standardised P-Spline design matrix and the associated P-
Spline penalty matrix

Description

This function builds the B-spline design matrix for a given data vector. Importantly, the B-spline
basis functions are normalised such that the integral of each basis function is 1, hence this basis can
be used for spline-based density estimation, when the basis functions are weighted by non-negative
weights summing to one.

Usage

make_matrices_dens(
x,
k,
type = "real",
degree = 3,
npoints = 10000,
diff_order = 2,
pow = 0.5

)

Arguments

x data vector
k number of basis functions
type type of the data, either "real" for data on the reals, "positive" for data on the

positive reals or "circular" for circular data like angles.
degree degree of the B-spline basis functions, defaults to cubic B-splines
npoints number of points used in the numerical integration for normalizing the B-spline

basis functions
diff_order order of differencing used for the P-Spline penalty matrix for each data stream.

Defaults to second-order differences.
pow power for polynomial knot spacing

Such non-equidistant knot spacing is only used for type = "positive".

Value

list containing the design matrix Z, the penalty matrix S, the prediction design matrix Z_predict,
the prediction grid xseq, and details for the basis expansion.

Examples

modmat = make_matrices_dens(x = (-50):50, k = 20)
modmat = make_matrices_dens(x = 1:100, k = 20, type = "positive")
modmat = make_matrices_dens(x = seq(-pi,pi), k = 20, type = "circular")

24 penalty

nessi Loch Ness Monster Acceleration Data

Description

A small group of researchers managed to put an accelerometer on the Loch Ness Monster and
collected data for a few days. Now we have a data set of the overall dynamic body acceleration
(ODBA) of the creature.

Usage

nessi

Format

A data frame with 5.000 rows and 3 variables:

ODBA overall dynamci body acceleration

logODBA logarithm of overall dynamic body acceleration

state hidden state variable

Source

Generated for example purposes.

penalty Computes penalty based on quadratic form

Description

This function computes quadratic penalties of the form

0.5
∑
i

λib
T
i Sibi,

with smoothing parameters λi, coefficient vectors bi, and fixed penalty matrices Si.

It is intended to be used inside the penalised negative log-likelihood function when fitting mod-
els with penalised splines or simple random effects via quasi restricted maximum likelihood
(qREML) with the qreml function. For qreml to work, the likelihood function needs to be compat-
ible with the RTMB R package to enable automatic differentiation.

Usage

penalty(re_coef, S, lambda)

penalty 25

Arguments

re_coef coefficient vector/ matrix or list of coefficient vectors/ matrices
Each list entry corresponds to a different smooth/ random effect with its own
associated penalty matrix in S. When several smooths/ random effects of the
same kind are present, it is convenient to pass them as a matrix, where each row
corresponds to one smooth/ random effect. This way all rows can use the same
penalty matrix.

S fixed penalty matrix or list of penalty matrices matching the structure of re_coef
and also the dimension of the individuals smooths/ random effects

lambda penalty strength parameter vector that has a length corresponding to the total
number of random effects/ spline coefficients in re_coef

E.g. if re_coef contains one vector and one matrix with 4 rows, then lambda
needs to be of length 5.

Details

Caution: The formatting of re_coef needs to match the structure of the parameter list in your
penalised negative log-likelihood function, i.e. you cannot have two random effect vectors of dif-
ferent names (different list elements in the parameter list), combine them into a matrix inside your
likelihood and pass the matrix to penalty. If these are seperate random effects, each with its own
name, they need to be passed as a list to penalty. Moreover, the ordering of re_coef needs to
match the character vector random specified in qreml.

Value

returns the penalty value and reports to qreml.

See Also

qreml for the qREML algorithm

Examples

Example with a single random effect
re = rep(0, 5)
S = diag(5)
lambda = 1
penalty(re, S, lambda)

Example with two random effects,
where one element contains two random effects of similar structure
re = list(matrix(0, 2, 5), rep(0, 4))
S = list(diag(5), diag(4))
lambda = c(1,1,2) # length = total number of random effects
penalty(re, S, lambda)

Full model-fitting example
data = trex[1:1000,] # subset

26 pred_matrix

initial parameter list
par = list(logmu = log(c(0.3, 1)), # step mean

logsigma = log(c(0.2, 0.7)), # step sd
beta0 = c(-2,2), # state process intercept
betaspline = matrix(rep(0, 18), nrow = 2)) # state process spline coefs

data object with initial penalty strength lambda
dat = list(step = data$step, # step length

tod = data$tod, # time of day covariate
N = 2, # number of states
lambda = rep(10,2)) # initial penalty strength

building model matrices
modmat = make_matrices(~ s(tod, bs = "cp"),

data = data.frame(tod = 1:24),
knots = list(tod = c(0,24))) # wrapping points

dat$Z = modmat$Z # spline design matrix
dat$S = modmat$S # penalty matrix

penalised negative log-likelihood function
pnll = function(par) {

getAll(par, dat) # makes everything contained available without $
Gamma = tpm_g(Z, cbind(beta0, betaspline), ad = TRUE) # transition probabilities
delta = stationary_p(Gamma, t = 1, ad = TRUE) # initial distribution
mu = exp(logmu) # step mean
sigma = exp(logsigma) # step sd
calculating all state-dependent densities
allprobs = matrix(1, nrow = length(step), ncol = N)
ind = which(!is.na(step)) # only for non-NA obs.
for(j in 1:N) allprobs[ind,j] = dgamma2(step[ind],mu[j],sigma[j])
-forward_g(delta, Gamma[,,tod], allprobs, ad = TRUE) +

penalty(betaspline, S, lambda) # this does all the penalization work
}

model fitting
mod = qreml(pnll, par, dat, random = "betaspline")

pred_matrix Build the prediction design matrix based on new data and
model_matrices object created by make_matrices

Description

Build the prediction design matrix based on new data and model_matrices object created by make_matrices

Usage

pred_matrix(model_matrices, newdata)

pseudo_res 27

Arguments

model_matrices model_matrices object as returned from make_matrices

newdata data frame containing the variables in the formula and new data for which to
evaluate the basis

Value

prediction design matrix for newdata with the same basis as used for model_matrices

Examples

modmat = make_matrices(~ s(x), data.frame(x = 1:10))
Z_predict = pred_matrix(modmat, data.frame(x = 1:10 - 0.5))

pseudo_res Calculate pseudo-residuals

Description

For HMMs, pseudo-residuals are used to assess the goodness-of-fit of the model. These are based
on the cumulative distribution function (CDF)

FXt
(xt) = F (xt | x1, . . . , xt−1, xt+1, . . . , xT)

and can be used to quantify whether an observation is extreme relative to its model-implied distri-
bution.

This function calculates such residuals via probability integral transform, based on the local state
probabilities obtained by stateprobs or stateprobs_g and the respective parametric family.

Usage

pseudo_res(
obs,
dist,
par,
stateprobs = NULL,
mod = NULL,
normal = TRUE,
discrete = NULL,
randomise = TRUE,
seed = NULL

)

28 pseudo_res

Arguments

obs vector of continuous-valued observations (of length n)

dist character string specifying which parametric CDF to use (e.g., "norm" for nor-
mal or "pois" for Poisson)

par named parameter list for the parametric CDF

Names need to correspond to the parameter names in the specified distribu-
tion (e.g. list(mean = c(1,2), sd = c(1,1)) for a normal distribution and 2
states). This argument is as flexible as the parametric distribution allows. For
example you can have a matrix of parameters with one row for each observation
and one column for each state.

stateprobs matrix of local state probabilities for each observation (of dimension c(n,N),
where N is the number of states) as computed by stateprobs, stateprobs_g
or stateprobs_p

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable

If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward, forward_g or forward_p in your likelihood function, the
objects needed for state decoding are automatically reported after model fitting.
Hence, you can pass the model object obtained from running RTMB::report()
or from qreml directly to this function and avoid calculating local state proabil-
ities manually. In this case, a call should look like pseudo_res(obs, "norm",
par, mod = mod).

normal logical, if TRUE, returns Gaussian pseudo residuals

These will be approximately standard normally distributed if the model is cor-
rect.

discrete logical, if TRUE, computes discrete pseudo residuals (which slightly differ in
their definition)

By default, will be determined using dist argument, but only works for standard
discrete distributions. When used with a special discrete distribution, set to TRUE
manually. See pseudo_res_discrete for details.

randomise for discrete pseudo residuals only. Logical, if TRUE, return randomised pseudo
residuals. Recommended for discrete observations.

seed for discrete pseudo residuals only. Integer, seed for random number generation

Details

When used for discrete pseudo-residuals, this function is just a wrapper for pseudo_res_discrete.

Value

vector of pseudo residuals

pseudo_res_discrete 29

Examples

continuous-valued observations
obs = rnorm(100)
stateprobs = matrix(0.5, nrow = 100, ncol = 2)
par = list(mean = c(1,2), sd = c(1,1))
pres = pseudo_res(obs, "norm", par, stateprobs)

discrete-valued observations
obs = rpois(100, lambda = 1)
stateprobs = matrix(0.5, nrow = 100, ncol = 2)
par = list(lambda = c(1,2))
pres = pseudo_res(obs, "pois", par, stateprobs)

pseudo_res_discrete Calculate pseudo-residuals for discrete-valued observations

Description

For HMMs, pseudo-residuals are used to assess the goodness-of-fit of the model. These are based
on the cumulative distribution function (CDF)

FXt
(xt) = F (xt | x1, . . . , xt−1, xt+1, . . . , xT)

and can be used to quantify whether an observation is extreme relative to its model-implied distri-
bution.

This function calculates such residuals for discrete-valued observations, based on the local state
probabilities obtained by stateprobs or stateprobs_g and the respective parametric family.

Usage

pseudo_res_discrete(
obs,
dist,
par,
stateprobs,
normal = TRUE,
randomise = TRUE,
seed = NULL

)

Arguments

obs vector of discrete-valued observations (of length n)

dist character string specifying which parametric CDF to use (e.g., "norm" for nor-
mal or "pois" for Poisson)

30 qreml

par named parameter list for the parametric CDF
Names need to correspond to the parameter names in the specified distribu-
tion (e.g. list(mean = c(1,2), sd = c(1,1)) for a normal distribution and 2
states). This argument is as flexible as the parametric distribution allows. For
example you can have a matrix of parameters with one row for each observation
and one column for each state.

stateprobs matrix of local state probabilities for each observation (of dimension c(n,N),
where N is the number of states)

normal logical, if TRUE, returns Gaussian pseudo residuals
These will be approximately standard normally distributed if the model is cor-
rect.

randomise logical, if TRUE, return randomised pseudo residuals. Recommended for discrete
observations.

seed integer, seed for random number generation

Details

For discrete observations, calculating pseudo residuals is slightly more involved, as the CDF is a
step function. Therefore, one can calculate the lower and upper CDF values for each observation.
By default, this function does exactly that and then randomly samples the interval in between to
give approximately Gaussian psuedo-residuals. If randomise is set to FALSE, the lower, upper and
mean pseudo-residuasl are returned.

Value

vector of pseudo residuals

Examples

obs = rpois(100, lambda = 1)
stateprobs = matrix(0.5, nrow = 100, ncol = 2)
par = list(lambda = c(1,2))
pres = pseudo_res_discrete(obs, "pois", par, stateprobs)

qreml Quasi restricted maximum likelihood (qREML) algorithm for models
with penalised splines or simple i.i.d. random effects

Description

This algorithm can be used very flexibly to fit statistical models that involve penalised splines or
simple i.i.d. random effects, i.e. that have penalties of the form

0.5
∑
i

λib
T
i Sibi,

with smoothing parameters λi, coefficient vectors bi, and fixed penalty matrices Si.

qreml 31

The qREML algorithm is typically much faster than REML or marginal ML using the full Laplace
approximation method, but may be slightly less accurate regarding the estimation of the penalty
strength parameters.

Under the hood, qreml uses the R package RTMB for automatic differentiation in the inner optimi-
sation. The user has to specify the penalised negative log-likelihood function pnll structured as
dictated by RTMB and use the penalty function to compute the quadratic-form penalty inside the
likelihood.

Usage

qreml(
pnll,
par,
dat,
random,
psname = "lambda",
alpha = 0,
smoothing = 1,
maxiter = 100,
tol = 1e-04,
control = list(reltol = 1e-10, maxit = 1000),
silent = 1,
joint_unc = TRUE,
saveall = FALSE

)

Arguments

pnll penalised negative log-likelihood function that is structured as dictated by RTMB
and uses the penalty function from LaMa to compute the penalty
Needs to be a function of the named list of initial parameters par only.

par named list of initial parameters
The random effects/ spline coefficients can be vectors or matrices, the latter
summarising several random effects of the same structure, each one being a row
in the matrix.

dat initial data list that contains the data used in the likelihood function, hyperpa-
rameters, and the initial penalty strength vector
If the initial penalty strength vector is not called lambda, the name it has in dat
needs to be specified using the penalty argument below. Its length needs to
match the to the total number of random effects.

random vector of names of the random effects/ penalised parameters in par

Caution: The ordering of random needs to match the order of the random effects
passed to penalty inside the likelihood function.

psname optional name given to the penalty strength parameter in dat. Defaults to "lambda".

alpha optional hyperparamater for exponential smoothing of the penalty strengths
For larger values smoother convergence is to be expected but the algorithm may
need more iterations.

32 qreml

smoothing optional scaling factor for the final penalty strength parameters
Increasing this beyond one will lead to a smoother final model. Can be an integer
or a vector of length equal to the length of the penalty strength parameter.

maxiter maximum number of iterations in the outer optimisation over the penalty strength
parameters.

tol Convergence tolerance for the penalty strength parameters.

control list of control parameters for optim to use in the inner optimisation. Here, optim
uses the BFGS method which cannot be changed.
We advise against changing the default values of reltol and maxit as this can
decrease the accuracy of the Laplace approximation.

silent integer silencing level: 0 corresponds to full printing of inner and outer itera-
tions, 1 to printing of outer iterations only, and 2 to no printing.

joint_unc logical, if TRUE, joint RTMB object is returned allowing for joint uncertainty
quantification

saveall logical, if TRUE, then all model objects from each iteration are saved in the final
model object.

Value

returns a model list influenced by the users report statements in pnll

See Also

penalty to compute the penalty inside the likelihood function

Examples

data = trex[1:1000,] # subset

initial parameter list
par = list(logmu = log(c(0.3, 1)), # step mean

logsigma = log(c(0.2, 0.7)), # step sd
beta0 = c(-2,2), # state process intercept
betaspline = matrix(rep(0, 18), nrow = 2)) # state process spline coefs

data object with initial penalty strength lambda
dat = list(step = data$step, # step length

tod = data$tod, # time of day covariate
N = 2, # number of states
lambda = rep(10,2)) # initial penalty strength

building model matrices
modmat = make_matrices(~ s(tod, bs = "cp"),

data = data.frame(tod = 1:24),
knots = list(tod = c(0,24))) # wrapping points

dat$Z = modmat$Z # spline design matrix
dat$S = modmat$S # penalty matrix

penalised negative log-likelihood function

sdreportMC 33

pnll = function(par) {
getAll(par, dat) # makes everything contained available without $
Gamma = tpm_g(Z, cbind(beta0, betaspline), ad = TRUE) # transition probabilities
delta = stationary_p(Gamma, t = 1, ad = TRUE) # initial distribution
mu = exp(logmu) # step mean
sigma = exp(logsigma) # step sd
calculating all state-dependent densities
allprobs = matrix(1, nrow = length(step), ncol = N)
ind = which(!is.na(step)) # only for non-NA obs.
for(j in 1:N) allprobs[ind,j] = dgamma2(step[ind],mu[j],sigma[j])
-forward_g(delta, Gamma[,,tod], allprobs, ad = TRUE) +

penalty(betaspline, S, lambda) # this does all the penalization work
}

model fitting
mod = qreml(pnll, par, dat, random = "betaspline")

sdreportMC Monte Carlo version of sdreport

Description

After optimisation of an AD model, sdreportMC can be used to calculate samples of confidence in-
tervals of all model parameters and REPORT()ed quantities including nonlinear functions of random
effects and parameters.

Usage

sdreportMC(
obj,
what,
Hessian = NULL,
CI = FALSE,
n = 1000,
probs = c(0.025, 0.975)

)

Arguments

obj object returned by MakeADFun() after optimisation

what vector of strings with names of parameters and REPORT()ed quantities to be
reported

Hessian optional Hessian matrix. If not provided, it will be computed from the object

CI logical. If TRUE, only confidence intervals instead of samples will be returned

n number of samples to draw from the multivariate normal distribution of the MLE

probs vector of probabilities for the confidence intervals (ignored if no CIs are com-
puted)

34 sdreportMC

Details

Caution: Currently does not work for models with fixed parameters (i.e. that use the map argument
of MakeADFun.)

Value

named list corresponding to the elements of what. Each element has the structure of the correspond-
ing quantity with an additional dimension added for the samples. For example, if a quantity is a
vector, the list contains a matrix. If a quantity is a matrix, the list contains an array.

Examples

fitting an HMM to the trex data and running sdreportMC
negative log-likelihood function
nll = function(par) {

getAll(par, dat) # makes everything contained available without $
Gamma = tpm(eta) # computes transition probability matrix from unconstrained eta
delta = stationary(Gamma) # computes stationary distribution
exponentiating because all parameters strictly positive
mu = exp(logmu)
sigma = exp(logsigma)
kappa = exp(logkappa)
reporting statements for sdreportMC
REPORT(mu)
REPORT(sigma)
REPORT(kappa)
calculating all state-dependent densities
allprobs = matrix(1, nrow = length(step), ncol = N)
ind = which(!is.na(step) & !is.na(angle)) # only for non-NA obs.
for(j in 1:N){
allprobs[ind,j] = dgamma2(step[ind],mu[j],sigma[j])*dvm(angle[ind],0,kappa[j])

}
-forward(delta, Gamma, allprobs) # simple forward algorithm

}

initial parameter list
par = list(
logmu = log(c(0.3, 1)), # initial means for step length (log-transformed)
logsigma = log(c(0.2, 0.7)), # initial sds for step length (log-transformed)
logkappa = log(c(0.2, 0.7)), # initial concentration for turning angle (log-transformed)
eta = rep(-2, 2) # initial t.p.m. parameters (on logit scale)

)
data and hyperparameters
dat = list(

step = trex$step[1:500], # hourly step lengths
angle = trex$angle[1:500], # hourly turning angles
N = 2

)

creating AD function
obj = MakeADFun(nll, par, silent = TRUE) # creating the objective function

stateprobs 35

optimising
opt = nlminb(objpar, objfn, obj$gr) # optimization

running sdreportMC
`mu` has report statement, `delta` is automatically reported by `forward()`
sdrMC = sdreportMC(obj,

what = c("mu", "delta"),
n = 50)

dim(sdrMC$delta)
now a matrix with 50 samples (rows)

stateprobs Calculate conditional local state probabilities for homogeneous
HMMs

Description

Computes
Pr(St = j | X1, ..., XT)

for homogeneous HMMs

Usage

stateprobs(delta, Gamma, allprobs, trackID = NULL, mod = NULL)

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma transition probability matrix of dimension c(N,N), or array of k transition prob-
ability matrices of dimension c(N,N,k), if trackID is provided

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)
trackID optional vector of length n containing IDs

If provided, the total log-likelihood will be the sum of each track’s likelihood
contribution. In this case, Gamma can be a matrix, leading to the same transition
probabilities for each track, or an array of dimension c(N,N,k), with one (homo-
geneous) transition probability matrix for each track. Furthermore, instead of a
single vector delta corresponding to the initial distribution, a delta matrix of
initial distributions, of dimension c(k,N), can be provided, such that each track
starts with it’s own initial distribution.

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable
If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward in your likelihood function, the objects needed for state de-
coding are automatically reported after model fitting. Hence, you can pass the
model object obtained from running RTMB::report() or from qreml directly to
this function.

36 stateprobs_g

Value

matrix of conditional state probabilities of dimension c(n,N)

See Also

Other decoding functions: stateprobs_g(), stateprobs_p(), viterbi(), viterbi_g(), viterbi_p()

Examples

Gamma = tpm(c(-1,-2))
delta = stationary(Gamma)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)

probs = stateprobs(delta, Gamma, allprobs)

stateprobs_g Calculate conditional local state probabilities for inhomogeneous
HMMs

Description

Computes
Pr(St = j | X1, ..., XT)

for inhomogeneous HMMs

Usage

stateprobs_g(delta, Gamma, allprobs, trackID = NULL, mod = NULL)

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided

Gamma array of transition probability matrices of dimension c(N,N,n-1), as in a time
series of length n, there are only n-1 transitions
If an array of dimension c(N,N,n) for a single track is provided, the first slice
will be ignored.
If trackID is provided, Gamma needs to be an array of dimension c(N,N,n),
where n is the number of rows in allprobs. Then for each track the first transi-
tion matrix will be ignored.

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

trackID optional vector of k track IDs, if multiple tracks need to be decoded separately

stateprobs_p 37

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable
If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward_g in your likelihood function, the objects needed for state
decoding are automatically reported after model fitting. Hence, you can pass the
model object obtained from running RTMB::report() or from qreml directly to
this function.

Value

matrix of conditional state probabilities of dimension c(n,N)

See Also

Other decoding functions: stateprobs(), stateprobs_p(), viterbi(), viterbi_g(), viterbi_p()

Examples

Gamma = tpm_g(runif(99), matrix(c(-1,-1,1,-2), nrow = 2, byrow = TRUE))
delta = c(0.5, 0.5)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)

probs = stateprobs_g(delta, Gamma, allprobs)

stateprobs_p Calculate conditional local state probabilities for periodically inho-
mogeneous HMMs

Description

Computes
Pr(St = j | X1, ..., XT)

for periodically inhomogeneous HMMs

Usage

stateprobs_p(delta, Gamma, allprobs, tod, trackID = NULL, mod = NULL)

Arguments

delta initial or stationary distribution of length N, or matrix of dimension c(k,N) for k
independent tracks, if trackID is provided
This could e.g. be the periodically stationary distribution (for each track) as
computed by stationary_p.

Gamma array of transition probability matrices for each time point in the cycle of dimen-
sion c(N,N,L), where L is the length of the cycle.

38 stationary

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

tod (Integer valued) variable for cycle indexing in 1, ..., L, mapping the data index
to a generalised time of day (length n). For half-hourly data L = 48. It could,
however, also be day of year for daily data and L = 365.

trackID optional vector of k track IDs, if multiple tracks need to be decoded separately

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable
If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward_p in your likelihood function, the objects needed for state
decoding are automatically reported after model fitting. Hence, you can pass the
model object obtained from running RTMB::report() or from qreml directly to
this function.

Value

matrix of conditional state probabilities of dimension c(n,N)

See Also

Other decoding functions: stateprobs(), stateprobs_g(), viterbi(), viterbi_g(), viterbi_p()

Examples

L = 24
beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(1:L, L, beta, degree = 1)
delta = stationary_p(Gamma, 1)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)
tod = rep(1:24, 5)[1:100]

probs = stateprobs_p(delta, Gamma, allprobs, tod)

stationary Compute the stationary distribution of a homogeneous Markov chain

Description

A homogeneous, finite state Markov chain that is irreducible and aperiodic converges to a unique
stationary distribution, here called δ. As it is stationary, this distribution satisfies

δΓ = δ,

subject to
∑N

j=1 δj = 1, where Γ is the transition probability matrix. This function solves the linear
system of equations above.

Usage

stationary(Gamma)

stationary_cont 39

Arguments

Gamma transition probability matrix of dimension c(N,N)

Value

stationary distribution of the Markov chain with the given transition probability matrix

See Also

tpm to create a transition probabilty matrix using the multinomial logistic link (softmax)

Other stationary distribution functions: stationary_cont(), stationary_p()

Examples

Gamma = tpm(c(rep(-2,3), rep(-3,3)))
delta = stationary(Gamma)

stationary_cont Compute the stationary distribution of a continuous-time Markov
chain

Description

A well-behaved continuous-time Markov chain converges to a unique stationary distribution, here
called π. This distribution satisfies

πQ = 0,

subject to
∑N

j=1 πj = 1, where Q is the infinitesimal generator of the Markov chain. This function
solves the linear system of equations above for a given generator matrix.

Usage

stationary_cont(Q)

Arguments

Q infinitesimal generator matrix of dimension c(N,N)

Value

stationary distribution of the continuous-time Markov chain with given generator matrix

See Also

generator to create a generator matrix

Other stationary distribution functions: stationary(), stationary_p()

40 stationary_p

Examples

Q = generator(c(-2,-2))
Pi = stationary_cont(Q)

stationary_p Compute the periodically stationary distribution of a periodically in-
homogeneous Markov chain

Description

If the transition probability matrix of an inhomogeneous Markov chain varies only periodically
(with period length L), it converges to a so-called periodically stationary distribution. This happens,
because the thinned Markov chain, which has a full cycle as each time step, has homogeneous
transition probability matrix

Γt = Γ(t)Γ(t+1) . . .Γ(t+L−1)

for all t = 1, . . . , L. The stationary distribution for time t satifies δ(t)Γt = δ(t).

This function calculates said periodically stationary distribution.

Usage

stationary_p(Gamma, t = NULL, ad = NULL)

Arguments

Gamma array of transition probability matrices of dimension c(N,N,L)

t integer index of the time point in the cycle, for which to calculate the stationary
distribution
If t is not provided, the function calculates all stationary distributions for each
time point in the cycle.

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

Value

either the periodically stationary distribution at time t or all periodically stationary distributions.

See Also

tpm_p and tpm_g to create multiple transition matrices based on a cyclic variable or design matrix

Other stationary distribution functions: stationary(), stationary_cont()

stationary_p_sparse 41

Examples

setting parameters for trigonometric link
beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(beta = beta, degree = 1)
periodically stationary distribution for specific time point
delta = stationary_p(Gamma, 4)

all periodically stationary distributions
Delta = stationary_p(Gamma)

stationary_p_sparse Sparse version of stationary_p

Description

This is function computes the periodically stationary distribution of a Markov chain given a list of
L sparse transition probability matrices. Compatible with automatic differentiation by RTMB

Usage

stationary_p_sparse(Gamma, t = NULL)

Arguments

Gamma sist of length L containing sparse transition probability matrices for one cycle.

t integer index of the time point in the cycle, for which to calculate the stationary
distribution If t is not provided, the function calculates all stationary distribu-
tions for each time point in the cycle.

Value

either the periodically stationary distribution at time t or all periodically stationary distributions.

Examples

periodic HSMM example (here the approximating tpm is sparse)
N = 2 # number of states
L = 24 # cycle length
time-varying mean dwell times
Z = trigBasisExp(1:L) # trigonometric basis functions design matrix
beta = matrix(c(2, 2, 0.1, -0.1, -0.2, 0.2), nrow = 2)
Lambda = exp(cbind(1, Z) %*% t(beta))
sizes = c(20, 20) # approximating chain with 40 states
state dwell-time distributions
dm = lapply(1:N, function(i) sapply(1:sizes[i]-1, dpois, lambda = Lambda[,i]))
omega = matrix(c(0,1,1,0), nrow = N, byrow = TRUE) # embedded t.p.m.

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

42 stationary_sparse

Periodically stationary distribution for specific time point
delta = stationary_p_sparse(Gamma, 4)

All periodically stationary distributions
Delta = stationary_p_sparse(Gamma)

stationary_sparse Sparse version of stationary

Description

This is function computes the stationary distribution of a Markov chain with a given sparse transi-
tion probability matrix. Compatible with automatic differentiation by RTMB

Usage

stationary_sparse(Gamma)

Arguments

Gamma sparse transition probability matrix of dimension c(N,N)

Value

stationary distribution of the Markov chain with the given transition probability matrix

Examples

HSMM example (here the approximating tpm is sparse)
building the t.p.m. of the embedded Markov chain
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)
defining state aggregate sizes
sizes = c(20, 30)
defining state dwell-time distributions
lambda = c(5, 11)
dm = list(dpois(1:sizes[1]-1, lambda[1]), dpois(1:sizes[2]-1, lambda[2]))
calculating extended-state-space t.p.m.
Gamma = tpm_hsmm(omega, dm)
delta = stationary_sparse(Gamma)

tpm 43

tpm Build the transition probability matrix from unconstrained parameter
vector

Description

Markov chains are parametrised in terms of a transition probability matrix Γ, for which each row
contains a conditional probability distribution of the next state given the current state. Hence, each
row has entries between 0 and 1 that need to sum to one.

For numerical optimisation, we parametrise in terms of unconstrained parameters, thus this function
computes said matrix from an unconstrained parameter vector via the inverse multinomial logistic
link (also known as softmax) applied to each row.

Usage

tpm(param, byrow = FALSE)

Arguments

param unconstrained parameter vector of length N*(N-1) where N is the number of
states of the Markov chain

byrow logical indicating if the transition probability matrix should be filled by row
Defaults to FALSE, but should be set to TRUE if one wants to work with a matrix of
beta parameters returned by popular HMM packages like moveHMM, momentuHMM,
or hmmTMB.

Value

Transition probability matrix of dimension c(N,N)

See Also

Other transition probability matrix functions: generator(), tpm_cont(), tpm_emb(), tpm_emb_g(),
tpm_g(), tpm_p()

Examples

2 states: 2 free off-diagonal elements
par1 = rep(-1, 2)
Gamma1 = tpm(par1)

3 states: 6 free off-diagonal elements
par2 = rep(-2, 6)
Gamma2 = tpm(par2)

44 tpm_cont

tpm_cont Calculate continuous time transition probabilities

Description

A continuous-time Markov chain is described by an infinitesimal generator matrix Q. When ob-
serving data at time points t1, . . . , tn the transition probabilites between ti and ti+1 are caluclated
as

Γ(∆ti) = exp(Q∆ti),

where exp() is the matrix exponential. The mapping Γ(∆t) is also called the Markov semigroup.
This function calculates all transition matrices based on a given generator and time differences.

Usage

tpm_cont(Q, timediff, ad = NULL, report = TRUE)

Arguments

Q infinitesimal generator matrix of the continuous-time Markov chain of dimen-
sion c(N,N)

timediff time differences between observations of length n-1 when based on n observa-
tions

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

report logical, indicating whether Q should be reported from the fitted model. Defaults
to TRUE, but only works if ad = TRUE.

Value

array of continuous-time transition matrices of dimension c(N,N,n-1)

See Also

Other transition probability matrix functions: generator(), tpm(), tpm_emb(), tpm_emb_g(),
tpm_g(), tpm_p()

Examples

building a Q matrix for a 3-state cont.-time Markov chain
Q = generator(rep(-2, 6))

draw random time differences
timediff = rexp(100, 10)

compute all transition matrices
Gamma = tpm_cont(Q, timediff)

tpm_emb 45

tpm_emb Build the embedded transition probability matrix of an HSMM from
unconstrained parameter vector

Description

Hidden semi-Markov models are defined in terms of state durations and an embedded transition
probability matrix that contains the conditional transition probabilities given that the current state
is left. This matrix necessarily has diagonal entries all equal to zero as self-transitions are impossi-
ble.

This function builds such an embedded/ conditional transition probability matrix from an uncon-
strained parameter vector. For each row of the matrix, the inverse multinomial logistic link is
applied.

For a matrix of dimension c(N,N), the number of free off-diagonal elements is N*(N-2), hence also
the length of param. This means, for 2 states, the function needs to be called without any arguments,
for 3-states with a vector of length 3, for 4 states with a vector of length 8, etc.

Compatible with automatic differentiation by RTMB

Usage

tpm_emb(param = NULL)

Arguments

param unconstrained parameter vector of length N*(N-2) where N is the number of
states of the Markov chain
If the function is called without param, it will return the conditional transition
probability matrix for a 2-state HSMM, which is fixed with 0 diagonal entries
and off-diagonal entries equal to 1.

Value

embedded/ conditional transition probability matrix of dimension c(N,N)

See Also

Other transition probability matrix functions: generator(), tpm(), tpm_cont(), tpm_emb_g(),
tpm_g(), tpm_p()

Examples

2 states: no free off-diagonal elements
omega = tpm_emb()

3 states: 3 free off-diagonal elements
param = rep(0, 3)
omega = tpm_emb(param)

46 tpm_emb_g

4 states: 8 free off-diagonal elements
param = rep(0, 8)
omega = tpm_emb(param)

tpm_emb_g Build all embedded transition probability matrices of an inhomoge-
neous HSMM

Description

Hidden semi-Markov models are defined in terms of state durations and an embedded transition
probability matrix that contains the conditional transition probabilities given that the current state
is left. This matrix necessarily has diagonal entries all equal to zero as self-transitions are impossi-
ble. We can allow this matrix to vary with covariates, which is the purpose of this function.

It builds all embedded/ conditional transition probability matrices based on a design and parameter
matrix. For each row of the matrix, the inverse multinomial logistic link is applied.

For a matrix of dimension c(N,N), the number of free off-diagonal elements is N*(N-2) which
determines the number of rows of the parameter matrix.

Compatible with automatic differentiation by RTMB

Usage

tpm_emb_g(Z, beta, report = TRUE)

Arguments

Z covariate design matrix with or without intercept column, i.e. of dimension c(n,
p) or c(n, p+1)
If Z has only p columns, an intercept column of ones will be added automatically.

beta matrix of coefficients for the off-diagonal elements of the embedded transition
probability matrix
Needs to be of dimension c(N*(N-2), p+1), where the first column contains the
intercepts. p can be 0, in which case the model is homogeneous.

report logical, indicating whether the coefficient matrix beta should be reported from
the fitted model. Defaults to TRUE.

Value

array of embedded/ conditional transition probability matrices of dimension c(N,N,n)

See Also

Other transition probability matrix functions: generator(), tpm(), tpm_cont(), tpm_emb(), tpm_g(),
tpm_p()

tpm_g 47

Examples

parameter matrix for 3-state HSMM
beta = matrix(c(rep(0, 3), -0.2, 0.2, 0.1), nrow = 3)
no intercept
Z = rnorm(100)
omega = tpm_emb_g(Z, beta)
intercept
Z = cbind(1, Z)
omega = tpm_emb_g(Z, beta)

tpm_g Build all transition probability matrices of an inhomogeneous HMM

Description

In an HMM, we often model the influence of covariates on the state process by linking them to the
transition probabiltiy matrix. Most commonly, this is done by specifying a linear predictor

η
(t)
ij = β

(ij)
0 + β

(ij)
1 zt1 + · · ·+ β(ij)

p ztp

for each off-diagonal element (i ̸= j) of the transition probability matrix and then applying the
inverse multinomial logistic link (also known as softmax) to each row. This function efficiently
calculates all transition probabilty matrices for a given design matrix Z and parameter matrix beta.

Usage

tpm_g(Z, beta, byrow = FALSE, ad = NULL, report = TRUE)

Arguments

Z covariate design matrix with or without intercept column, i.e. of dimension c(n,
p) or c(n, p+1)
If Z has only p columns, an intercept column of ones will be added automatically.

beta matrix of coefficients for the off-diagonal elements of the transition probability
matrix
Needs to be of dimension c(N*(N-1), p+1), where the first column contains the
intercepts.

byrow logical indicating if each transition probability matrix should be filled by row
Defaults to FALSE, but should be set to TRUE if one wants to work with a matrix of
beta parameters returned by popular HMM packages like moveHMM, momentuHMM,
or hmmTMB.

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

report logical, indicating whether the coefficient matrix beta should be reported from
the fitted model. Defaults to TRUE, but only works if ad = TRUE.

48 tpm_hsmm

Value

array of transition probability matrices of dimension c(N,N,n)

See Also

Other transition probability matrix functions: generator(), tpm(), tpm_cont(), tpm_emb(), tpm_emb_g(),
tpm_p()

Examples

Z = matrix(runif(200), ncol = 2)
beta = matrix(c(-1, 1, 2, -2, 1, -2), nrow = 2, byrow = TRUE)
Gamma = tpm_g(Z, beta)

tpm_hsmm Builds the transition probability matrix of an HSMM-approximating
HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs, where the state duration
distribution is explicitly modelled. For direct numerical maximum likelhood estimation, HSMMs
can be represented as HMMs on an enlarged state space (of size M) and with structured transition
probabilities.

This function computes the transition matrix to approximate a given HSMM by an HMM with a
larger state space.

Usage

tpm_hsmm(omega, dm, Fm = NULL, sparse = TRUE, eps = 1e-10)

Arguments

omega embedded transition probability matrix of dimension c(N,N) as computed by
tpm_emb.

dm state dwell-time distributions arranged in a list of length(N). Each list element
needs to be a vector of length N_i, where N_i is the state aggregate size.

Fm optional list of length N containing the cumulative distribution functions of the
dwell-time distributions.

sparse logical, indicating whether the output should be a sparse matrix. Defaults to
TRUE.

eps rounding value: If an entry of the transition probabily matrix is smaller, than it
is rounded to zero. Usually, this should not be changed.

Value

extended-state-space transition probability matrix of the approximating HMM

tpm_hsmm2 49

Examples

building the t.p.m. of the embedded Markov chain
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)
defining state aggregate sizes
sizes = c(20, 30)
defining state dwell-time distributions
lambda = c(5, 11)
dm = list(dpois(1:sizes[1]-1, lambda[1]), dpois(1:sizes[2]-1, lambda[2]))
calculating extended-state-space t.p.m.
Gamma = tpm_hsmm(omega, dm)

tpm_hsmm2 Build the transition probability matrix of an HSMM-approximating
HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities. This function computes the transition matrix
of an HSMM.

Usage

tpm_hsmm2(omega, dm, eps = 1e-10)

Arguments

omega embedded transition probability matrix of dimension c(N,N)
dm state dwell-time distributions arranged in a list of length(N). Each list element

needs to be a vector of length N_i, where N_i is the state aggregate size.
eps rounding value: If an entry of the transition probabily matrix is smaller, than it

is rounded to zero.

Value

extended-state-space transition probability matrix of the approximating HMM

Examples

building the t.p.m. of the embedded Markov chain
omega = matrix(c(0,1,1,0), nrow = 2, byrow = TRUE)
defining state aggregate sizes
sizes = c(20, 30)
defining state dwell-time distributions
lambda = c(5, 11)
dm = list(dpois(1:sizes[1]-1, lambda[1]), dpois(1:sizes[2]-1, lambda[2]))
calculating extended-state-space t.p.m.
Gamma = tpm_hsmm(omega, dm)

50 tpm_ihsmm

tpm_ihsmm Builds all transition probability matrices of an inhomogeneous-
HSMM-approximating HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities.

This function computes the transition matrices of a periodically inhomogeneos HSMMs.

Usage

tpm_ihsmm(omega, dm, eps = 1e-10)

Arguments

omega embedded transition probability matrix
Either a matrix of dimension c(N,N) for homogeneous conditional transition
probabilities (as computed by tpm_emb), or an array of dimension c(N,N,n) for
inhomogeneous conditional transition probabilities (as computed by tpm_emb_g).

dm state dwell-time distributions arranged in a list of length N
Each list element needs to be a matrix of dimension c(n, N_i), where each row t
is the (approximate) probability mass function of state i at time t.

eps rounding value: If an entry of the transition probabily matrix is smaller, than it
is rounded to zero. Usually, this should not be changed.

Value

list of dimension length n - max(sapply(dm, ncol)), containing sparse extended-state-space tran-
sition probability matrices for each time point (except the first max(sapply(dm, ncol)) - 1).

Examples

N = 2
time-varying mean dwell times
n = 100
z = runif(n)
beta = matrix(c(2, 2, 0.1, -0.1), nrow = 2)
Lambda = exp(cbind(1, z) %*% t(beta))
sizes = c(15, 15) # approximating chain with 30 states
state dwell-time distributions
dm = lapply(1:N, function(i) sapply(1:sizes[i]-1, dpois, lambda = Lambda[,i]))

homogeneous conditional transition probabilites
diagonal elements are zero, rowsums are one
omega = matrix(c(0,1,1,0), nrow = N, byrow = TRUE)

tpm_p 51

calculating extended-state-space t.p.m.s
Gamma = tpm_ihsmm(omega, dm)

inhomogeneous conditional transition probabilites
omega can be an array
omega = array(omega, dim = c(N,N,n))

calculating extended-state-space t.p.m.s
Gamma = tpm_ihsmm(omega, dm)

tpm_p Build all transition probability matrices of a periodically inhomoge-
neous HMM

Description

Given a periodically varying variable such as time of day or day of year and the associated cycle
length, this function calculates the transition probability matrices by applying the inverse multino-
mial logistic link (also known as softmax) to linear predictors of the form

η
(t)
ij = β

(ij)
0 +

K∑
k=1

(
β
(ij)
1k sin(

2πkt

L
) + β

(ij)
2k cos(

2πkt

L
)
)

for the off-diagonal elements (i ̸= j) of the transition probability matrix. This is relevant for
modeling e.g. diurnal variation and the flexibility can be increased by adding smaller frequencies
(i.e. increasing K).

Usage

tpm_p(
tod = 1:24,
L = 24,
beta,
degree = 1,
Z = NULL,
byrow = FALSE,
ad = NULL,
report = TRUE

)

Arguments

tod equidistant sequence of a cyclic variable
For time of day and e.g. half-hourly data, this could be 1, ..., L and L = 48, or
0.5, 1, 1.5, ..., 24 and L = 24.

L length of one full cycle, on the scale of tod

52 tpm_p

beta matrix of coefficients for the off-diagonal elements of the transition probability
matrix
Needs to be of dimension c(N *(N-1), 2*degree+1), where the first column con-
tains the intercepts.

degree degree of the trigonometric link function
For each additional degree, one sine and one cosine frequency are added.

Z pre-calculated design matrix (excluding intercept column)
Defaults to NULL if trigonometric link should be calculated. From an efficiency
perspective, Z should be pre-calculated within the likelihood function, as the
basis expansion should not be redundantly calculated. This can be done by
using trigBasisExp.

byrow logical indicating if each transition probability matrix should be filled by row
Defaults to FALSE, but should be set to TRUE if one wants to work with a matrix of
beta parameters returned by popular HMM packages like moveHMM, momentuHMM,
or hmmTMB.

ad optional logical, indicating whether automatic differentiation with RTMB should
be used. By default, the function determines this itself.

report logical, indicating whether the coefficient matrix beta should be reported from
the fitted model. Defaults to TRUE, but only works if ad = TRUE.

Details

Note that using this function inside the negative log-likelihood function is convenient, but it per-
forms the basis expansion into sine and cosine terms each time it is called. As these do not change
during the optimisation, using tpm_g with a pre-calculated (by trigBasisExp) design matrix would
be more efficient.

Value

array of transition probability matrices of dimension c(N,N,length(tod))

See Also

Other transition probability matrix functions: generator(), tpm(), tpm_cont(), tpm_emb(), tpm_emb_g(),
tpm_g()

Examples

hourly data
tod = seq(1, 24, by = 1)
L = 24
beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(tod, L, beta, degree = 1)

half-hourly data
integer tod sequence
tod = seq(1, 48, by = 1)
L = 48

tpm_phsmm 53

beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma1 = tpm_p(tod, L, beta, degree = 1)

equivalent specification
tod = seq(0.5, 24, by = 0.5)
L = 24
beta = matrix(c(-1, 2, -1, -2, 1, -1), nrow = 2, byrow = TRUE)
Gamma2 = tpm_p(tod, L, beta, degree = 1)

all(Gamma1 == Gamma2) # same result

tpm_phsmm Builds all transition probability matrices of an periodic-HSMM-
approximating HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities.

This function computes the transition matrices of a periodically inhomogeneos HSMMs.

Usage

tpm_phsmm(omega, dm, eps = 1e-10)

Arguments

omega embedded transition probability matrix
Either a matrix of dimension c(N,N) for homogeneous conditional transition
probabilities (as computed by tpm_emb), or an array of dimension c(N,N,L) for
inhomogeneous conditional transition probabilities (as computed by tpm_emb_g).

dm state dwell-time distributions arranged in a list of length N
Each list element needs to be a matrix of dimension c(L, N_i), where each row
t is the (approximate) probability mass function of state i at time t.

eps rounding value: If an entry of the transition probabily matrix is smaller, than it
is rounded to zero. Usually, this should not be changed.

Value

list of dimension length L, containing sparse extended-state-space transition probability matrices of
the approximating HMM for each time point of the cycle.

54 tpm_phsmm2

Examples

N = 2 # number of states
L = 24 # cycle length
time-varying mean dwell times
Z = trigBasisExp(1:L) # trigonometric basis functions design matrix
beta = matrix(c(2, 2, 0.1, -0.1, -0.2, 0.2), nrow = 2)
Lambda = exp(cbind(1, Z) %*% t(beta))
sizes = c(20, 20) # approximating chain with 40 states
state dwell-time distributions
dm = lapply(1:N, function(i) sapply(1:sizes[i]-1, dpois, lambda = Lambda[,i]))

homogeneous conditional transition probabilites
diagonal elements are zero, rowsums are one
omega = matrix(c(0,1,1,0), nrow = N, byrow = TRUE)

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

inhomogeneous conditional transition probabilites
omega can be an array
omega = array(omega, dim = c(N,N,L))

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

tpm_phsmm2 Build all transition probability matrices of an periodic-HSMM-
approximating HMM

Description

Hidden semi-Markov models (HSMMs) are a flexible extension of HMMs. For direct numerical
maximum likelhood estimation, HSMMs can be represented as HMMs on an enlarged state space
(of size M) and with structured transition probabilities. This function computes the transition ma-
trices of a periodically inhomogeneos HSMMs.

Usage

tpm_phsmm2(omega, dm, eps = 1e-10)

Arguments

omega embedded transition probability matrix
Either a matrix of dimension c(N,N) for homogeneous conditional transition
probabilities, or an array of dimension c(N,N,L) for inhomogeneous conditional
transition probabilities.

dm state dwell-time distributions arranged in a list of length(N)
Each list element needs to be a matrix of dimension c(L, N_i), where each row
t is the (approximate) probability mass function of state i at time t.

tpm_thinned 55

eps rounding value: If an entry of the transition probabily matrix is smaller, than it
is rounded to zero.

Value

array of dimension c(N,N,L), containing the extended-state-space transition probability matrices of
the approximating HMM for each time point of the cycle.

Examples

N = 3
L = 24
time-varying mean dwell times
Lambda = exp(matrix(rnorm(L*N, 2, 0.5), nrow = L))
sizes = c(25, 25, 25) # approximating chain with 75 states
state dwell-time distributions
dm = list()
for(i in 1:3){

dmi = matrix(nrow = L, ncol = sizes[i])
for(t in 1:L){

dmi[t,] = dpois(1:sizes[i]-1, Lambda[t,i])
}
dm[[i]] = dmi

}

homogeneous conditional transition probabilites
diagonal elements are zero, rowsums are one
omega = matrix(c(0,0.5,0.5,0.2,0,0.8,0.7,0.3,0), nrow = N, byrow = TRUE)

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

inhomogeneous conditional transition probabilites
omega can be an array
omega = array(rep(omega,L), dim = c(N,N,L))
omega[1,,4] = c(0, 0.2, 0.8) # small change for inhomogeneity

calculating extended-state-space t.p.m.s
Gamma = tpm_phsmm(omega, dm)

tpm_thinned Compute the transition probability matrix of a thinned periodically
inhomogeneous Markov chain.

Description

If the transition probability matrix of an inhomogeneous Markov chain varies only periodically
(with period length L), it converges to a so-called periodically stationary distribution. This happens,

56 trex

because the thinned Markov chain, which has a full cycle as each time step, has homogeneous
transition probability matrix

Γt = Γ(t)Γ(t+1) . . .Γ(t+L−1)

for all t = 1, . . . , L. This function calculates the matrix above efficiently as a preliminery step to
calculating the periodically stationary distribution.

Usage

tpm_thinned(Gamma, t)

Arguments

Gamma array of transition probability matrices of dimension c(N,N,L).

t integer index of the time point in the cycle, for which to calculate the thinned
transition probility matrix

Value

thinned transition probabilty matrix of dimension c(N,N)

Examples

setting parameters for trigonometric link
beta = matrix(c(-1, -2, 2, -1, 2, -4), nrow = 2, byrow = TRUE)
calculating periodically varying t.p.m. array (of length 24 here)
Gamma = tpm_p(beta = beta)
calculating t.p.m. of thinned Markov chain
tpm_thinned(Gamma, 4)

trex T-Rex Movement Data

Description

Hourly step lengths and turning angles of a Tyrannosaurus rex, living 66 million years ago.

Usage

trex

Format

A data frame with 10.000 rows and 4 variables:

tod time of day variable ranging from 1 to 24

step hourly step lengths in kilometres

angle hourly turning angles in radians

state hidden state variable

trigBasisExp 57

Source

Generated for example purposes.

trigBasisExp Compute the design matrix for a trigonometric basis expansion

Description

Given a periodically varying variable such as time of day or day of year and the associated cycle
length, this function performs a basis expansion to efficiently calculate a linear predictor of the form

η(t) = β0 +

K∑
k=1

(
β1k sin(

2πkt

L
) + β2k cos(

2πkt

L
)
)
.

This is relevant for modeling e.g. diurnal variation and the flexibility can be increased by adding
smaller frequencies (i.e. increasing K).

Usage

trigBasisExp(tod, L = 24, degree = 1)

Arguments

tod equidistant sequence of a cyclic variable
For time of day and e.g. half-hourly data, this could be 1, ..., L and L = 48, or
0.5, 1, 1.5, ..., 24 and L = 24.

L length of one cycle on the scale of the time variable. For time of day, this would
be 24.

degree degree K of the trigonometric link above. Increasing K increases the flexibility.

Value

design matrix (without intercept column), ordered as sin1, cos1, sin2, cos2, ...

Examples

hourly data
tod = rep(1:24, 10)
Z = trigBasisExp(tod, L = 24, degree = 2)

half-hourly data
tod = rep(1:48/2, 10) # in [0,24] -> L = 24
Z1 = trigBasisExp(tod, L = 24, degree = 3)

tod = rep(1:48, 10) # in [1,48] -> L = 48
Z2 = trigBasisExp(tod, L = 48, degree = 3)

all(Z1 == Z2)
The latter two are equivalent specifications!

58 viterbi

viterbi Viterbi algorithm for state decoding in homogeneous HMMs

Description

The Viterbi algorithm allows one to decode the most probable state sequence of an HMM.

Usage

viterbi(delta, Gamma, allprobs, trackID = NULL, mod = NULL)

Arguments

delta initial distribution of length N, or matrix of dimension c(k,N) for k independent
tracks, if trackID is provided

Gamma transition probability matrix of dimension c(N,N) or array of transition proba-
bility matrices of dimension c(N,N,k) if trackID is provided

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

trackID optional vector of k track IDs, if multiple tracks need to be decoded separately

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable
If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward in your likelihood function, the objects needed for state de-
coding are automatically reported after model fitting. Hence, you can pass the
model object obtained from running RTMB::report() or from qreml directly to
this function.

Value

vector of decoded states of length n

See Also

Other decoding functions: stateprobs(), stateprobs_g(), stateprobs_p(), viterbi_g(), viterbi_p()

Examples

delta = c(0.5, 0.5)
Gamma = matrix(c(0.9, 0.1, 0.2, 0.8), nrow = 2, byrow = TRUE)
allprobs = matrix(runif(200), nrow = 100, ncol = 2)
states = viterbi(delta, Gamma, allprobs)

viterbi_g 59

viterbi_g Viterbi algorithm for state decoding in inhomogeneous HMMs

Description

The Viterbi algorithm allows one to decode the most probable state sequence of an HMM.

Usage

viterbi_g(delta, Gamma, allprobs, trackID = NULL, mod = NULL)

Arguments

delta initial distribution of length N, or matrix of dimension c(k,N) for k independent
tracks, if trackID is provided

Gamma array of transition probability matrices of dimension c(N,N,n-1), as in a time
series of length n, there are only n-1 transitions

If an array of dimension c(N,N,n) is provided for a single track, the first slice
will be ignored.

If trackID is provided, Gamma needs to be an array of dimension c(N,N,n),
where n is the number of rows in allprobs. Then for each track the first transi-
tion matrix will be ignored.

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

trackID optional vector of k track IDs, if multiple tracks need to be decoded separately

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable

If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward_g in your likelihood function, the objects needed for state
decoding are automatically reported after model fitting. Hence, you can pass the
model object obtained from running RTMB::report() or from qreml directly to
this function.

Value

vector of decoded states of length n

See Also

Other decoding functions: stateprobs(), stateprobs_g(), stateprobs_p(), viterbi(), viterbi_p()

60 viterbi_p

Examples

delta = c(0.5, 0.5)
Gamma = array(dim = c(2,2,99))
for(t in 1:99){

gammas = rbeta(2, shape1 = 0.4, shape2 = 1)
Gamma[,,t] = matrix(c(1-gammas[1], gammas[1],

gammas[2], 1-gammas[2]), nrow = 2, byrow = TRUE)
}
allprobs = matrix(runif(200), nrow = 100, ncol = 2)
states = viterbi_g(delta, Gamma, allprobs)

viterbi_p Viterbi algorithm for state decoding in periodically inhomogeneous
HMMs

Description

The Viterbi algorithm allows one to decode the most probable state sequence of an HMM.

Usage

viterbi_p(delta, Gamma, allprobs, tod, trackID = NULL, mod = NULL)

Arguments

delta initial distribution of length N, or matrix of dimension c(k,N) for k independent
tracks, if trackID is provided
This could e.g. be the periodically stationary distribution (for each track).

Gamma array of transition probability matrices for each time point in the cycle of dimen-
sion c(N,N,L), where L is the length of the cycle

allprobs matrix of state-dependent probabilities/ density values of dimension c(n, N)

tod (Integer valued) variable for cycle indexing in 1, ..., L, mapping the data index
to a generalised time of day (length n)
For half-hourly data L = 48. It could, however, also be day of year for daily data
and L = 365.

trackID optional vector of k track IDs, if multiple tracks need to be decoded separately

mod optional model object containing initial distribution delta, transition probabil-
ity matrix Gamma, matrix of state-dependent probabilities allprobs, and poten-
tially a trackID variable
If you are using automatic differentiation either with RTMB::MakeADFun or qreml
and include forward_p in your likelihood function, the objects needed for state
decoding are automatically reported after model fitting. Hence, you can pass the
model object obtained from running RTMB::report() or from qreml directly to
this function.

vm 61

Value

vector of decoded states of length n

See Also

Other decoding functions: stateprobs(), stateprobs_g(), stateprobs_p(), viterbi(), viterbi_g()

Examples

delta = c(0.5, 0.5)
beta = matrix(c(-2, 1, -1,

-2, -1, 1), nrow = 2, byrow = TRUE)
Gamma = tpm_p(1:24, 24, beta)

tod = rep(1:24, 10)
n = length(tod)

allprobs = matrix(runif(2*n), nrow = n, ncol = 2)
states = viterbi_p(delta, Gamma, allprobs, tod)

vm von Mises distribution

Description

Density, distribution function and random generation for the von Mises distribution.

Usage

dvm(x, mu = 0, kappa = 1, log = FALSE)

pvm(q, mu = 0, kappa = 1, from = NULL, tol = 1e-20)

rvm(n, mu = 0, kappa = 1, wrap = TRUE)

Arguments

x, q vector of angles measured in radians at which to evaluate the density function.

mu mean direction of the distribution measured in radians.

kappa non-negative numeric value for the concentration parameter of the distribution.

log logical; if TRUE, densities are returned on the log scale.

from value from which the integration for CDF starts. If NULL, is set to mu - pi.

tol the precision in evaluating the distribution function

n number of observations. If length(n) > 1, the length is taken to be the number
required.

wrap logical; if TRUE, generated angles are wrapped to the interval [-pi, pi].

62 vm

Details

The implementation of dvm allows for automatic differentiation with RTMB. rvm and pvm are imported
from CircStats and circular respectively.

Value

dvm gives the density, pvm gives the distribution function, and rvm generates random deviates.

Examples

set.seed(1)
x = rvm(1000, 0, 1)
d = dvm(x, 0, 1)
p = pvm(x, 0, 1)

Index

∗ datasets
nessi, 24
trex, 56

∗ decoding functions
stateprobs, 35
stateprobs_g, 36
stateprobs_p, 37
viterbi, 58
viterbi_g, 59
viterbi_p, 60

∗ forward algorithms
forward, 6
forward_g, 8
forward_hsmm, 9
forward_ihsmm, 11
forward_p, 13
forward_phsmm, 15

∗ stationary distribution functions
stationary, 38
stationary_cont, 39
stationary_p, 40

∗ transition probability matrix functions
generator, 21
tpm, 43
tpm_cont, 44
tpm_emb, 45
tpm_emb_g, 46
tpm_g, 47
tpm_p, 51

buildSmoothDens, 3

calc_trackInd, 4

dgamma2 (gamma2), 20
dgmrf2, 5
dvm (vm), 61

forward, 6, 9, 11, 13, 14, 17, 28, 35, 58
forward_g, 7, 8, 11, 13, 14, 17, 28, 37, 59

forward_hsmm, 7, 9, 9, 13, 14, 17
forward_ihsmm, 7, 9, 11, 11, 14, 15, 17
forward_p, 7, 9, 11, 13, 13, 17, 28, 38, 60
forward_phsmm, 7, 9, 11, 13, 14, 15
forward_s, 17
forward_sp, 18

gamma2, 20
generator, 21, 39, 43–46, 48, 52

make_matrices, 22, 26, 27
make_matrices_dens, 3, 23

nessi, 24

optim, 32

penalty, 24, 31, 32
pgamma2 (gamma2), 20
pred_matrix, 26
pseudo_res, 27
pseudo_res_discrete, 28, 29
pvm (vm), 61

qgamma2 (gamma2), 20
qreml, 24, 25, 28, 30, 35, 37, 38, 58–60

rgamma2 (gamma2), 20
rvm (vm), 61

sdreportMC, 33
stateprobs, 27–29, 35, 37, 38, 58, 59, 61
stateprobs_g, 27–29, 36, 36, 38, 58, 59, 61
stateprobs_p, 28, 36, 37, 37, 58, 59, 61
stationary, 38, 39, 40, 42
stationary_cont, 39, 39, 40
stationary_p, 37, 39, 40, 41
stationary_p_sparse, 41
stationary_sparse, 42

tpm, 22, 39, 43, 44–46, 48, 52

63

64 INDEX

tpm_cont, 22, 43, 44, 45, 46, 48, 52
tpm_emb, 10, 12, 16, 22, 43, 44, 45, 46, 48, 50,

52, 53
tpm_emb_g, 12, 16, 22, 43–45, 46, 48, 50, 52,

53
tpm_g, 22, 40, 43–46, 47, 52
tpm_hsmm, 48
tpm_hsmm2, 49
tpm_ihsmm, 50
tpm_p, 22, 40, 43–46, 48, 51
tpm_phsmm, 53
tpm_phsmm2, 54
tpm_thinned, 55
trex, 56
trigBasisExp, 52, 57

viterbi, 36–38, 58, 59, 61
viterbi_g, 36–38, 58, 59, 61
viterbi_p, 36–38, 58, 59, 60
vm, 61

	buildSmoothDens
	calc_trackInd
	dgmrf2
	forward
	forward_g
	forward_hsmm
	forward_ihsmm
	forward_p
	forward_phsmm
	forward_s
	forward_sp
	gamma2
	generator
	make_matrices
	make_matrices_dens
	nessi
	penalty
	pred_matrix
	pseudo_res
	pseudo_res_discrete
	qreml
	sdreportMC
	stateprobs
	stateprobs_g
	stateprobs_p
	stationary
	stationary_cont
	stationary_p
	stationary_p_sparse
	stationary_sparse
	tpm
	tpm_cont
	tpm_emb
	tpm_emb_g
	tpm_g
	tpm_hsmm
	tpm_hsmm2
	tpm_ihsmm
	tpm_p
	tpm_phsmm
	tpm_phsmm2
	tpm_thinned
	trex
	trigBasisExp
	viterbi
	viterbi_g
	viterbi_p
	vm
	Index

