Package 'DetLifeInsurance'

January 20, 2025

Type Package

Title Life Insurance Premium and Reserves Valuation

Version 0.1.3

Maintainer Joaquin Auza <auzajoaquin@gmail.com>

Description Methods for valuation of life insurance premiums and reserves (including variablebenefit and fractional coverage) based on ``Actuarial Mathematics" by Bowers, H.U. Gerber, J.C. Hickman, D.A. Jones and C.J. Nesbitt (1997, ISBN: 978-0938959465), ``Actuarial Mathematics for Life Contingent Risks" by Dickson, David C. M., Hardy, Mary R. and Waters, Howard R (2009) <doi:10.1017/CBO9780511800146> and ``Life Contingencies" by Jordan, C. W (1952) <doi:10.1017/S002026810005410X>. It also contains functions for equivalent interest and discount rate calculation, present and future values of annuities, and loan amortization schedule.

License GPL-3

Depends R (>= 3.5.0)

Imports utils

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

URL https://github.com/JoaquinAuza/DetLifeInsurance

BugReports https://github.com/JoaquinAuza/DetLifeInsurance/issues

VignetteBuilder knitr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Joaquin Auza [aut, cre], Maria Sol Alvarez [aut]

Repository CRAN

Date/Publication 2020-09-12 09:20:07 UTC

Contents

a	. 4
A	5
aCont	6
ACont	7
aD	8
AD	9
af	10
am	11
Am	12
ArgentinaINDEC9092comb	13
ArgentinaINDEC9092F	14
ArgentinaINDEC9092M	
av	15
Av	
avg	
Avg	
CSO2001FALBnonsmoker	
CSO2001FALBsmoker	
CSO2001FANBnonsmoker	
CSO2001FANBsmoker	
CSO2001MALBnonsmoker	
CSO2001MALBsmoker	
CSO2001MANBnonsmoker	
CSO2001MANBsmoker	
CSO58FALB	
CSO58FANB	
CSO58MALB	
CSO58MANB	
CSO80FALB	
CSO80FALBnonsmoker	
CSO80FALBsmoker	
CSO80FANB	
CSO80FANBnonsmoker	
CSO80FANBsmoker	
CSO80MALB	29
CSO80MALBnonsmoker	
	30
CSO80MALBsmoker	
CSO80MANB	31
CSO80MANBsmoker	
E	
Em	
Fractional_table	
GAM71F	
GAM71M	
GAM83F	36

GAM83M
GAM94F 37
GAM94FANB
GAM94M
GAM94MANB 38
JointSurvival
Loan_amortization
MAyP0206activeF
MAyP0206activeM
MAyP0206CAF
MAyP0206CAM 41
MAyP0206retiredF
MAyP0206retiredM
Mi06F
Mi06M 43
Mi85F
Mi85M 44
Payment_Protection
PremiumFrac
qfrac
Rate_converter
RV04F
RV04M 49
sf 49
Survival
Table_Dormoy 50
Table_Gompertz 51
Table_Makeham 52
Table_Moivre 53
V_a 53
V_A
V_aD 56
V_AD
V_av
V_Av
V_avg 62
V_Avg
V_E
V_Payment_Protection

Index

Description

Calculates the present value of a life annuity.

Usage

a(x, h, n, k = 1, i = 0.04, data, prop = 1, assumption = "none", cap = 1)

Arguments

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age, and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
сар	A numeric type value. The annualized value of the payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 2 of Life Contingencies (1952) by Jordan, chapter 5 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

a(20,0,15,1,0.04,CS058FALB,1,"none",1200) a(23,7,9,1,0.04,GAM71F,1,"none",5000) a(33,3,10,4,0.04,CS080MANB,1,"constant",3000) a(20,5,10,4,0.04,CS058MANB,1,"UDD",5000)

а

Description

Calculates the present value of the life insurance.

Usage

A.(x, h, n, k = 1, i = 0.04, data, prop = 1, assumption = "none", cap = 1)

Arguments

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
сар	A numeric type value. The value of the payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

```
A. (50,0,8,1,0.04,CSO80MANB,1,"none",1)
A. (60,3,10,1,0.04,CSO80MANB,1,"none",1)
A. (21,4,7,3,0.04,CSO80MANB,1,"constant",1)
A. (23,4,6,12,0.04,CSO80MANB,1,"UDD",1)
```

Α.

aCont

Description

Calculates the present value of a continuous life annuity.

Usage

aCont(x, h, n, i = 0.04, data, prop = 1, assumption = "constant", cap = 1)

Arguments

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
сар	A numeric type value. The value of the payment.

Value

Returns a numeric value (the actuarial present value).

References

Chapter 2 of Life Contingencies (1952) by Jordan, chapter 5 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

```
aCont(35,7,10,0.04,CSO80MANB,1,"constant",1)
aCont(23,5,12,0.04,CSO80MANB,1,"UDD",1)
```

ACont.

Description

Calculates the present value of a continuous life insurance.

Usage

ACont.(x, h, n, i = 0.04, data, prop = 1, assumption = "UDD", cap = 1)

Arguments

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
сар	A numeric type value. The value of the payment.

Value

Returns a numeric (actuarial present value).

References

Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

ACont.(24,2,10,0.04,CSO80MANB,1,"UDD",1) ACont.(24,2,10,0.04,CSO80MANB,1,"constant",1)

Description

Calculates the present value of a decreasing life annuity.

Usage

```
aD(
    x,
    h,
    n,
    k = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap = 1
)
```

Arguments

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. The annualized value of the first payment.

Value

Returns a numeric value (actuarial present value).

аD

AD.

References

Chapter 2 of Life Contingencies (1952) by Jordan, chapter 5 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

aD(27,0,3,1,0.04,CSO80MANB,1,"none","none",1) aD(32,2,8,1,0.04,CSO80MANB,1,"none","none",1) aD(35,8,15,4,0.04,CSO80MANB,1,"constant","inter",1) aD(21,2,5,4,0.04,CSO80MANB,1,"UDD","inter",1) aD(54,4,16,2,0.04,CSO80MANB,1,"constant","intra",1) aD(20,10,15,3,0.04,CSO80MANB,1,"UDD","intra",1)

AD.

Decreasing Life Insurance

Description

Calculates the present value of a decreasing life insurance.

Usage

```
AD.(
  х,
 h,
 n,
 k = 1,
  i = 0.04,
  data,
  prop = 1,
  assumption = "none",
 variation = "none",
  cap = 1
```

Arguments

)

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Fractions per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.

prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. Amount insured for the first year/period.

Value

Returns a numeric value (actuarial present value).

References

Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

```
AD. (56,0,8,1,0.04,CSO80MANB,1,"none","none",1)
AD. (39,1,10,1,0.04,CSO80MANB,1,"none","none",1)
AD. (37,6,11,4,0.04,CSO80MANB,1,"constant","inter",1)
AD. (21,2,5,4,0.04,CSO80MANB,1,"UDD","inter",1)
AD. (54,4,16,2,0.04,CSO80MANB,1,"constant","intra",1)
AD. (20,10,15,3,0.04,CSO80MANB,1,"UDD","intra",1)
```

af

Present Value of An Annuity

Description

Calculates the present value of an annuity.

Usage

af(1 = 0, n, i)

Arguments

1	0 for annuity due or 1 for annuity immediate.
n	A numeric value. The number of payments.
i	A numeric value. The interest rate.

Examples

af(0,10,0.03) af(1,15,0.05)

Life Annuities for a group

Description

Calculates the present value of a life annuity for a group.

Usage

```
am(
    x,
    h,
    n,
    k = 1,
    i = 0.04,
    data,
    prop = 1,
    type = "joint",
    quant = 1,
    assumption = "none",
    cap = 1
)
```

Arguments

х	A vector of intergers representing the age of each individual of the group.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
i	The interest rate. A numeric type value.
data	A data frame of the mortality table, with the first column being the age, and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
type	A character string. Conditions to be met in order to access the benefit of the annuity ("joint", "exactly" or "atleast").
quant	An integer. Required only if type is not "joint". If type is "exactly" it represents the exact amount of survivors required for the endowment to be payed. If type is "atleast", it represents the minimum number of survivors required.

am

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform
	distribution of deaths, "constant" for constant force of mortality and "none" if
	there is no fractional coverage).
сар	A numeric type value. The annualized value of the payment.

Value

Returns a numeric value (actuarial present value).

Examples

```
ages<-c(23,34,21)
ages<-c(23,34,21)
am(ages,5,10,2,0.05,CSO80MALB,1,"joint",assumption="UDD")
am(ages,0,20,1,0.06,CSO80FALBsmoker,1,"atleast",1)
am(ages,2,15,2,0.07,CSO80FANBsmoker,0.8,"exactly",2,"constant")</pre>
```

```
Am.
```

Life Insurance of a group

Description

Calculates the present value of a life insurance coverage for a group.

Usage

```
Am.(
    x,
    h,
    n,
    k = 1,
    i = 0.04,
    data,
    prop = 1,
    ndeath = 1,
    assumption = "none",
    cap = 1
)
```

Arguments

х	A vector of intergers representing the age of each individual of the group.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
i	The interest rate. A numeric type value.

data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
ndeath	An integer. Number of deaths necessary for payment to occur.
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
сар	A numeric type value. The value of the payment.

Value

Returns a numeric value (actuarial present value).

Examples

```
ages<-c(22,33,44,55,66)
Am.(ages,5,15,1,0.04,CSO80MANB,1,2,"none",1)
Am.(ages,0,20,4,0.04,CSO80MANB,1,2,"UDD",1)
Am.(ages,10,25,2,0.04,CSO80MANB,1,2,"constant",1)
```

```
ArgentinaINDEC9092comb
```

ArgentinaINDEC9092 Males and Females Combined

Description

Mortality table (ultimate): Argentina Instituto Nacional de Estadistica y Censos (INDEC). Nation: Argentina. Year: 1990-1992. Sex: Males and Females Combined.

Usage

```
data(ArgentinaINDEC9092comb)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

ArgentinaINDEC9092F ArgentinaINDEC9092 Female

Description

Mortality table (ultimate): Argentina Instituto Nacional de Estadistica y Censos (INDEC). Nation: Argentina. Year: 1990-1992. Sex: Female.

Usage

data(ArgentinaINDEC9092F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20002

ArgentinaINDEC9092M ArgentinaINDEC9092 Male

Description

Mortality table (ultimate): Argentina Instituto Nacional de Estadistica y Censos (INDEC). Nation: Argentina. Year: 1990-1992. Sex: Male.

Usage

```
data(ArgentinaINDEC9092M)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

Description

Calculates the present value of a varying life annuity according to a arithmetic progression.

Usage

```
av(
    x,
    h,
    n,
    k = 1,
    r = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap = 1
)
```

Arguments

x	An integer. The age on the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
r	The variation rate. A numeric type value.
i	The interest rate. A numeric type value.
data	A data frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. The annualized value of the first payment.

Value

Returns a numeric value (actuarial present value).

av

Note

For an increasing life annuity coverage, 'r' must be 1.

References

Chapter 5 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
av(33,0,5,1,0.8,0.04,CSO80MANB,1,"none","none",1)
av(26,2,4,1,0.4,0.04,CSO80MANB,1,"none","none",1)
av(26,1,5,4,0.5,0.04,CSO80MANB,1,"constant","inter",1)
av(24,1,3,3,0.7,0.04,CSO80MANB,1,"constant","intra",1)
av(35,4,6,6,0.4,0.04,CSO80MANB,1,"UDD","inter",1)
av(40,3,7,2,0.7,0.04,CSO80MANB,1,"UDD","intra",1)
```

Av.

Varying Life Insurance: Arithmetic Progression

Description

Calculates the present value of a varying life insurance according to a arithmetic progression.

Usage

```
Av.(
    x,
    h,
    n,
    k = 1,
    r = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap = 1
)
```

Arguments

х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Fractions per year.

r	The variation rate. A numeric type value.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. Amount insured for the first year/period.

Value

Returns a numeric value (actuarial present value).

Note

For an increasing life insurance coverage, 'r' must be 1.

References

Chapter 4 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
Av. (43,0,4,1,0.7,0.04,CSO80MANB,1,"none","none",1)
Av. (37,1,6,1,0.3,0.04,CSO80MANB,1,"none","none",1)
Av. (25,2,3,2,0.6,0.04,CSO80MANB,1,"constant","inter",1)
Av. (37,3,6,4,0.5,0.04,CSO80MANB,1,"constant","intra",1)
Av. (40,3,5,2,0.4,0.04,CSO80MANB,1,"UDD","inter",1)
Av. (50,2,4,4,0.6,0.04,CSO80MANB,1,"UDD","intra",1)
```

avg

Varying Life Annuities: Geometric Progression

Description

Calculates the present value of a varying life annuity according to a geometric progression.

Usage

```
avg(
    x,
    h,
    n,
    k = 1,
    r,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap = 1
)
```

Arguments

x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
r	The variation rate. A numeric type value.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. The annualized value of the first payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 5 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

18

Avg.

Examples

```
avg(33,0,5,1,0.8,0.04,CSO80MANB,1,"none","none",1)
avg(26,2,4,1,0.4,0.04,CSO80MANB,1,"none","none",1)
avg(20,2,2,2,0.15,0.04,CSO80MANB,1,"constant","inter",1)
avg(40,5,5,3,0.07,0.04,CSO80MANB,1,"constant","intra",1)
avg(27,0,15,4,0.06,0.04,CSO80MANB,1,"UDD","inter",1)
avg(34,7,12,6,0.03,0.04,CSO80MANB,1,"UDD","intra",1)
```

Avg.

Varying Life Insurance: Geometric Progression

Description

Calculates the present value of a varying life insurance according to a geometric progression.

Usage

```
Avg.(
 х,
 h,
  n,
 k = 1,
 r,
  i = 0.04,
  data,
 prop = 1,
  assumption = "none",
 variation = "none",
  cap = 1
```

Arguments

)

x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Fractions per year.
r	The variation rate. A numeric type value.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. Amount insured for the first year/period.

Value

Returns a numeric value (actuarial present value).

References

Chapter 4 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
Avg. (33,0,5,1,0.8,0.04,CSO80MANB,1,"none","none",1)
Avg. (26,2,4,1,0.4,0.04,CSO80MANB,1,"none","none",1)
Avg. (25,0,15,2,0.25,0.04,CSO80MANB,1,"constant","inter",1)
Avg. (37,10,10,4,0.05,0.04,CSO80MANB,1,"constant","intra",1)
Avg. (40,5,20,6,0.04,0.04,CSO80MANB,1,"UDD","inter",1)
Avg. (20,0,80,12,0.01,0.04,CSO80MANB,1,"UDD","intra",1)
```

CS02001FALBnonsmoker CS02001 Female Age Last Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Last Birthday. Smoker: No.

Usage

```
data(CSO2001FALBnonsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS02001FALBsmoker CS02001 Female Age Last Birthday Smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Last Birthday. Smoker: yes.

Usage

```
data(CSO2001FALBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=1519

CS02001FANBnonsmoker CS02001 Female Age Nearest Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Nearest Birthday. Smoker: No.

Usage

```
data(CS02001FANBnonsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS02001FANBsmoker CS02001 Female Age Nearest Birthday Smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

```
data(CSO2001FANBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=1141

CS02001MALBnonsmoker CS02001 Male Age Last Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Last Birthday. Smoker: No.

Usage

```
data(CS02001MALBnonsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS02001MALBsmoker CS02001 Male Age Last Birthday Smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Last Birthday. Smoker: yes.

Usage

```
data(CS02001MALBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=1518

CS02001MANBnonsmoker CS02001 Male Age Nearest Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Nearest Birthday. Smoker: No.

Usage

```
data(CSO2001MANBnonsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS02001MANBsmoker CS02001 Male Age Nearest Birthday Smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

```
data(CS02001MANBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=1138

CS058FALB

CSO58 Female Age Last Birthday

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Year: 1958. Nation: United States of America. Sex: Female. Basis: Age Last Birthday.

Usage

data(CS058FALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS058FANB

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1958. Sex: Female. Basis: Age Nearest Birthday.

Usage

data(CS058FANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=6

CS058MALB

CSO58 Male Age Last Birthday

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1958. Sex: Male. Basis: Age Last Birthday.

Usage

data(CS058MALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS058MANB

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1958. Sex: Male. Basis: Age Nearest Birthday.

Usage

data(CS058MANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=5

CS080FALB

CSO80 Female Age Last Birthday

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female Age method: Age Last Birthday.

Usage

data(CS080FALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS080FALBnonsmoker CS080 Female Age Last Birthday non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Last Birthday. Smoker: No.

Usage

data(CSO80FALBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=37

CS080FALBsmoker CS080 Female Age Last Birthday smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Last Birthday. Smoker: Yes.

Usage

```
data(CS080FALBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS080FANB

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Nearest Birthday.

Usage

data(CSO80FANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=36

CS080FANBnonsmoker CS080 Female Age Nearest Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Nearest Birthday. Smoker: No.

Usage

```
data(CSO80FANBnonsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS080FANBsmoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

data(CSO80FANBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=40

CSO80MALB

CSO80 Male Age Last Birthday

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Last Birthday.

Usage

data(CS080MALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CSO80MALBnonsmoker CSO80 Male Age Last Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Last Birthday. Smoker: No.

Usage

data(CSO80MALBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=43

CS080MALBsmoker CS080 Male Age Last Birthday Smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Last Birthday. Smoker: Yes.

Usage

```
data(CSO80MALBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CS080MANB

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Age method: Age Nearest Birthday.

Usage

data(CSO80MANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=42

CSO80MANBnonsmoker CSO80 Male Age Nearest Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Nearest Birthday. Smoker: No.

Usage

```
data(CSO80MANBnonsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

CSO80MANBsmoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

```
data(CSO80MANBsmoker)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=46

Е

Pure Endowment

Description

Calculates the Pure endowments.

Usage

```
E(x, n, i = 0.04, data, prop = 1, assumption = "none", cap = 1)
```

Arguments

х	An integer. The age of the insuree.
n	The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
сар	A numeric type value. The payment.

Em

References

Chapter 2 of Life Contingencies (1952) by Jordan.

Examples

```
E(45,10,0.04,CSO80MANB,1,"none",1000)
E(24,1.6,0.04,CSO80MANB,1,"constant",17000)
E(26,2.4,0.04,CSO58FALB,1,"UDD",3500)
```

Em

Group Pure Endowment

Description

Calculates the Pure endowments for a group of insurees.

Usage

```
Em(
    x,
    n,
    i = 0.04,
    data,
    prop = 1,
    type = "joint",
    quant = 1,
    assumption = "none",
    cap = 1
)
```

Arguments

х	A vector of integers. The age of the insurees.
n	The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
i	The interest rate. A numeric type value.
data	A data frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
type	A character string. Conditions to be met in order to access the benefit of the endowment ("joint", "exactly" or "atleast").
quant	An integer. Required only if type is not "joint". If type is "exactly" it represents the exact amount of survivors required for the endowment to be payed. If type is "atleast", it represents the minimum number of survivors required.

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform
	distribution of deaths, "constant" for constant force of mortality and "none" if
	there is no fractional coverage).
сар	A numeric type value. The payment.

Examples

```
ages<-c(23,33,33)
Em(ages,15,0.04,CSO80MANB,1,"joint")
Em(ages,20.5,0.04,CSO80MANB,1,"joint",assumption = "constant",cap= 1)
Em(ages,10.5,0.04,CSO80MANB,1,"joint",assumption = "UDD", cap=1)
ages<-c(20,23,24,25)
Em(ages,15,0.04,CSO80MANB,1,"exactly",1,"none",1)
Em(ages,24.2,0.04,CSO80MANB,1,"exactly",2,"constant",1)
Em(ages,8.2,0.04,CSO80MANB,1,"exactly",3,"UDD",1)
ages<-c(40,42,56,57,58,59)
Em(ages,15,0.04,CSO80MANB,1,"atleast",1,"none",1)
Em(ages,25.5,0.04,CSO80MANB,1,"atleast",4,"constant",1)
Em(ages,15.3,0.04,CSO80MANB,1,"atleast",3,"UDD",1)
```

Fractional_table Fractional table of mortality

Description

Creates a fractional mortality table for a given mortality table.

Usage

```
Fractional_table(data, frac, i = 0.04, assumption = "UDD")
```

Arguments

data	A data.frame of the annual mortality table, with the first column being the age and the second one the probability of death.
frac	An integer. The number of fractions per year.
i	A numeric type value. The interest rate.
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).

Value

Returns a data.frame object containing fractional age and death probability vectors.

GAM71F

References

Chapter 3 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt

Examples

```
Fractional_table(CS080MANB,2,0.04,"constant")
Fractional_table(CS080MANB,2,0.04,"UDD")
```

GAM71F

GAM71 Female

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1971. Sex: Female.

Usage

data(GAM71F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
https://mort.soa.org/ViewTable.aspx?&TableIdentity=817, http://servicios.infoleg.
gob.ar/infolegInternet/anexos/80000-84999/81029/norma.htm
```

GAM71M

GAM71 Male

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1971. Sex: Male.

Usage

data(GAM71M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=818, http://servicios.infoleg. gob.ar/infolegInternet/anexos/80000-84999/81029/norma.htm

GAM83F GAM83 Female

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1983. Sex: Female.

Usage

data(GAM83F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=825

GAM83M

GAM83 Male

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1983. Sex: Male.

Usage

data(GAM83M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References
GAM94F

GAM94 Female

Description

Mortality table (ultimate): Group Annuity Mortality. Year: 1994. Sex: Female.

Usage

data(GAM94F)

Format

a dataframe containing a column for age (x) and a column for death probability (q)

References

https://mort.soa.org/

GAM94FANB

GAM94 Female Age Nearest Birthday

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1994. Sex: Female. Basis: Age Nearest Birthday.

Usage

data(GAM94FANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=834

GAM94M

Description

Mortality table (ultimate): Group Annuity Mortality. Year: 1994. Sex: Male.

Usage

data(GAM94M)

Format

a dataframe containing a column for age (x) and a column for death probability (q)

References

https://mort.soa.org/

GAM94MANB

GAM94 Male Age Nearest Birthday

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1994. Sex: Male. Basis: Age Nearest Birthday.

Usage

data(GAM94MANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=835

JointSurvival Joint Survival Probability

Description

Calculates the probability of survival given a mortality table for a group.

Usage

```
JointSurvival(x, n, data, prop = 1)
```

Arguments

х	A vector representing the age of each individual.
n	An integer. The term.
data	A data.frame of the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. The proportion of the mortality table used, between 0 and 1.

Examples

ages<-c(34,45,52,65)
JointSurvival(ages,10,CSO80FALB)</pre>

Loan_amortization Loan Amortization

Description

Calculates the amortization schedule.

Usage

```
Loan_amortization(V0, n, i, i2 = 0, alic = 0, ins = 0, method)
```

Arguments

VØ	A numeric type value. Loan value.
n	A numeric type value. The number of payments.
i	A numeric type value or a vector of them. The interest rate of the loan.
i2	A numeric type value. The interest rate of the saving account.
alic	A numeric type value. Interest tax rate.
ins	A numeric type value. The rate of V0 to be paid in each period.
method	A string. Amortization method used ("constant_installment","interest_only", "constant_principal", "interest_only_wsavings_account" or "constant_installment_varintrate").

Value

Returns a data.frame object containing Period, Payment, Pure Payment, Intrest, Amortization, Insurance, TAX and Outstanding debt.

Examples

```
Loan_amortization(1000,12,0.04,0,0.21,0.01,"constant_installment")
Loan_amortization(12000,15,0.04,0,0.21,0.01,"interest_only")
Loan_amortization(13000,10,0.04,0,0.21,0.01,"constant_principal")
Loan_amortization(15000,20,0.04,0.05,0.21,0.01,"interest_only_wsavings_account")
Loan_amortization(5000,5,0.04,0,0.21,0.01,"constant_installment_varintrate")
```

MAyP0206activeF MAyP0206 Active Female

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Female. Status: Active.

Usage

```
data(MAyP0206activeF)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20005

MAyP0206activeM MAyP0206 Active Male

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Male. Status: Active.

Usage

data(MAyP0206activeM)

40

MAyP0206CAF

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20004

MAyP0206CAF

MAyP0206 Combined Active and Retired Female

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Female. Status: Combined Active and Retired.

Usage

data(MAyP0206CAF)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20009

MAyP0206CAM

MAyP0206 Combined Active and Retired Male

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Male. Status: Combined Active and Retired.

Usage

data(MAyP0206CAM)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20008

MAyP0206retiredF MAyP0206 Retired Female

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Female. Status: Retired.

Usage

```
data(MAyP0206retiredF)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20007

MAyP0206retiredM MAyP0206 Retired Male

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Male. Status: Retired.

Usage

```
data(MAyP0206retiredM)
```

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=20006

Mi06F

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 2006. Sex: Female.

Usage

data(Mi06F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

Note

for more information on how to adjust the values of the table using an 'improvement rate' visit: https://www.spensiones.cl/portal/compendio/596/w3-propertyvalue-3537.html

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=2713,https://www.spensiones.cl/ portal/compendio/596/w3-propertyvalue-3542.html

Mi06 Mi06 Male

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 2006. Sex: Male.

Usage

data(Mi06M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

Note

For more information on how to adjust the values of the table using an 'improvement rate' visit: https://www.spensiones.cl/portal/compendio/596/w3-propertyvalue-3537.html

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=2712,https://www.spensiones.cl/ portal/compendio/596/w3-propertyvalue-3542.html Mi85F

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 1985. Sex: Female.

Usage

data(Mi85F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

http://servicios.infoleg.gob.ar/infolegInternet/anexos/80000-84999/81029/norma. htm

Mi85M

Mi85 Male

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 1985. Sex: Male.

Usage

data(Mi85M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

http://servicios.infoleg.gob.ar/infolegInternet/anexos/80000-84999/81029/norma. htm

Description

Calculates the present value of the loan insurance.

Usage

```
Payment_Protection(
    x,
    n,
    k = 1,
    V0,
    i = 0.04,
    ip = 0.04,
    data,
    prop = 1,
    type = "outstanding_debt",
    method = "interest_only"
)
```

Arguments

х	An integer. The age of the insuree.
n	An integer. Loan term (in years).
k	An integer. Number of payments per year.
VØ	A numeric type value. Loan value.
i	The interest rate. A numeric type value.
ip	The interest rate of the loan. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
type	A character string. The type of loan protection/reimburstment ("outstanding_debt" or "payments").
method	A character string. Amortization scheme ("constant_instalment", "interest_only" or "constant_principal").

Value

Returns a numeric value (actuarial present value).

Examples

```
Payment_Protection(35,2,1,100000,0.04,0.06,CSO80MANB,1,"payments","constant_instalment")
Payment_Protection(43,2,1,100000,0.04,0.07,CSO80MANB,1,"outstanding_debt","constant_instalment")
Payment_Protection(30,2,2,100000,0.04,0.07,CSO80MANB,1,"payments","constant_instalment")
Payment_Protection(20,2,2,100000,0.04,0.07,CSO80MANB,1,"outstanding_debt","constant_instalment")
Payment_Protection(33,2,1,100000,0.04,0.05,CSO80MANB,1,"payments","interest_only")
Payment_Protection(56,2,1,100000,0.04,0.06,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(40,2,2,100000,0.04,0.06,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(25,2,2,100000,0.04,0.05,CSO80MANB,1,"payments","interest_only")
Payment_Protection(23,2,1,100000,0.04,0.05,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(23,2,1,100000,0.04,0.07,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(35,2,1,100000,0.04,0.06,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(23,2,1,100000,0.04,0.07,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(35,2,1,100000,0.04,0.06,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(35,2,1,100000,0.04,0.06,CSO80MANB,1,"outstanding_debt","interest_only")
Payment_Protection(35,2,1,100000,0.04,0.05,CSO80MANB,1,"outstanding_debt","constant_principal")
Payment_Protection(35,2,1,100000,0.04,0.05,CSO80MANB,1,"outstanding_debt","constant_principal")
Payment_Protection(45,2,2,100000,0.04,0.07,CSO80MANB,1,"outstanding_debt","constant_principal")
```

PremiumFrac Fractional Premium

Description

Calculates the annualized value of the fractional premiums.

Usage

PremiumFrac(px1, x, m, k, i = 0.04, data, prop = 1, effect = "yes", assumption)

Arguments

px1	A numeric type value. The value of the single net premium.
х	An integer. The age of the insuree.
m	An integer. Years of premium payment.
k	An integer. Number of premiums per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
effect	A character string. This parameter indicates if, in the event of death, the insuree is released from paying the remaining fractional premiums of that year ("yes" or "no")
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).

Value

Returns the annualized value of the fractional premium.

46

qfrac

Note

If k=1, regardless of the "effect", the returned value is the annual premium.

References

Chapter 4 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters

Examples

```
PremiumFrac(1000,20,10,2,0.04,CSO80MANB,1,"yes","constant")
PremiumFrac(1000,20,10,2,0.04,CSO80MANB,1,"no","UDD")
```

qfrac

Fractional Probability of Death

Description

Calculates the fractional probability for a person of x+s/k dies before age x+(s+1)/k.

Usage

qfrac(x, s, k, i, data, assumption, prop)

Arguments

х	An integer. The age of the insuree.
S	An integer. Fraction of the year.
k	An integer. Number of fractions per year.
i	The interest rate. A numeric type value.
data	A data frame containing the mortality table, with the first column being the age and the second one, the probability of death.
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).

Value

The fractional probability of death.

Examples

```
qfrac(27,1,4,0.04,CSO80MANB,"constant",1)
qfrac(20,0,12,0.04,CSO80MANB,"UDD",0.8)
```

Rate_converter

Description

Converts nominal and effective interest and discount rates.

Usage

Rate_converter(num, rate1, m, rate2, k, type = "days")

Arguments

num	A numeric type value. It is the interest/discount rate to be converted.
rate1	A string ("i", "d", "f" or "j"). Type of interest/discount rate to be converted.
m	number of capitalizations.
rate2	A string ("i" for effective interest rate, "d" for effective discount rate, "f" for nominal discount rate, "j" for nominal interest rate). Type of interest/discount rate to obtain.
k	An integer. Number of capitalizations per year.
type	A string. Reference for "k", indicating whether it is expressed as a fraction or as days ("frac" or "days").

Examples

Rate_converter(0.04,"i",1,"i",6,"frac")
Rate_converter(0.04,"f",1,"j",6,"frac")
Rate_converter(0.04,"f",365,"d",60,"days")
Rate_converter(0.04,"f",365,"f",60,"days")

RV04F

RV04 Female

Description

Mortality table (ultimate): Renta Vitalicia. Nation: Chile. Year: 2004. Sex: Female.

Usage

data(RV04F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

RV04M

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=1500

RV04M RV04 Male

Description

Mortality table (ultimate): Renta Vitalicia. Nation: Chile. Year: 2004. Sex: Male.

Usage

data(RV04M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?&TableIdentity=1499

sf

Future Value of an Annuity

Description

Calculates the future value of an annuity.

Usage

sf(1 = 0, n, i)

Arguments

1	0 for annuity due or 1 for annuity immediate.
n	A numeric value. The number of payments.
i	A numeric value. The interest rate.

Examples

sf(0,12,0.05) sf(1,23,0.04) Survival

Description

Calculates the probability of survival given a mortality table for an individual or a group.

Usage

Survival(x, n, data, prop = 1)

Arguments

х	An integer or a vector including only integers representing the age of each indi- vidual.
n	An integer. The term.
data	A data.frame of the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. The proportion of the mortality table used, between 0 and 1.

Examples

Survival(20,2,CSO58MANB,1)
Survival(31,33,CSO80MANB,0.8)

Table_Dormoy

Dormoy's Law of Mortality Table Creator

Description

Creates a mortality table under Dormoy's law.

Usage

Table_Dormoy(x0, omega, a)

Arguments

x0	A numeric type value. The initial age of the table.
omega	A numeric type value. The final age of the table.
а	A numeric type value. A parameter of the law.

Table_Gompertz

Value

Returns a data.frame object containing age and death probabilities.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

Table_Dormoy(0,100,0.98)

Table_GompertzGompertz's Law of Mortality Table Creator

Description

Creates a mortality table under Gompertz's law.

Usage

```
Table_Gompertz(x0, omega, B, C)
```

Arguments

x0	A numeric type value. The initial age of the table.
omega	A numeric type value. The final age of the table.
В	A numeric type value. A parameter of the law.
С	A numeric type value. A parameter of the law.

Value

Returns a data.frame object containing age and death probabilities.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

Table_Gompertz(0,100,0.00008,1.07)

Table_Makeham

Description

Creates a mortality table under Makeham's law.

Usage

```
Table_Makeham(x0, omega, A, B, C)
```

Arguments

×0	A numeric type value. The initial age of the table.
omega	A numeric type value. The final age of the table.
A	A numeric type value. A parameter of the law.
В	A numeric type value. A parameter of the law.
С	A numeric type value. A parameter of the law.

Value

Returns a data.frame object containing age and death probabilities.

Note

The parameters are usually confined to the ranges shown below: 0.001 < A < 0.003, $10^{-6} < B < 10^{-3}$, 1.08 < C < 1.12.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

Table_Makeham(0,100,0.002,3*10^(-4),1.124)

Table_Moivre

Description

Creates a mortality table under de Moivre's law.

Usage

```
Table_Moivre(x0, omega)
```

Arguments

x0	A numeric type value. The initial age of the table.
omega	A numeric type value. The final age of the table.

Value

Returns a data.frame object containing age and death probabilities.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.

Examples

Table_Moivre(0,100)

V_a

Reserve Valuation for Life Annuities

Description

Calculates the reserve for the life Annuity up to the moment 't'.

Usage

V_a(
 px,
 x,
 h,
 n,
 k = 1,
 cantprem = 1,

```
premperyear = 1,
i = 0.04,
data,
prop = 1,
assumption = "none",
cap,
t
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
сар	A numeric type value. The annualized value of the payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_a(147.814202915034,20,5,10,1,5,1,0.04,CSO80MANB,1,"none",100,15)
V_a(148.324902023591/12,20,5,10,4,60,12,0.04,CSO80MANB,1,"constant",100,178)
V_a(223633.861110949,25,0,25,12,10,1,0.04,CSO80MANB,1,"UDD",120000,300)
```

54

V_A.

Description

Calculates the reserve for the life insurance up to the moment 't'.

Usage

```
V_A.(
    px,
    x,
    h,
    n,
    k = 1,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    cap,
    t
)
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage)
сар	A numeric type value. The value of the payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_A. (26673.3602688847,25,2,3,1,2,1,0.04,CS080MANB,1,"none",12000000,5)
V_A.(27446.2077993839/12,25,2,3,2,24,12,0.04,CSO80MANB,1,"UDD",12000000,60)
V_A.(27376.5521158244/12,25,2,3,2,24,12,0.04,CSO80MANB,1,"constant",12000000,60)
```

V_aD

Reserve Valuation for Decreasing life annuities

Description

Calculates the reserve for the decreasing life annuity up to the moment 't'.

Usage

```
V_aD(
  рx,
  х,
  h,
  n,
  k = 1,
  cantprem = 1,
  premperyear = 1,
  i = 0.04,
  data,
  prop = 1,
  assumption = "none",
  variation = "none",
  cap,
  t
```

Arguments

)

рх	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
h	An integer. The deferral period.

 $V_AD.$

n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. The annualized value of the first payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_aD(139102.759700887,20,2,2,1,2,1,0.04,CSO80MANB,1,"none","none",100000,4)
V_aD(140293.253997879/12,20,2,2,2,24,12,0.04,CSO80MANB,1,"constant","inter",10000,48)
V_aD(23461.2532906378/12,20,2,2,2,24,12,0.04,CSO80MANB,1,"constant","intra",10000,48)
V_aD(23462.5668144001/12,20,2,2,2,24,12,0.04,CSO80MANB,1,"UDD","intra",10000,48)
V_aD(14029.8183844808/12,20,2,2,2,24,12,0.04,CSO80MANB,1,"UDD","inter",10000,48)
```

V_AD.

Reserve Valuation for Decreasing Life Insurance

Description

Calculates the reserve for the decreasing life insurance up to the moment t.

Usage

```
V_AD.(
  рх,
  х,
  h,
  n,
  k = 1,
  cantprem = 1,
  premperyear = 1,
  i = 0.04,
  data,
  prop = 1,
  assumption = "none",
  variation = "none",
  cap,
  t
)
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's inter-annual or "intra" if it's intra- annual.
сар	A numeric type value. Amount insured for the first year/period.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

58

V_av

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_AD.(251.489227521537,20,2,2,1,2,1,0.04,CSO80MANB,1,"none","none",100000,4)
V_AD.(432.974179723949/12,20,2,2,2,24,12,0.04,CSO80MANB,1,"UDD","intra",100000,48)
V_AD.(258.794207318685/12,20,2,2,2,24,12,0.04,CSO80MANB,1,"UDD","inter",100000,48)
V_AD.(412.784641829906/12,20,2,2,2,2,4,12,0.04,CSO80MANB,1,"constant","intra",100000,48)
V_AD.(258.189935788232/12,20,2,2,2,2,4,12,0.04,CSO80MANB,1,"constant","inter",100000,48)
```

V_av

Reserve Valuation for Varying Life Annuities: Arithmetic Progression

Description

Calculates the reserve for the Varying Life Annuity up to the moment t.

Usage

```
V_av(
  рx,
  х,
  h,
  n,
  k = 1,
  r,
  cantprem = 1,
  premperyear = 1,
  i = 0.04,
  data,
  prop = 1,
  assumption = "none",
  variation = "none",
  cap,
  t
```

Arguments

)

рх	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.

r	The variation rate. A numeric type value.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. The annualized value of the first payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_av(9435943.49607651,20,2,2,1,0.05,2,1,0.04,CSO80MANB,1,"none","none",1000000,4)
V_av(9516712.17583443/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","inter",1000000,48)
V_av(9517.04683383614/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","inter",10000,48)
V_av(997.404109454868/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","intra",1000,48)
V_av(997436.738989113/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","intra",1000000,48)
V_av(28.4421691213902,40,3,7,2,0.7,1,1,0.04,CSO80MANB,1,"UDD","intra",1,120)
```

V_Av.

Reserve Valuation for Varying Life Insurance: Arithmetic Progression

Description

Calculates the reserve for the varying life insurance up to the moment t.

V_Av.

Usage

```
V_Av.(
  рх,
  х,
 h,
  n,
  k = 1,
  r,
  cantprem = 1,
  premperyear = 1,
  i = 0.04,
  data,
  prop = 1,
 assumption = "none",
 variation = "none",
  cap,
  t
)
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
r	The variation rate. A numeric type value.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. Amount insured for the first year/period.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_Av.(333.373580168544,20,2,2,1,0.05,1,1,0.04,CSO80MANB,1,"none","none",100000,4)
V_Av.(175.054867728107/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","inter",100000,48)
V_Av.(183.436285298212/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","intra",100000,48)
V_Av.(183.965812992762/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","intra",100000,48)
V_Av.(174.645127871177/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","inter",100000,48)
```

	V_avg	Reserve Valuation for Varying Life Annuities: Geometric Progression
--	-------	---

Description

Calculates the reserve for the Varying Life Annuity up to the moment t.

Usage

```
V_avg(
 pх,
 х,
 h,
 n,
 k = 1,
  r,
  cantprem = 1,
  premperyear = 1,
  i = 0.04,
  data,
 prop = 1,
 assumption = "none",
 variation = "none",
  cap,
  t
)
```

V_avg

Arguments

рх	A numeric value. The value of the premium paid in each period.
х	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
r	The variation rate. A numeric type value.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. The annualized value of the first payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

V_avg(94359.4349607651,20,2,2,1,0.05,2,1,0.04,CSO80MANB,1,"none","none",100000,4)
V_avg(95167.1217583443/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","inter",100000,48)
V_avg(99969.5282890978/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","intra",100000,48)
V_avg(95170.4683383614/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","inter",100000,48)
V_avg(99972.7870462341/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","intra",100000,48)

V_Avg.

Description

Calculates the reserve for the varying life insurance up to the moment t.

Usage

```
V_Avg.(
  рx,
  х,
  h,
  n,
  k = 1,
  r,
  cantprem = 1,
  premperyear = 1,
  i = 0.04,
  data,
  prop = 1,
  assumption = "none",
  variation = "none",
  cap,
  t
)
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
r	The variation rate. A numeric type value.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
сар	A numeric type value. Amount insured for the first year/period.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

V_Avg.(170.113596880528,20,2,2,1,0.05,2,1,0.04,CSO80MANB,1,"none","none",100000,4)
V_Avg.(183.854458536232/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","intra",100000,48)
V_Avg.(175.054867728107/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"UDD","inter",100000,48)
V_Avg.(184.431102889578/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","intra",100000,48)
V_Avg.(174.645127871158/12,20,2,2,2,0.05,24,12,0.04,CSO80MANB,1,"constant","inter",100000,48)

V_E

Reserve Valuation for Pure Endowments

Description

Calculates the reserve for the Pure endowments up to the moment t.

Usage

```
V_E(
    px,
    x,
    n,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    cap,
    t
)
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
n	The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
сар	A numeric type value. The payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_E(663.501989747591,20,10,1,1,0.04,CSO80MANB,1,"none",1000,10)
V_E(9383.64446819386/12,20,2,12,12,0.04,CSO80MANB,1,"constant",10000,24)
V_E(9383.64446819386/12,20,2,12,12,0.04,CSO80MANB,1,"constant",10000,24)
```

V_Payment_Protection Reserve valuation for Payment Protection

Description

Calculates the reserve for the loan insurance up to the moment t.

Usage

```
V_Payment_Protection(
 рx,
 х,
 n,
 k = 1,
 cantprem = 1,
 premperyear = 1,
 i = 0.04,
  ip = 0.04,
 data,
 prop = 1,
 type = "outstanding_debt",
 method = "interest_only",
 V0,
  t
)
```

Arguments

рх	A numeric value. The value of the premium paid in each period.
х	An integer. The age of the insuree.
n	An integer. Loan term (in years).
k	An integer. Number of payments per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
ip	The interest rate of the loan. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
type	A character string. The type of loan protection/reimburstment ("outstanding_debt" or "payments").
method	A character string. Amortization scheme ("constant_instalment", "interest_only" or "constant_principal").
VØ	A numeric type value. Loan value.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

Returns the actuarial present value of the loan protection.

Examples

px1<-31.6216618772779
c1<-10500
V_Payment_Protection(px1,30,25,1,10,1,0.06,0.07,CS080FANB,1,"payments","constant_instalment",c1,25)</pre>

68

Index

* Amortization Loan_amortization, 39 * Annuities a, <mark>4</mark> aCont. 6 aD, <mark>8</mark> am, 11 av, 15 avg, 17 V_a, 53 V_aD, 56 V_AD., 57 V_av, 59 V_avg, 62 * Annuity af, 10 sf, <mark>49</mark> * Arithmetic av, 15 Av., 16 V_av, 59 V_Av., 60 * Continuous aCont, 6 ACont.,7 * Decreasing aD, 8 AD., 9 V_aD, 56 V_AD., 57 * Discount Rate_converter, 48 * Dormoy's Table_Dormoy, 50 * Endowments V_E, 65 * Endowment E, 32 Em, 33

* Fractional Fractional_table, 34 PremiumFrac, 46 qfrac, 47 * Future sf, 49 * Geometric avg, 17 Avg., 19 V_avg, 62 V_Avg., 64 * Gompertz's Table_Gompertz, 51 * Group am, 11 Am., 12 * Insurance A., 5 ACont.,7 AD.,9 Am., 12 Av., 16 Avg., 19 V_A., 55 V_Av., 60 V_Avg., 64 * Interest Rate_converter, 48 * Joint JointSurvival, 39 * Life a, 4 A., 5 aCont, 6 ACont.,7 aD, <mark>8</mark> AD., 9 am, 11 Am., 12

av, 15 Av., 16 avg, 17 Avg., 19 V_a, 53 V_A., 55 V_aD, 56 V AD., 57 V_av, 59 V_Av., 60 V_avg, 62 V_Avg., 64 * Loan Loan_amortization, 39 * Makeham's Table Makeham, 52 * Moivre's Table_Moivre, 53 * Mortality. Fractional_table, 34 * Payment Payment_Protection, 45 V_Payment_Protection, 66 * Premium PremiumFrac, 46 * Present af, 10 * Probability JointSurvival, 39 Survival, 50 * Progression av, 15 Av., 16 avg, 17 Avg., 19 V_av. 59 V_Av., 60 V_avg, 62 V_Avg., 64 * Protection Payment_Protection, 45 V_Payment_Protection, 66 * Pure E, 32 Em, 33 V_E, 65 * Rate Rate_converter, 48

* Reserve V_a, 53 V_A., 55 V_aD, 56 V_AD., 57 V_av, 59 V_Av., 60 V_avg, 62 V_Avg., 64 V_E, 65 * Survival JointSurvival, 39 Survival, 50 * Table Fractional_table, 34 * Value af, 10 sf, 49 * Varying V_aD, 56 V AD., 57 V_av, 59 V_Av., 60 V_avg, 62 V_Avg., 64 * datasets ArgentinaINDEC9092comb, 13 ArgentinaINDEC9092F, 14 ArgentinaINDEC9092M, 14 CS02001FALBnonsmoker, 20 CSO2001FALBsmoker, 21 CSO2001FANBnonsmoker, 21 CSO2001FANBsmoker, 22 CS02001MALBnonsmoker, 22 CS02001MALBsmoker, 23 CS02001MANBnonsmoker, 23 CSO2001MANBsmoker, 24 CS058FALB, 24 CS058FANB, 25 CS058MALB, 25 CS058MANB, 26 CS080FALB, 26 CS080FALBnonsmoker, 27 CS080FALBsmoker, 27 CS080FANB, 28 CSO80FANBnonsmoker, 28 CSO80FANBsmoker, 29 CS080MALB, 29

INDEX

CSO80MALBnonsmoker, 30 CSO80MALBsmoker, 30 CS080MANB. 31 CSO80MANBnonsmoker, 31 CSO80MANBsmoker, 32 GAM71F, 35 GAM71M, 35 GAM83F. 36 GAM83M, 36 GAM94F, 37 GAM94FANB, 37 GAM94M, 38 GAM94MANB, 38 MAyP0206activeF, 40 MAyP0206activeM, 40 MAyP0206CAF, 41 MAyP0206CAM, 41 MAyP0206retiredF, 42 MAyP0206retiredM, 42 Mi06F, 43 Mi06M. 43 Mi85F, 44 Mi85M, 44 RV04F, 48 RV04M, 49 * death qfrac, 47 * de Table_Moivre, 53 * law Table_Dormoy, 50 Table_Gompertz, 51 Table_Makeham, 52 Table_Moivre, 53 * mortality Table_Dormoy, 50 * of Fractional_table, 34 qfrac, 47 * probability qfrac, 47 * table. Table_Dormoy, 50 Table_Gompertz, 51 Table_Makeham, 52 Table_Moivre, 53 * table ArgentinaINDEC9092comb, 13 ArgentinaINDEC9092F, 14 ArgentinaINDEC9092M, 14 CS02001FALBnonsmoker, 20 CS02001FALBsmoker, 21 CS02001FANBnonsmoker, 21 CS02001FANBsmoker, 22 CS02001MALBnonsmoker, 22 CSO2001MALBsmoker, 23 CS02001MANBnonsmoker, 23 CSO2001MANBsmoker, 24 CS058FALB, 24 CS058FANB, 25 CS058MALB, 25 CS058MANB, 26 CS080FALB, 26 CS080FALBnonsmoker, 27 CSO80FALBsmoker, 27 CS080FANB, 28 CSO80FANBnonsmoker, 28 CSO80FANBsmoker, 29 CS080MALB, 29 CS080MALBnonsmoker, 30 CSO80MALBsmoker, 30 CS080MANB, 31 CSO80MANBnonsmoker, 31 CSO80MANBsmoker, 32 GAM71F, 35 GAM71M, 35 GAM83F, 36 GAM83M, 36 GAM94F, 37 GAM94FANB, 37 GAM94M, 38 GAM94MANB, 38 MAyP0206activeF, 40 MAyP0206activeM, 40 MAyP0206CAF, 41 MAyP0206CAM, 41 MAyP0206retiredF, 42 MAyP0206retiredM, 42 Mi06F, 43 Mi06M, 43 Mi85F.44 Mi85M, 44 RV04F, 48 RV04M, 49

а, <mark>4</mark>

A., 5

INDEX

aCont, 6 ACont.,7 aD, 8 AD., 9 af. 10 am, 11 Am., 12 ArgentinaINDEC9092comb, 13 ArgentinaINDEC9092F, 14 ArgentinaINDEC9092M, 14 av. 15 Av., 16 avg, 17 Avg., 19 CS02001FALBnonsmoker, 20 CSO2001FALBsmoker. 21 CS02001FANBnonsmoker, 21 CSO2001FANBsmoker, 22 CS02001MALBnonsmoker, 22 CS02001MALBsmoker, 23 CS02001MANBnonsmoker, 23 CSO2001MANBsmoker, 24 CS058FALB, 24 CS058FANB, 25 CS058MALB, 25 CS058MANB, 26 CS080FALB, 26 CS080FALBnonsmoker, 27 CSO80FALBsmoker, 27 CS080FANB, 28 CSO80FANBnonsmoker, 28 CSO80FANBsmoker, 29 CS080MALB, 29 CS080MALBnonsmoker, 30 CSO80MALBsmoker, 30 CS080MANB, 31 CS080MANBnonsmoker, 31 CSO80MANBsmoker, 32 E, 32 Em, 33

Fractional_table, 34

GAM71F, 35 GAM71M, 35 GAM83F, 36 GAM83M, 36

GAM94F, 37 GAM94FANB, 37 GAM94M, 38 GAM94MANB, 38 JointSurvival, 39 Loan_amortization, 39 MAyP0206activeF, 40 MAyP0206activeM, 40 MAyP0206CAF, 41 MAyP0206CAM, 41 MAyP0206retiredF, 42 MAyP0206retiredM, 42 Mi06F, 43 Mi06M, 43 Mi85F, 44 Mi85M, 44 Payment_Protection, 45 PremiumFrac, 46 qfrac, 47 Rate_converter, 48 RV04F. 48 RV04M, 49 sf. 49 Survival, 50 Table_Dormoy, 50 Table_Gompertz, 51 Table_Makeham, 52 Table_Moivre, 53 V_a, 53 V_A., 55 V_aD, 56 V_AD., 57 V_av, 59 V_Av., 60 V_avg, 62 V_Avg., 64 V_E, 65 V_Payment_Protection, 66

72