## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(Colossus) library(data.table) ## ----eval=FALSE--------------------------------------------------------------- # Strat_Col <- "e" # e <- RunCoxRegression_STRATA( # df, time1, time2, event, names, term_n, tform, keep_constant, # a_n, modelform, fir, der_iden, control, Strat_Col # ) ## ----eval=FALSE--------------------------------------------------------------- # Strat_Col <- c("e") # e <- RunPoissonRegression_STRATA( # df, pyr, event, names, term_n, tform, keep_constant, # a_n, modelform, fir, der_iden, control, Strat_Col # ) ## ----eval=FALSE--------------------------------------------------------------- # e <- RunCoxRegression_Basic( # df, time1, time2, event, names, # keep_constant, a_n, der_iden, control # ) ## ----eval=FALSE--------------------------------------------------------------- # e <- RunCoxRegression_Single( # df, time1, time2, event, names, term_n, tform, # a_n, modelform, fir, control # ) # # e <- RunPoissonRegression_Single( # df, pyr, event, names, term_n, tform, # a_n, modelform, fir, control # ) ## ----eval=FALSE--------------------------------------------------------------- # df$censor <- (df$lung == 0) # censoring column made # event <- "censor" # event type switched to censoring # # plot_options <- list("name" = "run_2", "verbose" = FALSE, "studyID" = "studyID", "age_unit" = "years") # # modified plotting function used to get censoring weights # dft <- GetCensWeight( # df, time1, time2, event, names, term_n, tform, keep_constant, # a_n, modelform, fir, control, plot_options # ) # generates a survival curve # t_ref <- dft$t # surv_ref <- dft$surv # t_c <- df$t1 # cens_weight <- approx(t_ref, surv_ref, t_c, rule = 2)$y # # the surviving proportions used as censoring weight # event <- "lung" # event switched back # # e <- RunCoxRegression_CR( # df, time1, time2, event, names, term_n, tform, keep_constant, # a_n, modelform, fir, der_iden, control, cens_weight # ) ## ----eval=TRUE---------------------------------------------------------------- a <- c(0, 0, 0, 1, 1, 1) b <- c(1, 1, 1, 2, 2, 2) c <- c(0, 1, 2, 2, 1, 0) d <- c(1, 1, 0, 0, 1, 1) e <- c(0, 1, 1, 1, 0, 0) df <- data.table("t0" = a, "t1" = b, "e0" = c, "e1" = d, "fac" = e) time1 <- "t0" time2 <- "t1" df$pyr <- df$t1 - df$t0 pyr <- "pyr" events <- c("e0", "e1") ## ----eval=TRUE---------------------------------------------------------------- names_e0 <- c("fac") names_e1 <- c("fac") names_shared <- c("t0", "t0") term_n_e0 <- c(0) term_n_e1 <- c(0) term_n_shared <- c(0, 0) tform_e0 <- c("loglin") tform_e1 <- c("loglin") tform_shared <- c("quad_slope", "loglin_top") keep_constant_e0 <- c(0) keep_constant_e1 <- c(0) keep_constant_shared <- c(0, 0) a_n_e0 <- c(-0.1) a_n_e1 <- c(0.1) a_n_shared <- c(0.001, -0.02) name_list <- list("shared" = names_shared, "e0" = names_e0, "e1" = names_e1) term_n_list <- list("shared" = term_n_shared, "e0" = term_n_e0, "e1" = term_n_e1) tform_list <- list("shared" = tform_shared, "e0" = tform_e0, "e1" = tform_e1) keep_constant_list <- list( "shared" = keep_constant_shared, "e0" = keep_constant_e0, "e1" = keep_constant_e1 ) a_n_list <- list("shared" = a_n_shared, "e0" = a_n_e0, "e1" = a_n_e1) ## ----eval=TRUE---------------------------------------------------------------- Joint_Multiple_Events( df, events, name_list, term_n_list, tform_list, keep_constant_list, a_n_list ) ## ----eval=TRUE---------------------------------------------------------------- der_iden <- 0 modelform <- "M" fir <- 0 control <- list( "ncores" = 1, "lr" = 0.75, "maxiter" = 10, "halfmax" = 5, "epsilon" = 1e-3, "dbeta_max" = 0.5, "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow", "double_step" = 1 ) guesses_control <- list( "maxiter" = 10, "guesses" = 10, "lin_min" = 0.001, "lin_max" = 1, "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform", "loglin_method" = "uniform", strata = FALSE ) Strat_Col <- "f" RunPoissonRegression_Joint_Omnibus( df, pyr, events, name_list, term_n_list, tform_list, keep_constant_list, a_n_list, modelform, fir, der_iden, control, Strat_Col ) ## ----eval=FALSE--------------------------------------------------------------- # a_n <- list(c(1, 1, 1), c(1, 2, 1), c(1, 2, 2), c(2, 1, 1)) # # control$maxiter <- 5 # runs each (4) starts 1 iteration, and then runs the best 5 iterations # control$maxiters <- c(1, 1, 1, 1, 5) # runs each (4) starts 1 iteration, and then runs the best 5 iterations # control$maxiters <- c(5, 5, 5, 5, 5) # runs each (4) starts 5 iterations, and then runs the best 5 iterations # # e <- RunCoxRegression_Omnibus(df, time1, time2, event, # names, term_n, tform, keep_constant, # a_n, modelform, # control = control # )