Package 'BRDT'

January 20, 2025

Type Package

Title Binomial Reliability Demonstration Tests

Version 0.1.0

Maintainer Suiyao Chen <csycsy12377@gmail.com>

Description This is an implementation of design methods for binomial reliability demonstration tests (BRDTs) with failure count data.

The acceptance decision uncertainty of BRDT has been quantified and the impacts of the uncertainty on related reliability assurance activities such as reliability growth (RG) and warranty services (WS) are evaluated.

This package is associated with the work from the published paper ``Optimal Binomial Reliability Demonstration Tests Design under Acceptance Decision Uncertainty" by Suiyao Chen et al. (2020) <doi:10.1080/08982112.2020.1757703>.

Depends R (>= 3.3.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports stats

Suggests tidyverse, knitr, rmarkdown

URL https://github.com/ericchen12377/BRDT

BugReports https://github.com/ericchen12377/BRDT/issues

VignetteBuilder knitr

NeedsCompilation no

Author Suiyao Chen [aut, cre]

Repository CRAN

Date/Publication 2020-06-09 09:40:09 UTC

Contents

bacceptprob	2
bconsumerrisk	3
bcore	3
bcost_expected	4
bcost_RDT	5
bcost_RG	6
bcost_WS	6
bdata_generator	7
bIndicator	8
boptimal_cost	9
boptimal_n	10
pi_MCSim_beta	11
	12

Index

```
bacceptprob
```

Acceptance Probability for Binomial RDT

Description

Define the acceptance probability function which gets the probability of passing the test (for binomial RDT).

Usage

bacceptprob(n, c, pi)

Arguments

n	RDT sample size.
С	Maximum allowable failures.
pi	Failure probability.

Value

Acceptance probability

Examples

pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1) bacceptprob(n = 10, c = 2, pi = pi); bconsumerrisk

Description

Define the consumer's risk function which gets the probability of passing the test when the lower level reliability requirement is not satisfied (for binomial RDT).

Usage

bconsumerrisk(n, c, pi, R)

Arguments

n	RDT sample size.
с	Maximum allowable failures.
pi	Failure probability.
R	Lower level reliability requirement.

Value

Probability of consumer's risk

See Also

bcore for getting the core probability of passting the test; boptimal_n for getting the optimal test sample size; bIndicator for getting the binary indicator;

Examples

pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1) bconsumerrisk(n = 10, c = 2, pi = pi, R = 0.8);

bcore

Probability Core for Binomial RDT

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities (for binomial RDT).

Usage

bcore(n, c, pi)

Arguments

n	RDT sample size.
с	Maximum allowable failures.
pi	Failure probability.

Value

Core probability of passing the test given specific failure probabilities.

See Also

boptimal_n for getting the optimal test sample size; bconsumerrisk for getting the consumer's risk; bIndicator for getting the binary indicator;

Examples

bcore(n = 10, c = 2, pi = 0.2)

<pre>bcost_expected</pre>	Expected Overall Costs in Binomial RDT Design
---------------------------	---

Description

Define the cost function of expected overall cost including the RDT cost, expected reliability growth (RG) cost and expected warranty services (WS) cost (for binomial RDT design).

Usage

bcost_expected(Cf, Cv, n, G, Cw, N, c, pi)

Arguments

Cf	Fixed costs of RDT
Cv	Variable unit costs of RDT
n	RDT sample size
G	Reliabilty growth cost
Cw	Average cost per warranty claim
Ν	Sales volume
С	Maximum allowable failures
pi	Failure probability

Value

Overall expected cost

bcost_RDT

See Also

bcost_RDT, bcost_RG, bcost_WS

Examples

```
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
bcost_expected(Cf = 10, Cv = 10, n = 10, G = 100000, Cw = 10, N = 1, c = 1, pi = pi)
```

bcost_RDT

Binomial RDT Cost

Description

Define the cost function of RDT, mainly determined by the test sample size (for binomial RDT)

Usage

bcost_RDT(Cf, Cv, n)

Arguments

Cf	Fixed costs
Cv	Variable costs.
n	Optimal test sample size

Value

Binomial RDT cost

See Also

bcost_RG, bcost_WS, bcost_expected

Examples

#the n value can be the minimum test sample size obtained from \code{\link{boptimal_n}}.
n_optimal <- 20
bcost_RDT(Cf = 0, Cv = 10, n = n_optimal);</pre>

bcost_RG

Description

Define the cost function of reliability growth (RG) after the decision of the test (for binomial RDT).

Usage

bcost_RG(G)

Arguments

G

A constant value reliability growth cost, suggest to be sufficiently larger than RDT cost.

Value

Reliability growth cost

See Also

bcost_RDT, bcost_WS, bcost_expected

Examples

bcost_RG(G = 100000);

bcost_WS

Warranty Services Cost

Description

Define the cost function of warranty services (WS) after the decision of the test (for binomial RDT)

Usage

bcost_WS(Cw, N, n, c, pi)

Arguments

Сw	Average cost per warranty claim
Ν	Sales volume
n	RDT sample size
С	Maximum allowable failures
pi	Failure probability

bdata_generator

Value

The result is a vector with two values. The first value is the expected failure probability in warranty period. The second value is the expected warranty services cost.

See Also

bcost_RDT, bcost_RG, bcost_expected

Examples

```
#the n value can be the minimum test sample size obtained from \code{\link{boptimal_n}}.
n_optimal <- 20
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
WScost <- bcost_WS(Cw = 10, N = 1, n = n_optimal, c = 1, pi = pi);
print(WScost[1]) #expected failure probability
print(WScost[2]) #expected warranty services cost</pre>
```

bdata_generator Data Generation Function for Binomial RDT Design

Description

Define the function to generate the dataset based on the design settings (for Binomial RDT).

Usage

```
bdata_generator(
   Cf,
   Cv,
   nvec,
   G,
   Cw,
   N,
   Rvec,
   cvec,
   pi,
   par = all(),
   option = c("optimal"),
   thres_CR
)
```

Arguments

Cf	Fixed costs of RDT
Cv	Variable unit costs of RDT
nvec	Vector of test sample size
G	Reliabilty growth cost

Cw	Average cost per warranty claim
Ν	Sales volume
Rvec	Vector of lower level reliability requirements
cvec	Vector of maximum allowable failures
pi	Failure probability
par	Specify which columns to return. Default is all columns.The columns include c('n', 'R', 'c', 'CR', 'AP', 'RDT Cost', 'RG Cost', 'RG Cost Expected', 'WS Cost', 'WS Failure Probability', 'WS Cost Expected', 'Overall Cost')
option	Options to get different datasets. Default is 'optimal'. If option = 'all', get all test plans data for all combinations of n, c, R; If option = 'optimal', get test plans data with optimal test sample size for every combination of c, R.
thres_CR	Threshold (acceptable level) of consumer's risk

Value

Matrix of the dataset

See Also

boptimal_cost for getting the optial test plan with minimum overall cost; boptimal_n for getting
the optial test sample size;

Examples

```
nvec <- seq(0, 10, 1)
Rvec <- seq(0.8, 0.85, 0.01)
cvec <- seq(0.2, 1)
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
bdata_generator(Cf = 10, Cv = 10, nvec = nvec, G = 10000, Cw = 10,
N = 100, Rvec = Rvec, cvec = cvec, pi = pi,
par = c('n', 'R', 'c', 'CR', 'AP'), option = c("optimal"), thres_CR = 0.05)</pre>
```

bIndicator

Binary Indicator for Binomial RDT

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirement (for binomial RDT).

Usage

bIndicator(pi, R)

boptimal_cost

Arguments

pi	Failure probability.
R	Lower Level reliability requirement.

Value

0 - No; 1 - Yes.

See Also

bcore for getting the core probability of passting the test; boptimal_n for getting the optimal test
sample size; bconsumerrisk for getting the consumer's risk;

Examples

bIndicator(pi = 0.05, R = 0.9)
bIndicator(pi = 0.2, R = 0.9)

<pre>boptimal_cost</pre>	Optimal Test Plans with Minimum Expected Overall Costs in Binomial
	RDT Design

Description

Define the optimal function to find the optimal test plans with minimum expected overall costs (for binomial RDT).

Usage

boptimal_cost(Cf, Cv, G, Cw, N, Rvec, cvec, pi, thres_CR)

Arguments

Cf	Fixed costs of RDT
Cv	Variable unit costs of RDT
G	Reliabilty growth cost
Cw	Average cost per warranty claim
Ν	Sales volume
Rvec	Vector of lower level reliability requirements
cvec	Vector of maximum allowable failures
pi	Failure probability
thres_CR	Threshold (acceptable level) of consumer's risk

Value

Vector of optimal test plan parameters, acceptance probability and cost

See Also

boptimal_n for getting the optial test sample size; bdata_generator for generating optimal test
plans dataset;

Examples

```
Rvec <- seq(0.8, 0.85, 0.01)
cvec <- seq(0, 2, 1)
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
boptimal_cost(Cf = 10, Cv = 10, G = 100, Cw = 10,
N = 100, Rvec = Rvec, cvec = cvec, pi = pi, thres_CR = 0.5);</pre>
```

<pre>boptimal_n</pre>	Optimal Test Sample Size for Binomial RDT
-----------------------	---

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk (for binomial RDT).

Usage

boptimal_n(c, pi, R, thres_CR)

Arguments

с	Maximum allowable failures
pi	Failure probability
R	Lower level reliability requirement
thres_CR	Threshold (acceptable level) of consumer's risk

Value

Minimum test sample size

See Also

boptimal_cost for getting the optial test plan with minimum overall cost; bdata_generator for generating optimal test plans dataset;

Examples

pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1) boptimal_n(c = 2, pi = pi, R = 0.8, thres_CR = 0.05)

10

pi_MCSim_beta

Description

Define the simulation function to generate failure probability with Beta prior distributions as conjugate prior to binomial distributions (for binomial RDT).

Usage

pi_MCSim_beta(M, seed, a, b)

Arguments

Simulation sample size
Random seed for random sample
Shape parameter 1 for beta distribution
Shape parameter 2 for beta distribution

Value

Vector of failure probability sample values

Examples

pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)</pre>

Index

bacceptprob, 2 bconsumerrisk, 3, 4, 9 bcore, 3, 3, 9 bcost_expected, 4, 5–7 bcost_RDT, 5, 5, 6, 7 bcost_RG, 5, 6, 7 bcost_WS, 5, 6, 6 bdata_generator, 7, 10 bIndicator, 3, 4, 8 boptimal_cost, 8, 9, 10 boptimal_n, 3, 4, 8–10, 10

pi_MCSim_beta, 11