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PEPBVS-package Bayesian variable selection using power–expected–posterior prior

Description

Performs Bayesian variable selection under normal linear models for the data with the model pa-
rameters following as prior distributions either the PEP or the intrinsic (a special case of the former).
The prior distribution on model space is the uniform over all models or the uniform on model di-
mension (a special case of the beta–binomial prior). Posterior model probabilities and marginal
likelihoods can be derived in closed–form expressions under this setup. The selection is performed
by either implementing a full enumeration and evaluation of all possible models (for model spaces
of small–to–moderate dimension) or using the MC3 algorithm (for model spaces of large dimen-
sion). Complementary functions for hypothesis testing, estimation and predictions under Bayesian
model averaging, as well as plotting and printing the results are also available. Selected models can
be compared to those arising from other well–known priors.

Details

_PACKAGE
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comparepriors.lm Selected models under different choices of prior on the model param-
eters and the model space

Description

Given a formula and a data frame, computes the maximum a posteriori (MAP) model and median
probability model (MPM) for different choices of prior on the model parameters and the model
space. Normal linear models are assumed for the data with the prior distribution on the model
parameters being one or more of the following: PEP, intrinsic, Zellner’s g–prior, Zellner and Siow,
benchmark, robust, hyper–g and related hyper–g–n. The prior distribution on the model space
can be either the uniform on models or the uniform on the model dimension (special case of the
beta–binomial prior). The model space consists of all possible models including an intercept term.
Model selection is performed by using either full enumeration and evaluation of all models (for
model spaces of small–to–moderate dimension) or a Markov chain Monte Carlo (MCMC) scheme
(for model spaces of large dimension).

Usage

comparepriors.lm(
formula,
data,
algorithmic.choice = "automatic",
priorbetacoeff = c("PEP", "intrinsic", "Robust", "gZellner", "ZellnerSiow", "FLS",

"hyper-g", "hyper-g-n"),
reference.prior = c(TRUE, FALSE),
priormodels = c("beta-binomial", "uniform"),
burnin = 1000,
itermcmc = 11000

)

https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1016/j.jeconom.2012.06.009
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1080/01621459.1976.10480357
https://doi.org/10.1007/BF02888369
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Arguments

formula A formula, defining the full model.

data A data frame (of numeric values), containing the data.
algorithmic.choice

A character, the type of algorithm to be used for selection: full enumeration and
evaluation of all models or an MCMC scheme. One of “automatic” (the choice
is done automatically based on the number of explanatory variables in the full
model), “full enumeration” or “MCMC”. Default value="automatic".

priorbetacoeff A vector of character containing the different priors on the model parameters.
The character can be one of “PEP”, “intrinsic”, “Robust”, “gZellner”, “Zellner-
Siow”, “FLS”, “hyper–g” and “hyper–g–n”.
Default value= c("PEP","intrinsic","Robust", "gZellner","ZellnerSiow",
"FLS","hyper-g","hyper-g-n"), i.e., all supported priors are tested.

reference.prior

A vector of logical indicating the baseline prior that is used for PEP/intrinsic.
It can be TRUE (reference prior is used), FALSE (dependence Jeffreys prior
is used) or both. Default value=c(TRUE,FALSE), i.e., both baseline priors are
tested.

priormodels A vector of character containing the different priors on the model space. The
character can be one of “beta–binomial” and “uniform”.
Default value=c("beta-binomial","uniform"), i.e., both supported priors are
tested.

burnin Non–negative integer, the burnin period for the MCMC scheme. Default value=1000.

itermcmc Positive integer (larger than burnin), the (total) number of iterations for the
MCMC scheme. Default value=11000.

Details

The different priors on the model parameters are implemented using different packages: for PEP
and intrinsic, the current package is used. For hyper–g and related hyper–g–n priors, the R package
BAS is used. Finally, for the Zellner’s g–prior (“gZellner”), the Zellner and Siow (“ZellnerSiow”),
the robust and the benchmark (“FLS”) prior, the results are obtained using BayesVarSel.
The prior distribution on the model space can be either the uniform on models or the beta–binomial.
For the beta–binomial prior, the following special case is used: uniform prior on model dimension.

When an MCMC scheme is used, the R package BAS uses the birth/death random walk in Raftery et
al. (1997) combined with a random swap move, BayesVarSel uses Gibbs sampling while PEPBVS
implements the MC3 algorithm described in the Appendix of Fouskakis and Ntzoufras (2022).

To assess MCMC convergence, Monte Carlo (MC) standard error is computed using batch means
estimator (implemented in the R package mcmcse). For computing a standard error, the number
(itermcmc-burnin) needs to be larger than 100. This quantity cannot be computed for the cases
treated by BAS — since all ‘visited’ models are not available in the function output — and thus for
those cases NA is depicted in the relevant column instead.

Similar to pep.lm, if algorithmic.choice equals “automatic” then model selection is imple-
mented as follows: if p < 20 (where p is the number of explanatory variables in the full model
without the intercept), full enumeration and evaluation of all models is performed, otherwise an
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MCMC scheme is used. To avoid potential memory or time constraints, if algorithmic.choice
equals “full enumeration” but p ≥ 20, once issuing a warning message, an MCMC scheme is used
instead.

Similar constraints to pep.lm hold for the data, i.e., the case of missing data is not currently sup-
ported, the explanatory variables need to be quantitative and cannot have an exact linear relation-
ship, and p ≤ n− 2 (n being the sample size).

Value

comparepriors.lm returns a list with two elements:

MAPmodels A data frame containing the MAP models for all different combinations of prior
on the model parameters and the model space. In particular, in row i the follow-
ing information is presented: prior on the model parameters, prior on the model
space, hyperparameter value, MAP model (corresponding to the specific combi-
nation of priors on model parameters and model space) represented with variable
inclusion indicators, and the R package used. When an MCMC scheme has been
used, there are two additional columns: one depicting the specific algorithm that
has been used and one with the MC standard error (to assess convergence). With
an MCMC scheme, the MAP model output corresponds to the most frequently
‘visited’.

MPMmodels Same as the first element containing the MPM models instead.

References

Bayarri, M., Berger, J., Forte, A. and Garcia–Donato, G. (2012) Criteria for Bayesian Model Choice
with Application to Variable Selection. The Annals of Statistics, 40(3): 1550–1577. doi:10.1214/
12AOS1013

Fouskakis, D. and Ntzoufras, I. (2022) Power–Expected–Posterior Priors as Mixtures of g–Priors
in Normal Linear Models. Bayesian Analysis, 17(4): 1073-1099. doi:10.1214/21BA1288

Ley, E. and Steel, M. (2012) Mixtures of g–Priors for Bayesian Model Averaging with Economic
Applications. Journal of Econometrics, 171(2): 251–266. doi:10.1016/j.jeconom.2012.06.009

Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J. (2008) Mixtures of g Priors for Bayesian
Variable Selection. Journal of the American Statistical Association, 103(481): 410–423. doi:10.1198/
016214507000001337

Raftery, A., Madigan, D. and Hoeting, J. (1997) Bayesian Model Averaging for Linear Regres-
sion Models. Journal of the American Statistical Association, 92(437): 179–191. doi:10.1080/
01621459.1997.10473615

Zellner, A. (1976) Bayesian and Non–Bayesian Analysis of the Regression Model with Multivari-
ate Student–t Error Terms. Journal of the American Statistical Association, 71(354): 400–405.
doi:10.1080/01621459.1976.10480357

Zellner, A. and Siow, A. (1980) Posterior Odds Ratios for Selected Regression Hypotheses. Traba-
jos de Estadistica Y de Investigacion Operativa, 31: 585-603. doi:10.1007/BF02888369
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https://doi.org/10.1214/12-AOS1013
https://doi.org/10.1214/21-BA1288
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Examples

data(UScrime_data)
resc <- comparepriors.lm(y~.,UScrime_data,

priorbetacoeff = c("PEP","Robust","hyper-g-n"),
reference.prior = TRUE,priormodels = "beta-binomial")

estimation.pep Model averaged estimates

Description

Simulates values from the (joint) posterior distribution of the beta coefficients under Bayesian model
averaging.

Usage

estimation.pep(
object,
ssize = 10000,
estimator = "BMA",
n.models = NULL,
cumul.prob = 0.99

)

Arguments

object An object of class pep (e.g., output of pep.lm).

ssize Positive integer, the number of values to be simulated from the (joint) posterior
distribution of the beta coefficients. Default value=10000.

estimator A character, the type of estimation. One of “BMA” (Bayesian model averaging,
default), “MAP” (maximum a posteriori model) or “MPM” (median probability
model). Default value="BMA".

n.models Positive integer, the number of (top) models where the average is based on or
NULL. Relevant for estimator="BMA". Default value=NULL.

cumul.prob Numeric between zero and one, cumulative probability of top models to be used
for computing the average. Relevant for estimator="BMA". Default value=0.99.

Details

For the computations, Equation 10 of Garcia–Donato and Forte (2018) is used. That (simplified)
formula arises when changing the prior on the model parameters to the reference prior. This change
of prior is justified in Garcia–Donato and Forte (2018). The resulting formula is a mixture distri-
bution and the simulation is implemented as follows: firstly the model (component) based on its
posterior probability is chosen and subsequently the values of the beta coefficients included in the
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chosen model are drawn from the corresponding multivariate Student distribution, while the values
of the beta coefficents outside the chosen model are set to zero.

Let k be the number of models with cumulative posterior probability up to the given value of
cumul.prob. Then, for Bayesian model averaging the summation is based on the top (k + 1)
models if they exist, otherwise on the top k models.

When both n.models and cumul.prob are provided — once specifying the number of models for
the given cumulative probability as described above — the minimum between the two numbers is
used for estimation.

Value

estimation.pep returns a matrix (of dimension ssize × (p + 1)) — where the rows correspond
to the simulations and the columns to the beta coefficients (including the intercept) — containing
the simulated data.

References

Garcia–Donato, G. and Forte, A. (2018) Bayesian Testing, Variable Selection and Model Averaging
in Linear Models using R with BayesVarSel. The R Journal, 10(1): 155–174. doi:10.32614/RJ-
2018021

Examples

data(UScrime_data)
res <- pep.lm(y~.,data=UScrime_data)
set.seed(123)
estM1 <- estimation.pep(res,ssize=2000)
estM2 <- estimation.pep(res,ssize=2000,estimator="MPM")

image.pep Heatmap for top models

Description

Generates a heatmap where the rows correspond to the (top) models and the columns to the in-
put/explanatory variables. The value depicted in cell (i, j) corresponds to the posterior inclusion
probability of variable i if this is included in model j and zero otherwise.

Usage

## S3 method for class 'pep'
image(x, n.models = 20, ...)

Arguments

x An object of class pep (e.g., output of pep.lm).

n.models Positive integer, number of models to be shown on the heatmap. Default value=20.

... Additional parameters to be passed to heatmap.

https://doi.org/10.32614/RJ-2018-021
https://doi.org/10.32614/RJ-2018-021
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Details

The number of models to be displayed on the heatmap is computed as the minimum between the
number asked by the user and the number of models present in the object x.

The color code is as follows: the darker the blue in the figure, the higher the posterior inclusion
probability is, while white means that the variable is not included in the model.

In the special case of no explanatory variables, no heatmap is produced and a message is printed.

Value

No return value, used for heatmap generation.

See Also

plot.pep

Examples

data(UScrime_data)
set.seed(123)
resu <- pep.lm(y~.,data=UScrime_data,beta.binom=FALSE,

algorithmic.choice="MC3",itermc3=5000)
image(resu)
image(resu,n.models=10)

pep.lm Bayesian variable selection for Gaussian linear models using PEP
through exhaustive search or with the MC3 algorithm

Description

Given a formula and a data frame, performs Bayesian variable selection using either full enumer-
ation and evaluation of all models in the model space (for model spaces of small–to–moderate
dimension) or the MC3 algorithm (for model spaces of large dimension). Normal linear models
are assumed for the data with the prior distribution on the model parameters (beta coefficients and
error variance) being the PEP or the intrinsic. The prior distribution on the model space can be
the uniform on models or the uniform on the model dimension (special case of the beta–binomial
prior). The model space consists of all possible models including an intercept term.

Usage

pep.lm(
formula,
data,
algorithmic.choice = "automatic",
intrinsic = FALSE,
reference.prior = TRUE,
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beta.binom = TRUE,
ml_constant.term = FALSE,
burnin = 1000,
itermc3 = 11000

)

Arguments

formula A formula, defining the full model.

data A data frame (of numeric values), containing the data.
algorithmic.choice

A character, the type of algorithm to be used for selection: full enumeration and
evaluation of all models or the MC3 algorithm. One of “automatic” (the choice
is done automatically based on the number of explanatory variables in the full
model), “full enumeration” or “MC3”. Default value="automatic".

intrinsic Logical, indicating whether the PEP (FALSE) or the intrinsic — which is a special
case of it — (TRUE) should be used as prior on the regression parameters. Default
value=FALSE.

reference.prior

Logical, indicating whether the reference prior (TRUE) or the dependence Jef-
freys prior (FALSE) is used as baseline. Default value=TRUE.

beta.binom Logical, indicating whether the beta–binomial distribution (TRUE) or the uni-
form distribution (FALSE) should be used as prior on the model space. Default
value=TRUE.

ml_constant.term

Logical, indicating whether the constant (marginal likelihood of the null/intercept–
only model) should be included in computing the marginal likelihood of a model
(TRUE) or not (FALSE). Default value=FALSE.

burnin Non–negative integer, the burnin period for the MC3 algorithm. Default value=1000.

itermc3 Positive integer (larger than burnin), the (total) number of iterations for the
MC3 algorithm. Default value=11000.

Details

The function works when p ≤ n − 2, where p is the number of explanatory variables of the full
model and n is the sample size.

The reference model is the null model (i.e., intercept–only model).

The case of missing data (i.e., presence of NA’s either in the response or the explanatory variables)
is not currently supported. Further, the data needs to be quantitative.

All models considered (i.e., model space) include an intercept term.

If p > 1, the explanatory variables cannot have an exact linear relationship (perfect multicollinear-
ity).

The reference prior as baseline corresponds to hyperparameter values d0 = 0 and d1 = 0, while the
dependence Jeffreys prior corresponds to model–dependent–based values for the hyperparameters
d0 and d1, see Fouskakis and Ntzoufras (2022) for more details.
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For computing the marginal likelihood of a model, Equation 16 of Fouskakis and Ntzoufras (2022)
is used.

When ml_constant.term=FALSE then the log marginal likelihood of a model in the output is
shifted by -logC1 (logC1: log marginal likelihood of the null model).

When the prior on the model space is beta–binomial (i.e., beta.binom=TRUE), the following special
case is used: uniform prior on model dimension.

If algorithmic.choice equals “automatic” then the choice of the selection algorithm is as follows:
if p < 20, full enumeration and evaluation of all models in the model space is performed, otherwise
the MC3 algorithm is used. To avoid potential memory or time constraints, if algorithmic.choice
equals “full enumeration” but p ≥ 20 then the MC3 algorithm is used instead (once issuing a
warning message).

The MC3 algorithm was first introduced by Madigan and York (1995) while its current implemen-
tation is described in the Appendix of Fouskakis and Ntzoufras (2022).

Value

pep.lm returns an object of class pep, i.e., a list with the following elements:

models A matrix containing information about the models examined. In particular, in
row i after representing model i with variable inclusion indicators, its marginal
likelihood (in log scale), the R2, its dimension (including the intercept), the
corresponding Bayes factor, posterior odds and its posterior probability are con-
tained. The models are sorted in decreasing order of the posterior probability.
For the Bayes factor and the posterior odds, the comparison is made with the
model with the highest posterior probability. The number of rows of this first
list element is 2p with full enumeration of all possible models, or equal to the
number of unique models ‘visited’ by the algorithm, if MC3 was run. Further,
for MC3, the posterior probability of a model corresponds to the estimated pos-
terior probability as this is computed by the relative Monte Carlo frequency of
the ‘visited’ models by the MC3 algorithm.

inc.probs A named vector with the posterior inclusion probabilities of the explanatory
variables.

x The input data matrix (of dimension n× p), i.e., matrix containing the values of
the p explanatory variables (without the intercept).

y The response vector (of length n).

fullmodel Formula, representing the full model.

mapp For p ≥ 2, a matrix (of dimension p × 2) containing the mapping between
the explanatory variables and the Xi’s, where the i–th explanatory variable is
denoted by Xi. If p < 2, NULL.

intrinsic Whether the prior on the model parameters was PEP or intrinsic.
reference.prior

Whether the baseline prior was the reference prior or the dependence Jeffreys
prior.

beta.binom Whether the prior on the model space was beta–binomial or uniform.
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When MC3 is run, there is the additional list element allvisitedmodsM, a matrix of dimension
(itermcmc-burnin) × (p + 2) containing all ‘visited’ models (as variable inclusion indicators to-
gether with their corresponding marginal likelihood and R2) by the MC3 algorithm after the burnin
period.

References

Fouskakis, D. and Ntzoufras, I. (2022) Power–Expected–Posterior Priors as Mixtures of g–Priors
in Normal Linear Models. Bayesian Analysis, 17(4): 1073-1099. doi:10.1214/21BA1288

Madigan, D. and York, J. (1995) Bayesian Graphical Models for Discrete Data. International Sta-
tistical Review, 63(2): 215–232. doi:10.2307/1403615

Examples

data(UScrime_data)
res <- pep.lm(y~.,data=UScrime_data)
resu <- pep.lm(y~.,data=UScrime_data,beta.binom=FALSE)
resi <- pep.lm(y~.,data=UScrime_data,intrinsic=TRUE)
set.seed(123)
res2 <- pep.lm(y~.,data=UScrime_data,algorithmic.choice="MC3",itermc3=2500)
resj2 <- pep.lm(y~.,data=UScrime_data,reference.prior=FALSE,

algorithmic.choice="MC3",burnin=100,itermc3=1800)

peptest Bayes factor for model comparison

Description

Given two models to be compared (the one nested to the other), computes the corresponding Bayes
factor.

Usage

peptest(formula1, formula2, data, intrinsic = FALSE, reference.prior = TRUE)

Arguments

formula1 One of the two formulas/models to be compared.

formula2 The second formula/model. The one model needs to be nested to the other.

data A data frame (of numeric values), containing the data.

intrinsic Logical, indicating whether the PEP (FALSE) or the intrinsic — which is a special
case of it — (TRUE) should be used as prior on the regression parameters. Default
value=FALSE.

reference.prior

Logical, indicating whether the reference prior (TRUE) or the dependence Jef-
freys prior (FALSE) is used as baseline. Default value=TRUE.

https://doi.org/10.1214/21-BA1288
https://doi.org/10.2307/1403615
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Details

This function can be used to perform hypothesis testing indirectly. More specifically, for the inter-
pretation of the result (Bayes factor), the table in Kass and Raftery (1995) can be used.

The function works when p ≤ n − 2, where p is the number of explanatory variables in the more
complex model and n is the sample size.

The case of missing data (i.e., presence of NA’s either in the data matrix corresponding to the ex-
planatory variables of the more complex model or the response vector) is not currently supported.
Further, the explanatory variables of the more complex model need to be quantitative.

If p > 1, the explanatory variables of the more complex model cannot have an exact linear relation-
ship (perfect multicollinearity).

Value

peptest returns the Bayes factor, i.e., a numeric value. For the ratio, the marginal likelihood of the
more complex model (nominator) with respect to that of the simpler one (denominator) is computed.
Both marginal likelihoods are computed with respect to the intercept–only model (reference model).

References

Kass, R. and Raftery, A. (1995) Bayes Factors. Journal of the American Statistical Association,
90(430): 773–795. doi:10.1080/01621459.1995.10476572

Examples

data(UScrime_data)
resBF1 <- peptest(y~1,y~M+Ed,UScrime_data)
resBF1i <- peptest(y~1,y~M+Ed,UScrime_data, intrinsic=TRUE)
resBF2j <- peptest(y~M+Ed+Po1+Po2,y~M+Ed,UScrime_data,

reference.prior=FALSE)
resBF2ij <- peptest(y~M+Ed+Po1+Po2,y~M+Ed,UScrime_data,

intrinsic=TRUE, reference.prior=FALSE)

plot.pep Plots for object of class pep

Description

Generates four plots related to an object of class pep. In particular, the first one is a plot of the
residuals against fitted values under Bayesian model averaging. The second plots the cumulative
posterior probability of the top models (those with cumulative posterior probability larger than
0.99). The third plot depicts the marginal likelihood (in log scale) of a model against its dimension
while the fourth plot shows the posterior inclusion probabilities of the explanatory variables (with
those exceeding 0.5 marked in red).

https://doi.org/10.1080/01621459.1995.10476572


posteriorpredictive.pep 13

Usage

## S3 method for class 'pep'
plot(x, ...)

Arguments

x An object of class pep (e.g., output of pep.lm).
... Additional graphical parameters to be passed to plotting functions.

Details

Let k be the number of models with cumulative posterior probability up to 0.99. Then, the second
plot depicts the cumulative posterior probability of the top (k + 1) models.

In the special case of no explanatory variables, the fourth plot with the posterior inclusion probabil-
ities is not generated.

Value

No return value, used for figure generation.

See Also

image.pep

Examples

data(UScrime_data)
res <- pep.lm(y~.,data=UScrime_data)
plot(res)

posteriorpredictive.pep

Posterior predictive distribution under Bayesian model averaging

Description

Simulates values from the posterior predictive distribution under Bayesian model averaging.

Usage

posteriorpredictive.pep(
object,
xnew,
ssize = 10000,
estimator = "BMA",
n.models = NULL,
cumul.prob = 0.99

)
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Arguments

object An object of class pep (e.g., output of pep.lm).

xnew An optional data frame of numeric, the new data on the explanatory variables
to be used for prediction. The data frame needs to contain information about
all explanatory variables available in the full model; if not an error message is
output. If omitted, the data frame employed for fitting the full model is used.

ssize Positive integer, the number of values to be simulated from each posterior pre-
dictive distribution. Default value=10000.

estimator A character, the type of prediction. One of “BMA” (Bayesian model averaging,
default), “MAP” (maximum a posteriori model) or “MPM” (median probability
model). Default value="BMA".

n.models Positive integer, the number of (top) models where the average is based on or
NULL. Relevant for estimator="BMA". Default value=NULL.

cumul.prob Numeric between zero and one, cumulative probability of top models to be used
for computing the average. Relevant for estimator="BMA". Default value=0.99.

Details

For the computations, Equation 11 of Garcia–Donato and Forte (2018) is used. That (simplified)
formula arises when changing the prior on the model parameters to the reference prior. This change
of prior is justified in Garcia–Donato and Forte (2018). The resulting formula is a mixture dis-
tribution and the simulation is implemented as follows: firstly the model (component) based on
its posterior probability is chosen and subsequently the value for the response is drawn from the
corresponding Student distribution.

The case of missing data (i.e., presence of NA’s) and non–quantitative data in the new data frame
xnew is not currently supported.

Let k be the number of models with cumulative posterior probability up to the given value of
cumul.prob. Then, for Bayesian model averaging the prediction is based on the top (k+1) models
if they exist, otherwise on the top k models.

When both n.models and cumul.prob are provided — once specifying the number of models for
the given cumulative probability as described above — the minimum between the two numbers is
used for prediction.

Value

posteriorpredictive.pep returns a matrix (of dimension ssize × nrow(xnew)) — containing
the simulated data. More specifically, column i contains the simulated values from the posterior
predictive corresponding to the i–th new observation (i.e., i–th row of xnew).

References

Garcia–Donato, G. and Forte, A. (2018) Bayesian Testing, Variable Selection and Model Averaging
in Linear Models using R with BayesVarSel. The R Journal, 10(1): 155–174. doi:10.32614/RJ-
2018021

https://doi.org/10.32614/RJ-2018-021
https://doi.org/10.32614/RJ-2018-021
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Examples

data(UScrime_data)
X <- UScrime_data[,-15]
set.seed(123)
res <- pep.lm(y~.,data=UScrime_data[1:45,],intrinsic=TRUE,

algorithmic.choice="MC3",itermc3=4000)
resf <- posteriorpredictive.pep(res,ssize=2000,n.models=5)
resf2 <- posteriorpredictive.pep(res,ssize=2000,estimator="MPM")
resp <- posteriorpredictive.pep(res,xnew=X[46:47,],ssize=2000,n.models=5)

predict.pep (Point) Prediction under PEP approach

Description

Computes predicted or fitted values under the PEP approach. Predictions can be based on Bayesian
model averaging, maximum a posteriori model or median probability model. For the Bayesian
model averaging, a subset of the top models (either based on explicit number or on their cumulative
probability) can be used for prediction.

Usage

## S3 method for class 'pep'
predict(
object,
xnew,
estimator = "BMA",
n.models = NULL,
cumul.prob = 0.99,
...

)

Arguments

object An object of class pep (e.g., output of pep.lm).
xnew An optional data frame of numeric, the new data on the explanatory variables

to be used for prediction. The data frame needs to contain information about
all explanatory variables available in the full model; if not an error message is
output. If omitted, fitted values are computed.

estimator A character, the type of prediction. One of “BMA” (Bayesian model averaging,
default), “MAP” (maximum a posteriori model) or “MPM” (median probability
model). Default value="BMA".

n.models Positive integer, the number of (top) models that prediction is based on or NULL.
Relevant for estimator="BMA". Default value=NULL.

cumul.prob Numeric between zero and one, cumulative probability of top models to be used
for prediction. Relevant for estimator="BMA". Default value=0.99.

... Additional parameters to be passed, currently none.
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Details

When xnew is missing or xnew is equal to the initial data frame used for fitting, then fitted values
are computed (and returned).

For prediction, Equation 9 of Fouskakis and Ntzoufras (2020) is used.

The case of missing data (i.e., presence of NA’s) and non–quantitative data in the new data frame
xnew is not currently supported.

Let k be the number of models with cumulative posterior probability up to the given value of
cumul.prob. Then, for Bayesian model averaging the prediction is based on the top (k+1) models
if they exist, otherwise on the top k models.

When both n.models and cumul.prob are provided — once specifying the number of models for
the given cumulative probability as described above — the minimum between the two numbers is
used for prediction.

Value

predict returns a vector with the predicted (or fitted) values for the different observations.

References

Fouskakis, D. and Ntzoufras, I. (2022) Power–Expected–Posterior Priors as Mixtures of g–Priors
in Normal Linear Models. Bayesian Analysis, 17(4): 1073-1099. doi:10.1214/21BA1288

Fouskakis, D. and Ntzoufras, I. (2020) Bayesian Model Averaging Using Power–Expected–Posterior
Priors. Econometrics, 8(2): 17. doi:10.3390/econometrics8020017

Examples

data(UScrime_data)
X <- UScrime_data[,-15]
set.seed(123)
res <- pep.lm(y~.,data=UScrime_data[1:45,],intrinsic=TRUE,

algorithmic.choice="MC3",itermc3=4000)
resf <- predict(res)
resf2 <- predict(res,estimator="MPM")
resp <- predict(res,xnew=X[46:47,])

print.pep Printing object of class pep

Description

For each of the top models (shown in columns), the following information is printed: the model
representation using variable inclusion indicators, its marginal likelihood (in log scale), the R2, the
model dimension, the Bayes factor, posterior odds (comparison made with the highest posterior
probability model) and posterior probability. An additional column with the posterior inclusion
probabilities of the explanatory variables is also printed.

https://doi.org/10.1214/21-BA1288
https://doi.org/10.3390/econometrics8020017


print.pep 17

Usage

## S3 method for class 'pep'
print(
x,
n.models = 5,
actual.PO = FALSE,
digits = max(3L, getOption("digits") - 3L),
...

)

Arguments

x An object of class pep (e.g., output of pep.lm).

n.models Positive integer, the number of top models for which information is provided.
Default value=5.

actual.PO Logical, relevant for the MC3 algorithm. If TRUE then apart from the estimated
posterior odds, the actual posterior odds of the MAP model versus the top mod-
els (i.e., ratios based on the marginal likelihood times prior probability) are also
printed — which could be used as a convergence indicator of the algorithm.
Default value=FALSE.

digits Positive integer, the number of digits for printing numbers. Default value=max(3L,
getOption("digits") - 3L).

... Additional parameters to be passed to print.default.

Details

The number of models for which information is provided, is computed as the minimum between
the number asked by the user and the number of models present in the object x.

Value

No return value, used for printing the results on the R console.

Examples

data(UScrime_data)
res <- pep.lm(y~.,data=UScrime_data)
print(res)
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UScrime_data US Crime Data

Description

The dataset has been borrowed from the MASS R package and describes the effect of punishment
regimes on crime rates. One explanatory variable (indicator variable for a Southern state) was
removed since it was binary.

Format

This data frame contains the following columns:

M percentage of males aged 14–24.

Ed mean years of schooling.

Po1 police expenditure in 1960.

Po2 police expenditure in 1959.

LF labour force participation rate.

M.F number of males per 1000 females.

Pop state population.

NW number of non-whites per 1000 people.

U1 unemployment rate of urban males 14–24.

U2 unemployment rate of urban males 35–39.

GDP gross domestic product per head.

Ineq income inequality.

Prob probability of imprisonment.

Time average time served in state prisons.

y rate of crimes in a particular category per head of population.

Source

Data from the R package MASS
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